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resources. Automated modelling provides greater reliability on
the derived models, reduces the time and effort to obtain them
and in general, results in more efficient analysis studies.

ABSTRACT: This paper describes the framework and the
approach that are utilized in the implementation of a software
for automated mathematical modelling of dynamic systems.

Application examples illustrate the main features and |p the next two sections we present a theoretical-computational
possibilities of this software. The formalism utilizes a system formalism to derive a symbolic state-space model for lumped-
linear graph representation associated to a systematicpsrameters dynamic systems. A section dedicated to examples

procedure in order to obtain a state-space model of lumped-js provided to highlight the main features of the developed
parameters systems. This mathematical modelling method is gnftware.

automated using modern computational symbolic processing

capapiities. 2 SYSTEM REPRESENTATION AND

RESUMO: Este trabalho descreve a base formal e a THEORETICAL ASPECTS

abordagem utilizada para a implementagdo de um ambiente

cgnqutacional para modelagem simbé~lice_1 de sistema§ 2.1 Models Comprised In This Analysis

dindmicos. Os recursos implementados s&o ilustrados atraves

da resolucdo de problemas-exemplos. O formalismo se aplica aln this paper, we treat lumped-parameter dynamic systems and
sistemas a parametros concentrados e utiliza a representacdwe consider two classes of systems: linear time-variant systems
tipo grafo de sistemasassociada a um procedimento having two-terminal RLC (resistance-inductance-capacitance)
sistematico para obter um modelo matematico do sistema nogeneralized elements, mutual inductances and four-terminal
espaco de estados. A automatizacdo do processo degeneralized transformer elements; and non-linear time-
modelagem explora os recursos computacionais modernos denvariant systems, having two-terminal RLC generalized

processamento simboalico. elements. In both cases the systems may contain independen
generalized voltage and current sources (external inputs). A
large family of plants is considered, especially those

1 INTRODUCTION constituted by the interconnection of mechanical, electrical,

Mathematical modelling can become an essential part in the electro-mechanical,  hydraulic ~ and  electro-hydraulic

process of analyzing a dynamic system, as a mean to makecomponents.
predictions, to optimize performance or to perform qualitative ) o ) )
evaluations about the system. In addition, models expressed inS€€king generalization and consistency, it was necessary o
symbolic form allow the derivation of alternative models IMPOse some hypotheses; in the linear case, they were kept tc
appropriate to the objectives of the analysis; for example, & Minimum in order not to burden the user or to restrain
modelling for purpose of control system design. unnecessarily the practical applications of the developed
software. In the nonlinear case, they are listed in the section
There are several computer programs available to support2.4.2.
dynamic systems analysis and simulations studies; for
example, Felez et al., 1990, which utilizes a bond graph
approach; Andrews, 1971, which utilizes a vector network
approach. However, computer programs designed to derive In the System Graph (or Linear Graph) representation (Shearer
mathematical models, i.e. models in symbolic form, are scarce. et alii, 1969), a set of connected branches, representing the
lumped elements of the system, forms a graph describing the
The system graphrepresentation associated withsystematic real system or its physical model. The generalization of the
procedure for obtaining state-space equations provides an Kirchhoff laws to electrical circuits can be utilized to impose
interesting alternative to automate the process of mathematicalthe graph the constraints to flows and loops (continuity and
modeling of lumped parameters systems, making use of the compatibility conditions). The dynamic equations of the
available modern computational ~symbolic processing system, i.e. its mathematical model, can be obtained by adding
to the constraint equations set, the equations which describe the
Artigo submetido em 18/11/97 system elements. Thenobility analogy (Firestone, 1933)

la. Revisdo em 26/02/98; 2a. Reviséo em 03/06/98; ; ; ;
Aceito sob recomendacéo do Ed. Cons. Prof.Dr. Lit Hsu among electrical circuits and the other types of systems,

2.2 System Graph Representation
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mechanical, thermal and/or fluid, can be utilized in order to set of state variables, since stepsdnd p) guarantee a non-
deal with all of them in a generalized way. redundant choice of these variables.Also, from the
computational point of view, steps)(and ¢l) are represented

So, the problem is to exploit the system graph approach for jn the calculation of the matrices presented in the next section.
representing generalized lumped-parameters dynamic systems

and a systematic procedure for defining state variables and This systematic procedure is suggested in some texts like (Kuh
relate them, in order to implement an integrated software that and Roher, 1965; Wellstead, 1979; Chen, 1984).

automates the modelling process for obtaining the state-space
equations in a symbolic form as well as its numerical

. : 2.4 System Equations For Automated
simulation.

Modelling

By making use of quantities like thecidence matrixof the
system graph, itsormal tree fundamental cutsetand loops 2.4.1 Linear systems
defined in the sect_lon 2.3, it is po§5|ble t(.) deduce a ggneral The algebraic manipulation utilizing the systematic procedure
state-space model in terms of special matrices representing thet )

o deduce a linear state-space model,
elements of the system and the way they are connected (Kuh
and Roher, 1965; Adade®,F1992; Gongalves, 1995). Several x(t)= Alt)x(t)+B(t Ju(t) (1)
algorithms were developed (Gongalves, 1995) to extract ) _ o
information from the system graph and to implement the IS extensive and can be found in details in Gongalves (1995). In

section 3). considering two different sets of state-variables. Consider,

) ) - the vector of independent sources:
2.3 Systematic Procedure For Modelling In

The State-Space U(t)=[JT eT]T 2

A systematic procedure, as described in the sequel, allows us tovhere:
derive relationships among the variables, needed to automate,

the process of obtaining state-space models from the systemi(Nra,1) — vector of “through” variables sources, the k-th
graph representation: element being the algebraic sum of the "through" variables

sources belonging to the k-th fundamental cutset.
a - define anormal tree This tree is built from the oriented ] ]
graph of the system, adopting the following sequence for &Nnb,1) - vector of "across" variables sources, the i-th element
choosing the tree branches: all “across” variable sources, thePeing the algebraic sum of the "across” variables sources
maximum number of passive elements type-A (generalized Pelonging to the i-th fundamental loop.
capacitors), type-D (generalized dissipators) and a minimum
number of type-T (generalized inductors) passive elements; in
the end of this process, the elements not included in the normal
tree will be included in the complementary graph, called co- ¢ . capacitors in the normal tree; S : capacitors in the co-tree;
tree. Every branch not in the tree is callduhia L : inductors in the co-tred : inductances in the normal tree;
R : resistors in the co-tree; G: conductances in the normal tree;
0 : transformer port in the normal tree;, : transformer port in
b, - the “across” variables of the type-A (generalized the co-tree,
capacitors) elements inserted in the normal twge gnd
the “through” variables of the type-T (generalize

Partitioning the vector of independent sources in accordance to
the type of the elements, using the notation for subscripts,

b - Choose as state variables:

d we obtain,

inductors) in the co-treei §; or, alternatively, 0o O (e
g O 0
b, - the integrated “through” variables of the type-A [j]:DICD and [e]:%RD (3)
elements inserted in the normal tregc)( and the GgO [e O
integrated “across” variables of the type-T elements in Dir% EOE

the co-tree ¢,).

) _ The fundamental loops and cutsets equations can be written as:
¢ - Write each (across and/or through) variable of all type-D

and type-A elements in the co-tree, and of the type-T elements v,0 00 -FO0,0 Ce0 @)
inserted in the normal tree, as well as the generalized %ZEFB:T 0 %’2%%%

transformers energy ports as functions of the state variables,

applying theloop law to the fundamental loops and thede where the vectors, and vy (i, and i;) denote the across

law to the fundamental cutsets, formed by those branches. A (through) variables of the passive elements inserted in the
fundamental loods a unique loop formed by every link and normal tree (cotree), respectively. This matrix F is called the
some tree branches; fandamental cutseis a unique cutset fundamental loop matrix and its transpose is equal to the

formed by every tree branch with some links. fundamental cutset matrix. Partitionikgin accordance to the
systematic procedure to choose the normal tree (see the
d - Apply node lawto the fundamental cutsets or fbep law Symbol List to a comment about each sub-matrix):

to the fundamental loops, of every branch that contributes with
a state variable.

It should be pointed out that the application of this systematic
procedure allows to describe the system utilizing a minimum
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O
5:016 Fac  Foc 0n

Utilizing the equations describing the generalized RLC and

transformers elements, as well as the constraints equations_ ( T )-1 T

from the oriented system graph, the following matrices can be T10=Fac Naillig =Fag Na1) Fug 19)
defined (also see Symbol List):

(e +Fo0” M)
GiFro Niollye +Fae N1o) Foc

-1
- the capacitive matrix of the system: Ty =Fag' N21(| 16~Fag' N21) Fro' (20)

_ T
C=Co+Fsc CiFsc (6) _ o
T15=Fre Ni2(lva +Fag Nio) ™ Foc (21)

the inductive matrix of the system:

L =Ly +F Lo+ Lo P +F Lo P! 7 In addition, consider,

the resistive matrix of the system: T 1
y= (FRC +T1)(R+T5) (T2 =Fre)

R =R +FrgR;Frg' (8)
- the conductive matrix of the system: h= (FLcT +T2)+(FRCT +T1XR+T5)_1('|'6 —FreRe FLGT) (23)
G=G,+ FRGT G, Fgre )

i , k= (TB_FLC )"‘ (T4 -Fe )(G +Tg )_1 (Tg ~Fra' G1Fre ) (24)
- the matrices related to the energy ports of the generalized

transformers:

zZ= (T4 -Fie XG +Tg )_l(TlO+ Fio' ) (25)
T= FacT N21(| 19 _FaeT Nzl)_l FRBT (10)
To write the state-space equations in the standard form, the
. state variables vector, as chosen in the Istegf the systematic
T,=Fyc' N21(I e N21) Flo (11) procedure, is redefined as:
X = E VC _C_lFTSCCleS B
T3=FLo Niz(lve +Fag Ni2) Fac (12) il +|__1(L12 +F |_22)j r B (26)
T4=FLe N12(| va tFag le)_l e (13)
B . In this case, the matrices A(t) e B(t) of the state-space model
Ts=Fro Nia(lva +Fag Nio) “Fag Ry Frg' - are given by:
— [Fro Nio(lva +Fag Nio) "Fag RoFug ' — (14) . U
T T -1 ! o -C h 0
~ FreRoFoe | N21(| 10 ~Fae NZl) Fre A(t): O 9 . 0 (27)
o O
_ -1 T g
Te=Fro N12(|Vu +Fa0 le) FcReFc + o
a T B(t): g: 0 I:D Bl Bll BZ BS 00 (28)
[FroNi{lve +FagNio) Fog Ro P = (15) Ho L'g0 B, B, B, B, I
T T 1
FreReFoc ] N21(| 10 a6 N21) Flo where,
T, =Fro Nio(lva +Fao Nio) "Fac Ry (16) B, = (Fr” +T[R¥T) (T, ~FraR.) (29)
By = —hL ™ (Lyo+Fir Lyp) (30)
e T ( T )‘1 T B
TS_FGG N21 I 16 F(IQ NZl FRQ GlFRG -1 T
T ooV g 0 B, =yC "Fsc Cy (31)
%ae N21(| 10 ~Fae N21) Fro *Fro - (17) ( X
-1 By = Fre' +TiR+Ts)™ (32)
G, Fro N12(| va+Fas' le) Fac
B, = (T, -Fc JG+Tg)™ (33)
Bs =- ZL_l(le +F |—22) (34)
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By, = kC’lFSCT C, (35) If equation (42) can be solved for i as a functiongf = 1(@),
the element is said to be integrated "across" variable controlled,;
4 T on the contrary, if this equation can be solved ¢oas a
B = (T4 —Fic G+T;) (FRG +T11)31 (36) function of i, = (i), the element is said to be "through"
variable controlled.
For the same reason, that is, to write the state-space equations o . )
in the standard representation (without explicit derivatives of The constitutive relationship of a type-D element can be
the input), the vector of state variables, as chosen in thdstep ~represented by a curve in the v-i plane, the equation being:

of the systematic procedure, is redefined as: fr(v,i) =0 (43)
O 0.-C ClE TCleS O If equation (43) can be written as v = V(i), the element is said
X( )= O © _21 SC O (37) to be "through" variable controlled; on the contrary, if i = 1(v),
@L +h,L (L12+FLF Lzz)lr B the element is said to be "across" variable controlled.
In this case, the matrices A(t) e B(t) of the state-space model Equations (41)-(43) make possible to deduce a dynamic model
are given by: in the sate-space,
0.4 d ~ - O X =
e o eyl 8 8) x = f(xu) (44)
g0 L’lLllga kG 2L~ % (LLﬂ‘l)% In addition, it is assumed the following hypotheses:
- H; - the system is time-invariant;
1 O B, B 1 Yy ;
B(t): € C, _10 0 B B; 2 3 00 (39)
50 LL,H9 By Bs By Bs I H, - there are no two-ports (four terminals) elements;

2.42 Nonlinear systems Hs - the non-linea}r generglizgd RLC elements can be described
by parametric equations;

This section presents the formulation of a dynamic model to

systems which have non-linear RLC generalized elements. Hs - there are no fundamental loops formed by type-D

Utilizing matrices conveniently chosen, this formulation allows elements;

an automatization of the modelling process through the use of

! A N H - - H - 13 ” H
symbolic manipulation software. 5 - all type-D elements in the co-tree are “across” variables

controlled;

Only nonlinear generalized elements whose characteristics can
be represented by parametric equations are considered.
Conditions to the existence of a state-space model are
presented in terms of the topological constraints and the H,
characteristics of the elements, allowing, by inspection of the
system graph, to check the existence of the required model.Hg - the type-T elements are “through” variables controlled.
This section is based on (Brayton and Moser, 1964; Chua and
Roher, 1965; Desoer and Katzenelson, 1965; Stern, 1966). HypothesesHs-He allow us to express, in a direct way, the
variables of type-D elements in terms of the adopted state
Lets define a parametric equation as a subset C in the variables; otherwise, we should define inverse functions for the

He - all type-D elements in the normal tree are “through”
variables controlled;

- the type-A elements are "across" variables controlled;

Euclidean plane & characteristics of the elements (Desoer and Katzenelson, 1965)
co(w 20E2w=w(g) z= b 40 Hypoth_eseerHB allow us to derive, in a direct way, a
_{( ) V\(E) z(f)efF[a, ]} (40) dynamic model in terms of the "across" variables of the type-A
such thaw ez are continuous functions of the paraméter elements in the normal tree and "through" variables of type-T
being differentiable within the interval of interest. elements in the co-tree.

With this definition it is possible to characterize the nonlinear

RLC generalized elements as follows. In accordance to the hypothesé$;-Hgs the equations for the

generalized RLC elements can be written using explicit
The constitutive relationship to a nonlinear type-A element can functions,

be represented by a curve in the g-v plane, being q the Os0 €, 00d VO
integrated "through" variable and v the "across" variable of the % [FDO c D_t% 0 (45)
element, which equation is: cl O 200t Ve O

fe(v,.@)= 0 (41) for the generalized capacitors;
If equation (41) can be solved for v as a function of g, v = Vg = R2°(FLTGiL+jG)
V(q), the element is said to be integrated "through" variable i = Gyo (CFeve ) (46)
controlled; on the other hand, if his equation can be solved for R™H RCYC "R

g as a function of v, g = Q(v), the element is said to be 5 the generalized resistors; and
"across" variable controlled. ’
v 004 L,0d0.0

Similarly, the characteristics of a nonlinear type-T element can D:H_ L D&% U (47)
. . . r0 k2 29O
be represented by a curve in tigei plane, being® the
integrated "across” variable and i the "through” variable, which for the generalized inductors.
equation is: ' _ . _
f (@) =0 (42) g;‘.e submatrices in the equations (45) and (47) are determined
4 SBA Controle & Automagéo Vol. 10 no. 01/ Jan., Fev., Mar, Abril de 1999



7] Utilizing hypothesesHg-H1,, we obtain the following dynamic
Cl = m [QS O(_FSCVC +e5 )] (48) model:
C, = dL[QC (v )] (49) CCe = RG] ~FrcVe(t ) er Rl L )+ ic +FacCies (58)
VC * . -.
09 0 LL.@ :_FLCVC(%)_FLGRZ"[FLTG'L((R_)+JG]_FLr Loojr—6. (59)
L1 = E‘I-_‘Dll(iL ir )DD(FLTF iL+ir ) (50) where,
@i O
0
Og .. \J o -_Y o|—
L, = E—,m—cDMGLJF )EP(FLTr'L*'Jr) (51) G Ve {Qso[-FscVe(ac)+ el (60)
r
d
09 O (1. C, =—Ve (ac)] (61)
Loy = %T¢22(|L1|F)B?(FJFIL+JF) (52) dac
L d
Li=—1 (o )] (62)
ta AN . 11 L
Ly, = E‘lm_q’zz('b'r )EP(FLTr'L +ir ) (53) dj"
r .
Loy = W{q’zzo[ﬁ} I (@ )+ Jr]} (63)
The symbol {) in these equations denotes function of L
i T -1
function. C = FgcC Fsc+C, (64)
In case hypothesid, is not verified (this condition is analysed — -1 T
by the implemented software, which provides a warning L=Lyy +FrLeFr (65)

message in case of its violation), we can introduce to the

original system graph, a linear capacitor in parallel to the type- 3 ASPECTS OF THE COMPUTER

D elements of the co-tree that are forming the respective IMPLEMENTATION

fundamental loops; a linear capacitor inserted in the system

graph allows to simulate a residual parasitic capacitance, which The automatic modelling software (called MASD, an acronym
is a characteristic of physical systems. Alternatively, we can for “Modelagem Automatica de Sistemas Dinamicos”) is
insert linear inductors in series to type-D elements in the constituted by Turbo Pascal routines which implement the user
normal tree, that are forming the respective fundamental loops; interface program (problem definition) and the system graph
a linear inductor inserted this way allow us to simulate characterization, as well as a program written in Mathematica
parasitic inductance, which is a characteristic of physical to manipulate and obtain the state-space symbolic form
systems. It is assumed no mutual coupling for the linear equations. MASD main features are illustrated in this paper
inductances inserted in the original system graph. through application examples.

The algebraic manipulation to derive state-space models is A flow diagram of MASD is shown in figure 1. In this
similar to the linear case and can be found in details in diagram, system definitionrefers to the user input of data
Gongalves (1995). The results are presented in the sequel fordescribing the system graph topology (number of nodes,
two different sets of state variables. number of branches, initial and final node numbers for each
branch element), the type of elements of the system and the

For the first set, ¢ e i, the dynamic model is given by: simulation parameters. This numerical data input is done in a

Cv. = FTRCGlo(_FRch"'QQ)"' jct FLTciL"'FSTcCleS (54) Start I%I
. . |
LiL =-FcVve—Fg RZO(FLTGiL + je)_(L12+FLr Lzz)jr +e (55) *
where, System Save Files
Definition with
C = FgcCiFsc+C, (56) | Extension
T T * “_n|1at"
L=Lyg+Fr Lo+ Lo For +Fr Lo Fir (57) Form the :
. i
To derive a dynamic model for the second set of state Incidence H
variables, g e @, lets consider hypothesesHg-Hi, in Matrix S)anolic
substitution of hypothesé$,-Hg as below: * Modelling
. Choose and
Ho - the type-A elements in the normal tree are of controlled Normal Tree Simulation
“through” variables; |
|
Hio - the type-T elements in the co-tree are of controlled
integrated "across" variables; Fundamental MASD Output
Hi, - the type-A elements in the co-tree are of controlled DLec;gFrJ I\i/lna;{:én Information
"across" variables; i

Hi, - the type-T elements in the normal tree are of controlled
“through” variables;

SBA Controle & Automagcéo Vol. 10 no. 01/ Jan., Fev., Mar, Abril de 1999
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guestions and answers session, controlled by the user interface

routine. The dialog boxes for data input are presented in the
Appendix. Concluded the data input, the information about the
graph topology are then reorganized by MASD in a matrix
form through anincidence matrix which is the base for the
systematic classification of tree branches and links, in the
process of defining a normal tree and its respective co-tree.
Tree search algorithms are utilized in this process as well as to
obtain thefundamental loop matrigGongalves, 1995).

Once thefundamental loop matriis obtained and adequately
partitioned, the next step of the program is to save the required
information (those matrices defined in the modelling equations,
parameters of the elements, parameters of simulation etc) for
the symbolic processing session; such information are saved as
files .mat The algebraic manipulation program to deduce the
dynamic mathematical model, as well as its simulation, is part
of MASD and implemented using the softwaviathematica

for Windowd4/ v2.1. In the flow diagram of figure 1 the dashed
line indicates that the symbolic manipulation program must be
activated by the user, inside Mathematica Other algorithms, as
commented above, were implemented in Turbo Pascal v5.5.

MASD computational program, for the linear case, provides as
output the matrices A(t) e B(t) and the vectors x(t) and u(t); for
the non-linear case it provides a model in accordance to
eq.(45). In both cases, if required by the user, it provides a
numerical simulation of the model.

4 APPLICATION EXAMPLES

4.1 Linear System

This example shows results obtained using MASD for
modelling the mechanical system (Wellstead, 1979)
represented in the figures 2 and 3.

Figure 2 - Mechanical System
Assuming numerical simulation of the system is required,
consider the following fictitious values for the lumped
elements of this system

M1 =3 [kg] M; = 3 [kg]
Is; = 1[Nm] Is, = 2 [Nm]
B;=1.9[Ns/m] B= 1.2 [Ns/m]

Bs;=1.2 [Ns/m] B=1.9[Ns/m]
6 SBA Controle & Automagao Vol. 10 no. 01 / Jan., Fev., Mar, Abril de 1999

K, =1.8 [N/m]
Kz = 1.5 [N/m]

Ko = 1.8 [N/m]

n=r,=0.1[m] n=2cos@)
N=1,=0.1m] a=0.524 [rad]

Figure 3 - System Graph

. After data input, which consists in defining the system graph
as shown in the Fig.3, in a questions and answers sessior
controled by the user interface program (see the Appendix),
MASD represents internally the graph throughimcidence
matrix; also, utilizes an especific terminology in accordance to
each type of element (Cg, Bg, Kg for generalized capacitance,
resistance and inductance, respectively; Fe, Fa for the
generalized across- and through-variable sources; Te, Ta for
the transformer ports inserted in the normal tree and co-tree,
respectively), and utilizes a numeric index for each element,
depending on the order they are entered by the user. Five files
are generated by MASD after data input, with information for
the next phase of the symbolic modelling process. For
example, MASD provides, in the file argl.mat a description of
the elements of the system, in this problem the capacitance
matrix (G), the resistance matrices (R R) and the
inductance matrix (L); also, the transformation ratio matrix
(np) as well as the external sources vectqg). (FIn the file
arg2.mat, MASD provides the sub-matrices of the fundamental
loop matrixF (see eq. (5)):

Argl.mat

C2 ={{Cg1,0},{0,Cg2}};

R1 = {{1/Bg1,0},{0,1/Bg4}};

R2 = {{1/Bg2,0},{0,1/Bg3}};

L11 = {{1/Kg1,0,0},{0,1/Kg2,0},{0,0,1/Kg3}};

n12 = {{1/n1,0,0},{0,1/n2,0},{0,0,1/n3}};

Fa = {{Fal,0},{0,Fa2}};

Arg2.mat

Fre = {{0,0,0},{0,0,0}};

Frc = {{'110}1{01'1}}:

Frg = {{0,0}.{0,0}};

Fle = {{0,0,0},{0,0,0},{0,1,0}};
Flc = {{0,0},{0,0},{0,0}};

Flg = {{-1,0},{0,-1},{0,0}};



Fae = {{0,0,0},{1,0,-1},{0,0,0}};

Fac = {{-1,0},{0,0},{0,-1}};
Fag = {{0,0},{1,1},{0,0}};
Fic = {{-1,0},{0,1}};

Fig = {{0,0},{0,0}};

Also, at the end of the data input MASD generates the

following information for the user:

TREE BRANCHES:

x() = {{qc1][t}{ac2][O}3.{ fi2][a3.{ fif2][d}{ fil3][d}

The input vector is:

u(t) = {{-Fal}, {Faz}, {0}, {O}}

At the end of the symbolic modelling process, the ij-elements

of the system matrix A(t) were obtained by MASD as:
a[1,1] = -(Bgl/Cgl),a[1,2]=0, a[3,1] =0, a[4,1] = O,

Element initial node final node magnitude a[5,1] = -((Kg3*n1)/n2)
Tel 3 1 0.1 a[2,1] = 0, a[2,2] = -(Bg4/Cg2), a[3,3] = 0, a[3,4] = 0,
Te2 5 6 2Co0s[0.524 a[3,5] = (Kg3*n3)/n2
Te3 8 1 0.1 a[3,1] = 0, a[3,2] = 0, a[3,3] = -(Kg1l/Bg2), a[3,4] = 0,
Cgl 2 1 3 a[3,5] = Kg3/(Bg2*n2)
Cg2 9 1 3 a[4,1] = 0, a[4,2] = 0, a[4,3] = 0, a[4,4] = -(Kg2/Bg3),
Bg2 3 4 1.2 a[4,5] = Kg3/(Bg3*n2)
Bg3 7 8 1.2 a[5,1] = n1/(Cg1*n2), a[5,2] = -(n3/(Cg2*n2)),
a[5,3] = -(Kgl/(Bg2*n2)),
LINKS (CO-TREE BRANCHES): a[5,4] = -(Kg2/(Bg3*n2)),

element initial node | final node magnitude a[5,5] = ((Bg2 + Bg3)*Kg3)/(Bg2*Bg3*n2"2)
Bgl 2 1 19 and the ij-elements of the matrix B(t) were obtained as:
2ol 2 : L9 b[1,1] = 1, b[1,2] = 0, b[3,1] = 0, b[4,1] = 0

g - b[2,1] = 0, b[2,2] = 1, b[2,3] = 0, b[2,4]= 0
Kg2 / 8 1.8 b[3,1] = 0, b[3,2] = 0, b[3,3] = Bg27(-1), b[3,4] = 0
Kg3 5 6 1.5 bl4,1] = 0, b[4,2] = 0, b[4,3] = O, b[4,4] = Bg3"(-1)
Fal 2 1 1 b[5,1] = 0, b[5,2] = 0, b[5,3] = 1/(Bg2*n2),
Fa2 1 9 2 b[5,4] = 1/(Bg3*n2)
Tal 1 2 0.1
TaZ / 4 2Cos[0.524 4.2 A NONLINEAR SYSTEM
Ta3 1 9 0.1

A hydraulic reservoir system is shown in figure 4 and its
analogous circuit (Q-i) is shown in figure 5. This system,

Choosing a standardized set of state variables we have that the,nsisting of a large hilltop reservoir feeding two smaller town
state vector is composed by the integrated through-variable of .ogervoirs. is described in Athaeisalii (1974)

the mechanical capacitance ;Cgnd the integrated across-
the mechanical

variables in
respectively:

inductances; kand kg,

Lpe

where:

C hydraulic capacitance of the main reservoir

1

Figure 5 - Analogous Circuit
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C, hydraulic capacitance of the reservoir 1

C, hydraulic capacitance of the reservoir 2

Ru1 hydraulic resistance of the retention valve linked
between tanks 1 and main

Ry2 hydraulic resistance of the retention valve linked
between tanks 2 and main

Cp. orifice coefficient of discharge of the pipe 1

Cp: orifice coefficient of discharge of the pipe 2

Cv; orifice coefficient of discharge of the,R

Cv, orifice coefficient of discharge of the,R

Qj water flow rate into tank [Hs] j; (j = 1, 2)

Aj cross-sectional area of the reservoir{ftj = 1, 2)

The mathematical model for the water flow rate in a reservoir
system:

Q = (Cp), /APpipe [ft3/min] flow in pipe
Q = (CV)(N AR, 4e [ft3/min] flow in valve
Al = (s )(Q) [Ib/(ft min)] fluid momentum in the
pipe 1 and 2
VL = (G)(P) [ft] volume in the reservoir 1 and 2
VL. = f(AP) [t}  volume in the reservoir
principal
dy, - S Qj [ft¥min] flow in tanks
dt - Jz:l
where:
AP pressure drop [IbAt
r valve position (G r= 1)
Vi volume of liquid [ff]
L hydraulic inductance [Ib/ft
G hydraulic capacitance [fmin?)/Ib]

Based on the oriented system graph of this hydraulic system,
we can write the following set of equations:

F4 + QCZ - QRV2 =0 (66)
Fe - FS'QCR'QRpl'QRp2:0 (67)
Fs+Qc1-Qrv1 =0 (68)
Q= QRpZZ Qrv2 (69)
Qu= QRpl = Grut (70)
Pcr-(P1 + Fra+ Peit+ Prp) =0 (71)
Pcr- (P2 + Frea+ Pea+ Prp2) =0 (72)

Substituting eqg. (69) in the eq. (66) and then using the
capacitance constitutive equation, we obtain

d 1
— P2 :_—(F4 _QLZ)

73
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Similarly, substituting equations (69) and (70) in eq. (67), we
obtain,

d

1
EPCR:—C—R(QL1+QL2+F5—F6) (74)

Notice that,

d
Ver=f (PCR)

d
- Vg =Qug=C
dt CR QCR R

P
dt CR

C A:af(PCR)
R P

In the same way, substituting eq. (70) in eq. (68), we obtain

d ! (F-qu)

— PCl:__

75

The constitutive equation to the hydraulic inductanged.
d 1
- =P 76
dt QLl I—l L1 ( )

Substituting eq. (71) in eq. (76) and utilizing the resistance
constitutive equations, we obtain

BB
Quu 3
1

In a similar way, utilizing eq. (72) and resistance constitutive
equations into the hydraulic inductance constitutive equation
L,, we obtain,

R o m
Quz L

Equations (73)-(75), (77) e (78) can be compared with the
model obtained utilizing MASD.

d
dt

(77)

d
dt

(78)

As commented in the previous example, data input consists in
defining the system graph, in a question and answer sessior
controled by the user interface program (see the Appendix). A
constitutive function is required in defining a nonlinear
element. It is shown below the information MASD generates:

TREE BRANCHES:

Element initial node final node| statevariable
Cgl 8 1 vc[l]

Cg2 5 1 vc[2]

Cg3 2 1 vc[3]

Bgl 7 8

Bg2 5 6

Bg3 5 4

Bg4 3 2

LINKS (CO-TREE BRANCHES):
Element initial node final node
Kgl
Kg2
Fal
Fa2
Fa3
Fa4

state ariable
il[1]
2]

N[ |0l oo
ROk |k |W]|N




Choosing a standardized set of state variables, we have that the
state vector is composed by the “across” variables (pressures)

of the hydraulic capacitance £gCg and Cg and the
“through” variables (flows) of the hydraulic inductances kg
and kg, respectively. A dynamic model for this system was
obtained by MASD as:

d _ -Fal+ il
Sovel ==——
d _ -Fa2+Fa3-il[1][t] -il[2][t]
a0 veraa)
ovel2][t]

d _ -Fa4+il[2][t]
VeI =— ==

) (il[l][t2] ) (g 22 - ve[a][t] + vel2][t]
Dipggpg =)
ot Lf1

] (i|[2][t2] y (21 22 - ve[3][+ ve[2l]
Lizyg =— <P (evr)
ot Lf2

In these expressionsc denotes pressure ailddenotes flow;
Vcr represents the nonlinear function relating volume and
pressure in the main reservoir.

5 CONCLUSION

Automated modelling provides greater reliability to the derived
models, reduces the time and effort spent to obtain them,

provides support to teaching in especific areas, and in general,

allows more efficiency in the analysis studies as a whole. This
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paper describes a framework and the approach that are utilizedWellstead, P.E. (1979)Introduction to Physical System

in the implementation of a software, acronym MASD, for state-
space automated symbolic modelling of lumped-parameters
dynamic systems. Application examples illustrate the main
characteristics and possibilities of this software. The main
contribution of this work is the implementation of a dedicated
software for mathematical modelling, as described in section 3,

Modelling.London, Academic Press.

APPENDIX
MASD accepts data input through a file or the keyboard. In this

and some generalizations in its system theoretical framework OPtion, user interface basically is done through dialog boxes as

which is represented by the equations (4)-(39)/(45)-(65).

Finally, it is worth pointing out that such a kind of a software

allows one to approach more complex systems in an efficient
and didatic way, also helping in teaching activities and

academic investigations.
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exemplified in the figures below for the linear case:
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CHOOSE THE CLASS OF THE DYNAMIC SYSTEM TO BE MODELLED

[1] - Linear System

[2] - Non Linear System

< Enter your option >:

Figure 6 - To choose the class of the dynamic system

DEFINE THE SYSTEM GRAPH

< Enter the number of nodes >

< Enter the number of elements >

Figure 7 - To define the topology of the system graph

CHOOSE A SET OF STATE VARIABLES TO THE SYSTEM

[1] - *“Across” Variable of the Generalized Capacitor an
“Through” Variable of the Generalized Inductor.
[2] - Integrated “Through” Variable of the Generalized
Capacitor and Integrated “Across” Variable of the
Generalized Inductor.

—

Enter your option:

Figure 8 - To choose the state variables
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TYPE OF THE SYSTEM\SUB-SYSTEM TO BE MODELLED

[1] - Electrical/Hydraulic/Thermal System

[2] - Mechanical System

< Enter your option >:

Figure 9 - Application of the Mobility Analogy

DEFINE THE ELEMENTS OF THE SYSTEM GRAPH

[1] — Source of “Across” Variable [5] — Source of “Through” Variable
[2] — Generalized Capacitor [6] — Generalized Transformer
[3] — Generalized Resistor [7] — Mutual Inductance

[4] — Generalized Inductor

CHOOSE THE ELEMENT OF THE GRAPH:

# ELEMENT :
# MAGNITUDE : # INITIAL CONDITION :
# INITIAL NODE : # FINAL NODE :

Figure 10 - Menu to define the linear elements

DEFINE THE SIMULATION FINAL TIME

Simulation Final Time ?

Defining simulation final time equal to zero,
the dynamic system will be modelled but not simulated.

Figure 11 - To define the simulation time
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SYMBOL LIST

C,, Ry, Li; Co-tree generalized capacitances, resistances and
inductances diagonal matrices, respectively.

C, G, Ly Normal tree generalized capacitances,
conductances and reciprocal inductances diagonal
matrices, respectively.

L1, =Ly, Mutual inductances diagonal matrices.
N;, = N,;' Transformation ratios diagonal matrices.

Fsc Fundamental loop matrix for the capacitors in the co-tree
(s) and the capacitors in the normal tree (c).

Fss Fundamental loop matrix for capacitors in the co-tree and
the transformers ports in the normal trée (

Fre Fundamental loop matrix for resistors in the co-tree (R)
and the transformers ports in the normal tree.

Fre Fundamental loop matrix for resistors in the co-tree (R)
and the conductances in the normal tree (G'% R

F.e Fundamental loop matrix for the inductors in the co-tree
(L) and the transformers ports in the normal tree.

F.c Fundamental loop matrix for the inductors in the co-tree
(L) and the capacitors in the normal tree.

F.c Fundamental lop matrix for the inductors in the co-tree (L)
and the conductances in the normal tree.

F.r Fundamental loop matrix for the inductors in the co-tree
(L) and the reciprocal inductances in the normal tfee (
LY.

Fse Fundamental loop matrix for the transformers ports in the
co-tree 1) and the transformers ports in the normal tree.

Fsc Fundamental loop matrix for the transformers ports in the
co-tree and the cpacitors in the normal tree.

Foc Fundamental loop matrix for the transformers ports in the
co-tree and the conductances in the normal tree.

For Fundamental loop matrix for the transformers ports in the
co-tree and the reciprocal inductances in the normal tree.

| Ildentity matrix.
nra Total number of tree branches.

nb Total number of branches in the graph.
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