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Abstract: The study of the positive invariance and contrac-
tivity properties of polyhedral sets with respect to (w.r.t) linear
systems subject to control saturation is addressed. The analysis
of the nonlinear behavior of the closed-loop saturated system is
made by dividing the state space in regions of saturation. In each
one of these regions, the system evolution can be represented by
the that of a linear system with an additive constant disturbance.
From this representation, a sufficient algebraic condition relative
to the positive invariance of a polyhedral set is given. In a sec-
ond stage, using the same system representation, a necessary and
sufficient condition to the contractivity of a compact polyhedral
set with respect to the trajectories of the system stated. In this
case, it is shown that a Lyapunov function can be associated with
the polyhedral set and the local asymptotic stability of the satu-
rated closed-loop system inside the set is guaranteed. From these
results, an algorithm based on linear programming is proposed
to determine such positively invariant and contractive polyhedral
sets.
Keywords : control saturation, positive invariance, contractiv-
ity, local stability, polyhedral Lyapunov function.

Invariância e Contratividade de Regiões Poliedrais para
Sistemas Lineares Contínuos no Tempo sujeitos à Saturação

de Controle

Resumo: Este trabalho aborda as propriedades de invariância
positiva e contratividade de conjuntos poliedrais com relação à
sistemas lineares sujeitos à saturação de controle. A análise do
comportamento não linear do sistema em malha fechada é feita
a partir de uma divisão do espaço de estados em regiões de satu-
ração. Em cada uma destas regiões, o comportamento do sistema
pode ser representado por aquele de um sistema linear sujeito à
ação de uma perturbação aditiva constante. A partir desta repre-
sentação, é estabelecida uma condição algébrica suficiente para a
garantia de invariância positiva de um domínio poliedral. Em um
segundo momento, usando a mesma representação, estabelece-
se uma uma condição necessária e suficiente para a contrativi-
dade de uma região poliedral compacta com relação às trajetórias
do sistema. Neste caso, é mostrado que uma função de Lyapunov
pode ser associada ao sistema em malha fechada garantindo a es-
tabilidade assintótica dentro da região poliedral. A partir destes
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resultados, um algoritmo baseado em programação linear é pro-
posto para a determinação de tais regiões poliedrais positiva-
mente invariantes e contrativas.
Palavras chaves: saturação de controle, invariância positiva,
contratividade, estabilidade local, função de Lyapunov poliedral.

1 INTRODUCTION

The problem of control constraints appears in most of industrial
control systems. Due to physical or security reasons, the ac-
tuators cannot drive unlimited energy to the controlled plants.
This fact can be modeled as a saturation block in the closed-loop
scheme of the system.

Control systems are often linearly designed. The plant is repre-
sented by a local linear model and the control law is in general a
linear state or output feedback. The modern theory of linear con-
trol furnishes efficient techniques and methodologies to compute
such control laws that guarantee both the stability and some per-
formance and robustness requirements with respect to (w.r.t) the
linear closed-loop model of the process. In general, this kind of
design does not directly consider the bounds on the control in-
puts. In this case, the control saturation can be source of parasitic
equilibrium points and limit cycles, or even, can lead the closed-
loop system to an unstable behavior. This fact has motivated,
in the last years, the development of analysis and design tech-
niques considering the control bounds and saturation occurrence
(see for example (Bernstein and Michel, 1995)).

An interesting approach proposed in the literature consists in
considering a setD0 of admissible initial states and in determin-
ing a feedback control law that guarantees the positive invariance
of a setP � D0 such thatP is contained in the region of linear
behavior of the closed-loop system. The setP is considered as a
linear local region of stability. This problem is also known in the
literature assaturation avoidance problem or linear constrained
regulator problem (see for example (Benzaouia and Hmamed,
1993), (Bitsoris, 1991), (Milani, 1994), (Vassilaki and Bitsoris,
1989),(Tarbouriech and Burgat,1994), for continuous-time sys-
tems and (Castelanet al., 1996) with references therein for the
discrete-time case). However, by this method if the setD0 is
relatively large, the calculated control law can degrade the per-
formances of the closed-loop non-saturated system or the solu-
tion may not exist. Then, an alternative approach consists in
computing a control law satisfying certain performance and ro-
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bustness requirements and analyzing, a posteriori, the stability
of the closed-loop system when submitted to control saturation.
In this case, given the control law, the designer is interested in
determining regions of initial states that can be driven asymp-
totically to the origin by considering the possibility of control
saturation. These regions can be viewed aszones of safe op-
eration of the closed-loop system. From this analysis the de-
signer can therefore evaluate if the determined zone contains
the setD0, i.e., if the computed control law guarantees that all
the trajectories emanating fromD0 converge asymptotically to
the origin. In this context, the determination of ellipsoidal type
regions was addressed in (Burgat and Tarbouriech, 1996),(Kim
and Bien, 1994),(Gutman and Hagander, 1985).

The aim of this paper is to propose a method of analysis that
guarantees the local asymptotic stability, in polyhedral sets, of
linear multivariable continuous-time systems subject to control
saturation. First the positive invariance of polyhedral sets w.r.t
saturated systems is addressed. A sufficient condition for the
positive invariance of a given polyhedral set w.r.t this kind of
systems is stated. This condition can be viewed as a general-
ization of the classical relations of positive invariance for lin-
ear systems without control saturation (Bitsoris, 1991),(Castelan
and Hennet, 1992). Since the positive invariance is not sufficient
to guarantee the local asymptotic stability , in a second stage, a
necessary and sufficient condition to guarantee the contractivity
of a polyhedral set is stated. Consequently, a polyhedral Lya-
punov function (see (Blanchini, 1995) and (Kiendlet al.,1992))
can be associated with the contractive set and the local asymp-
totic stability of the saturated closed-loop system is ensured. Fi-
nally, from these conditions an algorithm based on linear pro-
gramming is proposed to compute homothetical expansions of
contractive polyhedra over the zone of nonlinear behavior of the
closed-loop system. This method, that can be used to determine
polyhedral regions of stability, is illustrated by an example.

Notations. For any vectorx 2 <n, x � 0 means that all the
components ofx, denotedx(i), are nonnegative. For two vectors
x, y of <n, the notationx � y means thatx(i) � y(i) � 0,
8i = 1; :::; n, and� x; y �=

P
n

i=1 x(i)y(i). jxj is the
vector composed by the absolute values of the components of
x. For any real matrixM , square or not,M(i) denotes itsith
line andM(i;l) the entrymil. MT andKerM denote respec-
tively the transpose and the null space ofM . For a polyhe-
dral setS, int(S), @S and@iS denote respectively the interior,
the boundary and theith facet ofS. Given a vectorx 2 <n,
diag(x) denotes ann-order diagonal matrix generated fromx.

1m
4
= [1 1 : : : 1]T 2 <m.

2 POLYHEDRAL SETS

In this section we state some definitions about polyhedral sets
that will be used in the sequel.

A polyhedral set in the state space is a finite intersection of half-
spaces and can be defined as follows:

S(G;w) = fx 2 <n;Gx � wg ; G 2 <
g�n ; w 2 <g (1)

In particular, ifw(i) > 0, 8i = 1; : : : ; g, x = 0 belongs to the
interior of the polyhedral set, i.e.,0 2 int(S(G;w)).

Notice that a polyhedral set is always a closed and convex set of
<n. A compact polyhedral set is also called apolytope (Bron-
sted, 1983).

The i-facet (Bronsted, 1983) (or thei-side) of polyhedral set
S(G;w) is defined as:

@iS(G;w)
4
= fx 2 <n ; G(i)x = w(i); G(k)x � w(k) for k 6= ig

The polyhedral cone generated by the i-facet of S(G;w) is the
set defined as:

Ki

4
= fx 2 <n ;

G(k)x

w(k)

�
G(i)x

w(i)

; 8k = 1; : : : ; g; k 6= ig

(2)

The coneKi can also be defined from the vertices ofS(G;w)

that belongs to facet@iS(G;w). The vectorGT

(i)
2 <n is the

normal vector to the of facet@iS(G;w), that is,

� GT

(i); x� �w(i) = 0 8x 2 @iS(G;w)

From a given polyhedral set it is possible to construct a family
of polyhedra by applying an homothety to the primal polyhedral
set:

S(G;w�) = fx 2 <n;Gx � w�g; � 2 <; � > 0

The positive scalar� is calledcoefficient of homothety. The sets
S(G;w�), with � 2 (0; 1], are calledinternal homothetic sets
of S(G;w).

Associated to a polyhedral setS(G;w) we have the Minkowski
Functional (Blanchini, 1995),(Kiendlet al.,1992),(Sznaier,
1993):

V(x) = max
i

fG(i)x=w(i)g (3)

It follows that if x 2 @S(G;�w), V(x) = �. Besides,8x 2
KerG it follows that V(x) = 0. Note that in the case where
S(G;w) is a polytope,V(x) is a norm. Otherwise,V(x) is a
semi-norm.

3 PROBLEM STATEMENT

Consider the continuous-time linear system

_x(t) = Ax(t) +Bu(t) (4)

wherex(t) 2 <n, u(t) 2 <m, A 2 <n�n andB 2 <n�m.

The control vector is subject to linear constraints that define a
compact polyhedral region
 in the control space:



4
= fu 2 <m ; �umin � u � umaxg (5)

with umin(i); umax(i) � 0, for i = 1; : : : ;m .

Consider now a classical saturating state feedback control law:

u(t) = sat(Fx(t)) ; F 2 <
m�n

where theith component of the control vector,i = 1; : : : ;m, is
defined as follows:

u(i)(t) =

8<
:
�umin(i) if F(i)x(t) < �umin(i)

F(i)x(t) if � umin(i) � F(i)x(t) � umax(i)

umax(i) if F(i)x(t) > umax(i)

(6)

The closed-loop system is given by

_x(t) = Ax(t) +Bsat(Fx(t)) (7)
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It is worth to notice that the polyhedral regionS(F; umin; umax)

defined in the state space as

S(F; umin; umax)
4
= fx 2 <n ; �umin � Fx � umaxg (8)

is the region of linearity of the closed-loop system. In
S(F; umin; umax), saturation does not occur and the evolution
of the closed-loop system is given by

_x(t) = (A+BF )x(t) (9)

We define now the positive invariance and contractivity proper-
ties of a setS(G;w) with respect to system (7).

Definition 1 : The polyhedral set S(G;w) is positively invari-
ant w.r.t system (7) if and only if 8x(0) 2 S(G;w) the corre-
sponding state trajectory of system (7) is confined in S(G;w).
In other words,

8x(0) 2 S(G;w)) x(t) 2 S(G;w);8t > 0

In particular, sincex(t) is a continuous function, the positive in-
variance ofS(G;w) implies that every trajectory that originates
in S(G;w) does not escape fromS(G;w).

Definition 2 : The polyhedron S(G;w) defined by (1) is said
to be contractive w.r.t the trajectories of system (7) if, 8x(t) 2
S(G;w), 8t � 0, 8� > 0, the implication

x(t) 2 @S(G;w�)) x(t+ �) 2 int(S(G;w�))

holds 8� 2 (0; 1].

The interpretation of this definition is the following. If, at in-
stantt, x(t) belongs to the boundary of an interior homothetic of
S(G;w) (S(G;w�) with 0 < � � 1) it follows that, at the in-
stant(t+�), with � infinitesimal,x(t+�) belongs to the interior
of this homothetic. In this case, we can say thatx(1) belongs
to lim

�!0
S(G;w�).

WhenS(G;w) � S(F; umin; umax) the analysis of the positive
invariance and the asymptotic stability inS(G;w) w.r.t system
(7) is equivalent to the analysis of these properties w.r.t. system
(9). The conditions that guarantee the positive invariance and the
asymptotic stability in this case were widely studied in the liter-
ature (see for example, (Benzaouia and Hmamed, 1993),(Bit-
soris, 1991),(Castelan and Hennet, 1992),(Tarbouriech and Bur-
gat, 1994),(Vassilaki and Bitsoris, 1989)).

WhenS(G;w) 6� S(F; umin; umax), these properties have to be
studied by considering the nonlinear behavior of the closed-loop
system (7). In this work we are interested in this case. Hence,
the following problems will be treated in the sequel :

� Problem 1 : Determine conditions to guarantee the positive
invariance ofS(G;w) w.r.t the saturated system (7).

� Problem 2 : Determine conditions to guarantee the con-
tractivity and the asymptotic stability of the system (7) in
S(G;w).

4 SATURATED SYSTEM REPRESENTATION

Before studying the positive invariance, contractivity, and stabil-
ity properties of polyhedral sets related to linear systems with
saturating controls, we define a mathematical representation for
this kind of systems.

The representation chosen consists in dividing the state space in
regions calledregions of saturation. A region of saturation is
defined by the intersection of half-spaces of typeF (i)x � d(i)
or�F(i)x � d(i), whered(i) can beumin(i),�umin(i), umax(i)

or �umax(i). For a system withm inputs, there exists3m re-
gions of saturation. Consideringj = 1; : : : ; 3m, thejth region
of saturation is a polyhedral set denoted generically as

S(Rj ; dj) = fx 2 <n ; Rjx � djg (10)

wheredj 2 <lj is defined from the entries ofumax, �umax,
umin et�umin, andRj 2 <

lj�n is defined from the rows ofF
and�F (see figure 1 and the numerical example in section 8).

We show now that inside each region of saturation, system (7)
can be modeled as a linear system with an additive constant dis-
turbance.

Consider a vector� 2 <m such that each entry�(i), i =

1; : : : ;m, takes the values1, 0 or�1 as follows :

� If u(i)(t) = umax(i) then�(i) = 1, that is,x(t) is such that
F(i)x(t) > umax(i).

� If u(i)(t) = F(i)x(t) then�(i) = 0 , that is,x(t) is such that
�umin(i) � F(i)x(t) � umax(i).

� If u(i)(t) = �umin(i) then�(i) = �1 , that is,x(t) is such
thatF(i)x(t) < �umin(i).

Hence, each vector� represents a possible combination between
saturated and non-saturated control entries. Note that there are
3m different vectors�: �j 2 <m for j = 1; : : : ; 3m and it is pos-
sible to associate each vector�j to a specific region of saturation
S(Rj ; dj). Notice also that the region corresponding to� j = 0

is the polyhedronS(F; umin; umax). In the other regions there
is at least one control entry that is saturated.

From the definition of�j , the motion of the system (7) inside
the regionS(Rj ; dj) can be described by the following linear
dynamical equation:

_x(t) = (A+Bdiag(1m � j�j j)F )x(t) +Bu(�j) (11)

where

u(i)(�j)
4
=

8<
:
�umin(i) if �j(i) = �1

0 if �j(i) = 0

umax(i) if �j(i) = 1

(12)

Generically, ifx(t) 2 S(Rj ; dj) it follows that (Rocha, 1994):

_x(t) = �Ajx(t) + pj (13)

with �Aj = A+Bdiag(1m � j�j j)F andpj = Bu(�j).

5 POSITIVE INVARIANCE

In this section conditions to ensure the positive invariance of a
polyhedronS(G;w) w.r.t the saturated system (7) are studied.
These conditions are established from the representation of the
saturated system described in the above section.
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Definition 3 : Let the set J be the set of indices j such that
(S(Rj ; dj) \ @S(G;w))) 6= ;. The regions S(Rj ; dj) such that
j 2 J are called target regions

For each target region define a polyhedral setS(D j ; sj)
4
=

S(Rj ; dj) \ @S(G;w), Dj

4
=

�
�Gj

Rj

�
, sj

4
=

�
�wj

dj

�
, where

�Gj 2 <
gj�n and �wj 2 <

gj correspond to the facets ofS(G;w)
that have a nonempty intersection withS(Rj ; sj). Figure 1 de-
picts the regionsS(Rj ; dj) (notationRj) andS(Dj ; sj) (nota-
tionDj) for a second order system with two control entries.

x2 x2

R2

R3

R4

R5

R6

R7

R8

x1

S(F,umin,umax)

x1

D2

D3

D4

D5D6

D7

D8

S(G,

S(F,umin,umax)

w)

R1 D1

D9
R9

Figure 1: Representation ofS(Rj ; dj) andS(Dj ; sj) for n =

m = 2

Lemma 1 : The set S(G;w) is positively invariant w.r.t system
(7) if

G(i) _x(t) < 0 8x(t) 2 @iS(G;w); 8i = 1; : : : ; g (14)

Proof: Since the state trajectory is continuous, for the positive
invariance ofS(G;w) it is sufficient to guarantee the admissi-
bility of any infinitesimal motion starting from any point on the
boundary of this domain (Castelan and Hennet, 1992). Hence, if
at instantt = t0 x(t0) belongs to the facet@iS(G;w) it suffices
that the time derivative vector_x(t0) points towards the interior
of S(G;w) (see (Bermanet al., 1989) pp.65-66). Note thatGT

(i)

points always towards the exterior of the polyhedral set. Apply-
ing this reasoning to all points of@S(G;w) the condition for the
positive invariance is equivalent to:

� GT

(i); _x(t)�< 0 8x(t) 2 @iS(G;w); 8i = 1; : : : ; g

which is equivalent to condition (14).2

Theorem 1 : The set S(G;w) is positively invariant w.r.t sys-
tem (7) if, for each target region j, there exists a matrix Hj 2

<gj�(gj+lj), with Hj(i;l) � 0 if i 6= l, such that :

HjDj = �Gj
�Aj (15)

Hjsj < � �Gjpj (16)

Proof: For each target region of saturationj, consider the fol-
lowing set of linear programs:

LPj;i :

8>>><
>>>:

yj(i) = min
Hj(i)

Hj(i)sj + �Gj(i)pj

subject to
Hj(i)Dj = ( �Gj

�Aj)(i)
Hj(i;l) � 0 if l 6= i:

(17)

whereHT

j(i)
2 <gj+lj . Let H�

j(i)
be the optimal solution of

LPj;i. The satisfaction of relations (15) and (16) implies that:

H�
j(i)sj +

�Gj(i)pj < 0 (18)

By duality (see for example (Luenberger, 1984), each of pro-
gramsLPj;i is equivalent to the followig one :

DLPj;i :

8>>>><
>>>>:

yj(i) = max
x

�Gj(i)
�Ajx+ �Gj(i)pj

subject to
�Gj(i)x = �wj(i)
�Gj(l)x � �wj(l) l = 1; : : : ; gj ; l 6= i

Rjx � dj
(19)

Let x�
j(i) be the optimal solution ofDLPj;i. From duality, it

follows also that

�Gj(i)
�Ajx

�

j(i) +
�Gj(i)pj = H�

j(i)sj +
�Gj(i)pj < 0 (20)

Hence, from (19),8x(t) 2 (@iS(G;w) \ S(Dj ; sj))
4
= fx 2

S(Dj ; sj) ; Rjx � dj ; �Gj(i)x = �wj(i) ; �Gj(l)x � �wj(l); 8l 6=

ig, 8i = 1; : : : ; gj , 8j 2 J , it follows

�Gj(i)( �Ajx(t) + pj) < 0 (21)

Therefore, the satisfaction of (15) and (16), for all target region
j, with Hj(i;l) � 0 if i 6= l, implies that

G(i) _x(t) < 0 8x(t) 2 @iS(G;w); 8i = 1; : : : ; g

which, from Lemma 1, ensures the positive invariance of
S(G;w) w.r.t. the system (7).2

Remark 1 : Note that the classical strict positive invariance
relations for the linear closed-loop system (9) (i.e. when
S(G;w) � S(F; umin; umax)) (Bitsoris, 1991),(Castelan and
Hennet, 1992):

HG = G(A +BF ) (22)

Hw < 0 (23)

with H(i;l) � 0 if i 6= l, are a particular case of relations (15)
and (16). In fact, if S(G;w) � S(F; umin; umax) the only target
region is S(G;w). In this case �G = G, �Aj = (A+BF ), pj = 0,
Dj = G, sj = w.

6 CONTRACTIVITY AND LOCAL ASYMP-
TOTIC STABILITY

The conditions stated in Theorem 1 guarantee that8x(0) 2

S(G;w), the corresponding trajectories of the saturated system
(7) are confined inS(G;w), 8t � 0. However, this prop-
erty is not sufficient to ensure the convergence of the trajec-
tories to the origin. Of course, whenS(G;w) is contained
in S(F; umin; umax) and is positively invariant, the asymp-
totic stability inS(G;w) is guaranteed if all the eigenvalues of
(A + BF ) are in the open left half-plane (Vassilaki and Bit-
soris, 1989). However, this is only a necessary condition if
S(G;w) 6� S(F; umin; umax). In this case, since the behav-
ior of the system is nonlinear, the possible existence of limit
cycles and/or parasitic equilibrium points insideS(G;w) have
to be considered. Hence, before concluding that the polyhedron
S(G;w) is also a region of asymptotic stability for system (7)
it is necessary to eliminate these possibilities. The verification
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of the existence of equilibrium points, different from the origin,
insideS(G;w) is trivial. Nevertheless, in general, it is not easy
to verify if there exist limit cycles insideS(G;w).

In this case, a conservative, but relatively easy, way of ensuring
the asymptotic stability of the system inside a positively invariant
set consists in guaranteeing the contractivity of this set.

Consider the Minkowski functional defined in (3) along
the trajectories of system (7) (Blanchini, 1995),(Kiendlet
al.,1992),(Sznaier, 1993).

Define the upper right Dini derivative ofV(x(t)) as follows
(Rouche, 1977):

D+
V(x(t)) = lim

�!0+
sup

V(x(t+ �)) � V(x(t))

�

SinceV(x(t)) is a continuous function,D+V(x(t)) is well-
defined and its existence is guaranteed (Rouche, 1977)

If S(G;w) is compact the following Lemma can be stated.

Lemma 2 : A compact polyhedron S(G;w) is contractive w.r.t.
system (7) if and only if

D+
V(x(t)) < 0 (24)

8x(t) 2 S(G;w) ; x(t) 6= 0 ; 8t � 0.

Proof: Sufficiency: Suppose thatx(t) 2 @S(G;�w), � 2 (0; 1].
In this case,V(x(t)) = �. Hence, if (24) holds, it follows that
V(x(t + �)) < �, that is,x(t+ �) 2 intS(G;�w) where� is a
positive infinitesimal. Since this is valid for allx(t) 2 S(G;w)

contractivity is proven according to Definition 2.
Necessity: Suppose that S(G;w) is contractive and
D+V(x(t)) � 0 for somex(t) 2 @S(G;�w), � 2 (0; 1]. In this
case,V(x(t+�)) � � and it follows thatx(t+�) 62 intS(G;w)

which contradicts the assumption thatS(G;w) is contractive.2

The results in the sequel are stated by supposing thatS(G;w) is
compact.

Lemma 3 : A compact polyhedron S(G;w) is contractive w.r.t.
system (7) if and only if

G(i) _x(t) < 0 (25)

8x(t) 2 @iS(G;w�); 8� 2 (0; 1]; 8i = 1; : : : ; g ;8t � 0.

Proof: From Lemma 2 the contractivity ofS(G;w) is equivalent
to satisfy:

D+V(x(t)) =

lim
�!0+

max
i

n
G(i)x(t+�)

w(i)

o
�max

i

n
G(i)x(t)

w(i)

o
�

< 0

(26)

Sincex(t) is a continuous function and by supposing that at in-
stantt, x(t) 2 @lS(G;w) it follows that (26) is equivalent to:

D+
V(x(t)) = lim

�!0+

G(l)x(t+ �)�G(l)x(t)

�
< 0 (27)

Expandingx(t+ �) in Taylor’s serie we have:

x(t+ �) = x(t) + �
_x(t)

1!
+ �2

x(2)(t)

2!
+ : : :+

x(n)(t)

n!
+On+1

(28)

From (27), (28) can be re-written as follows:

D+V(x(t)) = lim
�!0+

�G(l) _x(t)

�w(l)

+

lim
�!0+

(
�2G(l)x

(2)(t)

�w(l)2!
+ : : :+

�nG(l)x
(n)(t)

�w(l)n!
+ : : :) =

G(l) _x(t)

w(l)

(29)
whenceD+V(x(t)) < 0 if and only ifG(l) _x(t) < 0.

Since this reasoning can be applied8x(t) 2 @iS(G;w�); 8� 2

(0; 1]; 8i = 1; : : : ; g ;8t � 0, it follows that condition (25) is
equivalent to haveD+V(x(t)) < 0, 8x(t) 2 S(G;w), 8t > 0

which proves the lemma.2

Note that this result is similar to the one of Lemma 1. The dif-
ference here is that thestrict inequality

� GT

(i); _x(t)�< 0

must be ensured for allx(t) belonging to the polyhedral coneK i

defined by the facet@iS(G;w).

We state now the main result of this section.

Let �J be the set of indicesj such thatS(G;w) \ S(Rj ; dj) 6=

;. DefineIj as the set of indicesi such that the coneKi has

a nonempty intersection with the regionS(Rj ; dj), i.e., Ij
4
=

fi ; Ki \ S(Rj ; dj) 6= ;g.

Theorem 2 : Consider the following linear programs

LPj;i =

8<
:

yj(i) = max
x

G(i)
�Ajx+G(i)pj

subject to
x 2 (Ki \ S(Rj ; dj) \ S(G;w))

(30)

Define yj
4
= maxfyj(i) ; i 2 Ijg. A compact polyhedron

S(G;w) is contractive w.r.t system (7) if and only if the following
conditions hold:

(i) yj(i) < 0 for each j 2 �J such that S(Rj ; dj) 6=

S(F; umin; umax)

(ii) yj(i) = 0 for j such that S(Rj ; Dj) = S(F; umin; umax)

and, in this case, the optimal solution of each linear pro-
gram LPj;i is unique and obtained for x = 0.

Proof:
Sufficiency: For all x(t) 2 S(G;w), x(t) 6= 0, it follows that
x(t) belongs at least to one facet ofS(G;w�), 0 < � � 1. In
other words,x(t) 2 @iS(G;w�) and it follows thatx(t) 2 Ki.
Moreoverx(t) belongs to some region of saturationS(R j ; dj),
j 2 �J . Thus,i 2 Ij andx(t) 2 (Ki \ S(Rj ; dj) \ S(G;w)).
Hence, sincex(t) is supposed to be different from zero, if con-
ditions(i) and(ii) hold, it follows that

G(i)
�Ajx(t) +G(i)pj < 0

i.e.,G(i) _x(t) < 0. Since this reasoning can be applied8x(t) 2
S(G;w), from Lemma 3 the contractivity ofS(G;w) is guaran-
teed if conditions(i) and(ii) are verified.
Necessity: Suppose thatS(G;w) is contractive and condition
(i) or (ii) is not verified. Then, for somei 2 Ij ; j 2 �J , there
may existx(t) 2 (Ki \ S(Rj ; dj) \ S(G;w)), x(t) 6= 0, such
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thatG(i)( �Ajx(t) + pj) � 0. In this casex(t) 2 @iS(G;w�),
for some0 < � � 1, and it follows thatG(i) _x(t) � 0. Since
x(t) 2 S(G;w), this contradicts the assumption thatS(G;w) is
contractive and thus the necessity of the condition is proven.2

The basic idea of Theorem 2 consists in analyzing the closed-
loop system trajectories in some sub-domains ofS(G;w). These
sub-domains are delimited by a polyhedral coneK i and a region
of saturationS(Rj ; dj). In each one of these sub-domains we
verify if for everyx(t) (x(t) 6= 0) belonging to the domain one
obtainsD+V(x(t)) < 0. This test is accomplished by solving
linear programs like (30). Hence, sinceS(G;w) is supposed
to be compact, if conditions(i) and (ii) are verified, we can
conclude thatD+V(x(t)) < 0, 8x(t) 2 S(G;w), x(t) 6= 0.

Note that ifS(G;w) is compactlim
�!0

S(G;w�) = f0g. Thus, the

contractivity ofS(G;w) implies the asymptotic convergence to
the origin of all the trajectories emanating fromS(G;w). In fact,
sinceS(G;w) is supposed to be compact and contains the origin,
the functionD+V(x(t)) defined by (3) is a strictly decreasing
Lyapunov function for system (7) inS(G;w). The following
corollary can be stated.

Corollary 1 : If condition of Theorem 2 holds, then

(i) System (7) is locally asymptotically stable in S(G;w).

(ii) The polyhedral function V(x(t)) = max
i

f
G(i)x(t)

w(i)

g is

a strictly decreasing Lyapunov function for system (7) in
S(G;w).

Remark 2 : If S(G;w) is unbounded, Theorem 2 cannot be di-
rectly applied. Suppose, however, in this case that there exists
� � 1 such that S(G;w�) � S(F; umin; umax), this implies
that KerG � KerF . Thus, a necessary condition to the con-
tractivity of S(G;w) is that KerG is an A � invariant sub-
space (Castelan and Hennet, 1992) and it follows that the pair
(G;A) is nonobservable. Define N the unobservable subspace
of (G;A). The projection of S(G;w) in the subspace N ? (an-
nihilator of N ) along N , denoted by S(Go; wo), is a compact
polyhedron. Then it can be proven, since KerG � KerF , that
the contractivity of S(G;w) w.r.t system (7) is equivalent to the
contractivity of S(Go; wo) w.r.t a reduced-order saturated sys-
tem obtained from the observable part of pair (G;A) and then
Theorem 2 can be applied (this is an extension of the result pre-
sented in (Castelan et al., 1996). Note, however, that in this case
the contractivity does not imply the local asymptotic stability.
For this, it is also necessary that pair (G;A) is detectable.

7 DETERMINATION OF LOCAL ASYMP-
TOTIC STABILITY REGIONS

In this section, we consider that a contractive compact polyhe-
dronS(G;w) � S(F; umin; umax) w.r.t system (9) was com-
puted by one of the methods proposed in the literature (see
for instance (Blanchini and Miani, 1996),(Castelan and Hennet,
1992),(Vassilaki and Bitsoris, 1989)). We propose now an algo-
rithm to calculate the maximum coefficient of homothesis,Æmax,
for which S(G; Æmaxw) preserves the property of contractivity
w.r.t the saturated system (7). In this case, note that, by hypoth-
esis, the condition(ii) of Theorem 2 is automatically verified.

Algorithm

� Step 0 - Initialize : Æ = Æ0. Choose a computational accu-
racy:precision.

� Step 1 - Determine �J w.r.t S(G; Æw). For eachj 2 �J

solve the following linear programs8i 2 Ij :

yj(i) = max
x

G(i)
�Ajx+G(i)pj

subject to8><
>:

Rjx � dj
Gx � Æw

(
G(k)

w(k)
�

G(i)

w(i)
)x � 0 8k 6= i

(31)

� Step 2 : If conditions(i) and(ii) of Theorem 2 hold, goto
step 4. Otherwise goto step 3.

� Step 3 : DecreaseÆ and return to step 2.

� Step 4 : If the difference between theÆ of this iteration
and the above iterations is greater than the chosen accuracy,
increaseÆ. Otherwise stop:Æmax = Æ.

From Corollary 1 the obtained setS(G; Æmaxw) is a region of
asymptotic stability. The proposed algorithm can be viewed as
a tool to generate polyhedral regions of local stability and thus
to approximate the region of attraction of the origin (Suarez et
al., 1991) for system (7). This approximation can be improved
by considering, for example, the union of different polyhedra
obtained by the application of the proposed algorithm. In this
case, the final domain may be non-convex.

8 NUMERICAL EXAMPLE

Consider system (4)-(5) described by the following matrices
(Kim and Bien, 1994):

A =

�
0:1 �0:1

0:1 �3

�
; B =

�
5 0

0 1

�

umin = umax =
�
5 2

�T

A stabilizing state feedback matrixF and a positively invariant
setS(G;w) � S(F; umin; umax) are given by :

F =

�
�0:7283 �0:0338

�0:0135 �1:3583

�

G =

2
664

1 0

0 1

�1 0

0 �1

3
775 ; w =

2
664

1

1

1

1

3
775

Matrix F and control constraints define nine regions of satura-
tion. Since the polyhedraS(G;w) andS(F; umin; umax) are
symmetric, we can analyze only five of these regions:

Region1 (�1 = [0 0]T , Reg. linearity ):

�A1 = A+BF =

�
�3:5415 �0:2690

0:0865 �4:3583

�
; p1 =

�
0

0

�

R1 =

�
F

�F

�
; d1 =

2
664

5

2

5

2

3
775
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Region2 (�2 = [0 � 1]T ):

�A2 =

�
�3:5415 �0:2690

0:1 �3

�
; p2 =

�
0

�2

�

R2 =

2
4 �0:7283 �0:0338

0:7283 0:0338

�0:0135 �1:3583

3
5 ; d2 =

2
4 5

5

�2

3
5

Region3 (�3 = [�1 � 1]T ):

�A3 = A ; p3 =

�
�25

�2

�

R3 =

�
�0:7283 �0:0338

�0:0135 �1:3583

�
; d3 =

�
�5

�2

�

Region4 (�4 = [�1 0]T ):

�A4 =

�
0:1 �0:1

0:0865 �4:3583

�
; p4 =

�
�25

0

�

R4 =

2
4 �0:7283 �0:0338

�0:0135 �1:3583

0:0135 1:3583

3
5 ; d4 =

2
4 �5

2

2

3
5

Region5 (�5 = [1 � 1]T ):

�A5 = A ; p5 =

�
25

�2

�

R5 =

�
0:7283 0:0338

�0:0135 �1:3583

�
; d5 =

�
�5

�2

�

By applying the algorithm described in section 7 one obtains
Æmax = 124:99 (precision = 0:01). This value gives the max-
imal homothetical set ofS(G;w) which is positively invariant
and contractive w.r.t the closed-loop saturated system. Since
S(G; Æmaxw) is bounded, it is a domain of asymptotic stabil-
ity and safe operation, for system (7). It is worth to notice that
the maximal homothetical set ofS(G;w) contained in the region
of linearityS(F; umin; umax) is obtained forÆ = 1:45. Figure
2 depictsS(G; Æmaxw) and the regions of saturation.

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

R5 R2 R3

R4

R1

x1

x2

Figure 2:S(G; Æmaxw) and the regions of saturation

9 CONCLUSION

In this paper, the properties of positive invariance and contractiv-
ity of polyhedral sets with respect to continuous-time linear sys-
tems with saturating controls were studied. First, it was given a
sufficient algebraic condition for the positive invariance of poly-
hedral sets having nonempty intersection with the nonlinear be-
havior region of the saturated system. In a second moment, a
necessary and sufficient condition was stated in order to guar-
antee also the contractivity of a compact polyhedral set. In this
case, it was shown that there exists a Lyapunov polyhedral func-
tion, strictly decreasing, for all the states belonging to the consid-
ered polyhedral set. Consequently, the local asymptotic stability
of the saturated system is ensured.

An algorithm based on linear programming was proposed to gen-
erate homothetical expansions of a positively invariant and con-
tractive set w.r.t. the non-saturated system over the region of
nonlinear behavior. The obtained set is a positively invariant and
contractive set for the saturated system and therefore a set of
nonlinear behavior. Since the exact determination of the region
of attraction of the origin is, in general, not possible for satu-
rated systems, the use of the proposed algorithm can be seen as
an interesting way to compute approximations of this region.

The results presented in this paper considered the case of state
feedback. Nevertheless, the application of these results to the
case of output feedback (static or dynamic) is straightforward.
In this case, we have to redefine the region of linearity and the
regions of saturation in function of the matrices that define the
considered feedback. The proposed approach should also allow
to treat the problem of saturated systems with both additive and
input disturbances. This will be addressed by the authors in a
forthcoming publication.
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