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RESUMO O presente trabalho expõe a aplicação de uma
técnica “batch” à calibração de um sistema de visão ativa,
objetivando a identificação dos parâmetros que caracterizam a
óptica (parâmetros intrínsecos), a posição e a atitude da câmera
(parâmetros extrínsecos). Esta identificação permite a
realização de dois propósitos fundamentais: a recuperação 3D,
associada à localização de objetos no ambiente ou a
determinação do movimento da câmera, assim como a correção
de erros de imageamento devido a distorções ópticas e
montagem imperfeita do conjunto câmera-lente. Inicialmente
determina-se uma estimativa inicial dos parâmetros mediante o
emprego de um modelo pin-hole dotado de óptica ideal,
produzindo uma solução analítica baseada em mínimos
quadrados. Em seguida, busca-se refinar este resultado
iterativamente mediante o emprego de um modelo de distorção
óptica radial. A validação dos resultados é feita com base em
um índice que reduz o efeito de quantização espacial.
Resultados da calibração usando dados sintéticos e reais são
apresentados. Observou-se que erros de medida nos pontos 3D
de controle e em suas projeções no plano-imagem influenciam
detrimentalmente a calibração, impondo requisitos quanto à
qualidade destas medidas. Uma avaliação estatística foi levada
a cabo visando determinar intervalos de confiança para os
parâmetros estimados a partir dos dados sintéticos. O valor
calibrado da distância focal da câmera real foi usado com
sucesso no rastreamento de objetos por movimentos sacádicos,
indicando que a calibração efetuada apresenta exatidão
adequada à esta tarefa visual.

Palavras-chave: calibração de câmeras, distorções ópticas,
otimização, visão computacional.

ABSTRACT The application of a batch technique is presented
for the calibration of an active vision head. The approach aims
at the identification of both the intrinsic parameters related to
the camera optics and the extrinsic parameters that describe the
camera position and attitude. Successful identification allows
one to attend to two fundamental purposes: firstly, the recovery
of 3D structure, usually accompanied by object location in an
unstructured environment or the detemination of camera
motion, and secondly, the correction of imaging errors caused
by optical distortions and misalignments in the lens-camera
assembly. An initial estimate of the parameters is produced by

assuming a pin-hole camera and ideal optics, thus leading to a
closed-form least-squares solution. The latter is further refined
by means of a radial distortion model of the actual optics. An
accuracy index validates the results of the calibration method.
This index is robust to spatial quantization errors that occur in
the imaging process and thus accomodates a comparison of
calibration performance in distinct vision systems. Results
based on synthetic and real data are presented. Measurement
errors in both 3D control points and their projections onto the
image plane detrimentally affect the calibration accuracy.
Requirements upon the quality of such measurements are
stated. A statistical evaluation was carried out to determine the
average performance and confidence intervals for the
parameter estimation from synthethic data. The calibrated focal
length has been used in conjunction with a saccadic motion
control algorithm for visual tracking. Successful completion of
tracking under various circumstances indicates that the
calibration accuracy is adequate for this specific visual task.

Keywords: camera calibration, computer vision, optical
distortions, optimization.

1 INTRODUCTION

Camera calibration has two important purposes to attend to: (1)
to recover the 3D structure from 2D images, thus allowing the
location of objects in space or the determination of camera
position and attitude relative to a fixed reference system; and
(2) to correct imaging errors caused by lens distortion and
misalignments in the camera-lens assembly. The former is
useful for autonomous navigation and guidance whereas the
latter finds applications in the field of photogrametry and
vision-based metrology. An analysis covering a diversity of
methods is found in Tsai (1989) and in Weng et alii (1992). It
is stressed that batch calibration methods use all the
measurements available to produce an off-line identification of
system parameters, as opposed to recursive methods which on-
line improve the identification results as new measurements are
acquired during the system operation. Calibration methods are
further classified in three categories:

1. Closed-form solution methods: A non-linear function of the
original parameters is employed to yield a new
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identification problem which is linear on the transformed
parameters. Least-squares is used and the original
parameters are recovered via inverse mapping. However,
the inclusion of optical distortion models is rather
cumbersome in this class of methods.

2. Direct optimization methods: Parameters are iteratively
estimated via optimization of the residual errors that relate
the 3D control points and the corresponding projections
onto the image plane under the estimated parameters.
Refined camera and optical distortion models are easily
accounted for but an adequate initial solution is called for to
circumvent local minima or even divergence.

3. Two-step methods: A composition of the former two
classes. Typically, a closed-form solution for some or all of
the parameters is used as an initial guess for the iterative
optimization. The approach proposed in Weng et alii (1992)
comprises a closed-form solution for all parameters which
are then iteratively improved in the optimization phase in
which optical distortion is accounted for.

The literature manifests a constant concern regarding the
attempt to accommodate two contradictory aspects: the
simplicity of the method vis-à-vis the resulting accuracy.
Numerical instability arises as one adds to the complexity of
the lens model. Therefore, the complexity of the distortion
model and that of the selected method should match the
required accuracy for the desired visual task as well as the
available computational resources. In photogrametry and
vision-based metrology, for instance, strict requirements are
imposed upon the calibration accuracy of intrinsic parameters
such as focal length , image center coordinates and scale
factors. Vision-based navigation aided by inertial sensors, on
the other hand, gives way to the relaxation of requirements
regarding the calibration of extrinsic parameters such as
camera orientation and attitude.

One resorts to simpler methods when dealing with applications
in which most of the intrinsic parameters remain fixed whereas
focal length and the extrinsic parameters, for instance, are
allowed to change. In Wang and Tsai (1991)  a closed-form
solution for such a case is presented with claims that
satisfactory results have been achieved in autonomous
guidance. A simpler version of a direct method is applied in
Abidi and Chandra (1995) to the real-time calibration of a
steerable autofocus camera in which four 3D control points
lying on a tetrahedron are used. In Chaterjee  and
Roychowdhury (1993)  a closed-form solution is proposed
which does not account for optical distortion and errors in both
the 3D control points and the image plane measurements. No
claims are stated, however, regarding its accuracy and
robustness in real applications. A non-iterative method for the
calibration of the scale factor is reported in Penna (1991)
claiming adequate results . As for optical distortion, it is
emphasized in Jackowski and Goshtasby (1997)  how crucial
its identification is and a compensation technique is proposed
for the purpose of pattern classification in satellite images that
contain land, forest and water. Distortion is then distinguished
according to two main causes: one originates in the non-linear
optics and assembly misalignments whereas the other arises
from chromatic aberration due to photosensor varying
efficiency when subject to changing wavelength and
illumination.

The impact of measurement errors, camera position and
attitude, the characteristics of the imaging apparatus and the

number of images on the accuracy of a calibration method is
generally evaluated by an index that is usually based on
statistics such as the standard deviation of the estimated
parameters or the RMS value of the errors in the image-plane
projections (Weng et alii, 1992; Tu and Dubuisson,1992; Li
and Lavest 1996). An initial evaluation of accuracy often
makes use of virtual camera with selected parameter values and
of synthetic data. The application of a calibration method to a
real vision apparatus, nevertheless, presents a challenge to
accuracy evaluation since the actual parameter values are not
known and thus one should utilize image-plane projection
errors. However, such projections are affected by error sources
that are not due to limitations of the calibration method but
rather caused either by limitations of the vision system, such as
spatial quantization or the quality of the measurements of the
3D control points.

The calibration procedure presented here is based on the two-
step metod (Weng et alii, 1992). It has been motivated by the
development of a system for the visual tracking of moving
objects at the ITA-INPE Active Computer Vision and
Perception Laboratory (ACVPL). Off-line identification of
focal length is required because the selected approach to visual
tracking is based on the compensation of background motion
induced by the camera motion. Image regions whose motion is
inconsistent with that of the camera are segmented as moving
objects (Murray and Basu, 1994) . The structure of the paper is
as follows. Section 2 describes the vision system and camera-
lens model, first assuming ideal optics and then the inclusion of
optical distortions. Section 3 presents the methodology of
calibration and some accuracy indexes for its evaluation.
Implementation and analysis of results obtained from both
synthetic and real data are exposed in Section 4. Finally,
Section 5 presents the conclusions and suggestions for future
work.

2 THE VISION SYSTEM AND THE
CAMERA-LENS APPARATUS MODEL

2.1 The Vision System
The vision system is composed of a Helpmate Robotics BiSight
Vergence head equipped with monochromatic Hitachi KP-M1
cameras and servo-actuated Fujinon H10x11E-MPX31 lenses.
The vision head has pan, tilt and assymetric vergence as its
degrees of freedom. Aperture, zoom and focus are presently
adjusted off-line acording to the requirements of the visual
task. Lens parameters are adjustable by means of two AD/DA
signal acquisition boards which communicate with the
corresponding lens motor drives for the purpose of closed-loop
control of focal length and focus. The operator can change
system parameters, receive status information and issue off-line
commands via the graphic interface. The vision head is
depicted in Figure 1.

2.2 Modelling The Camera-Lens Assembly

2.2.1 Ideal Optics

A pin-hole camera model is used. The representation of 3D
points and the respective projections on the image plane utilize
four reference frames, as depicted in Figure 2.
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Let [ ]x y zw w w

T denote the representation of a point P in 3D

space according to the { }O x y zw w w w  reference frame which is

fixed. Let [ ]x y zc c c

T  represent P relative to the { }O x y zc c c c

reference frame which is fixed to the camera and moves along
with it. Its origin Oc is assumed coincident with the center of
projection and likewise axis zc to coincide with the optical axis.
The image plane containing the CCD array is considered to be
perpendicular to the optical axis, parallel to the {xcyc} plane

and displaced from it by the length f. Reference frames
{ }O x y zw w w w

 and { }O x y zc c c c
 are related by:

[ ] [ ]x y z x y zc c c w w w

T T= +R T (2.1)

R = ×( )rij 3 3
 is the rotation matrix that rotates from reference

frame { }O x y zw w w w
 to a reference frame parallel to { }O x y zc c c c

and [ ]T = t t tx y z

T
 is the translation vector that takes the origin

from the former to the origin of the latter. R and T are the
extrinsic parameters which define camera position and attitude
in the 3D space. Two reference frames are further defined on
the image plane: {O’uv} and {rc}, the latter with its origin at
the top left corner of the image. O’ represents the principal
point and {uv} axes are parallel to {rc} and {xcyc}. Pixel
location is supplied by the image acquisition system in terms of
(r,c) coordinates, with (r0,c0) denoting the image center where
the principal point O’ lies. The following imaging relationships
are based on this model:
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r r s u c c s vu v− = − =0 0  ;   (2.3)

where su and sv are scale factors that originate in the difference
in scanning frequency between the CCD and the video
acquisition board. Notice that su is negative and sv is positive
due to the relation between O’uv and rc. Images are captured in
a 320×240 pixel resolution and the CCD dimensions are
0.88cm×0.66cm. The scaling factors are then
|su|=|sv|=363.63pixel/cm. They are both equal, thus representing
square pixels. Combining equations (2.1),(2.2) and (2.3) yields
the following relations between the camera parameters, the 3D
control points and the corresponding projections onto an image
plane that is normalized by focal length f:
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 fu = f su  ;   fv = f sv (2.6)

Equations (2.5) and (2.6) constitute the mathematical model of
a pin-hole camera equipped with ideal optics. The intrinsic
parameters are [c0, r0, fu, fv]. Since the scale factors are known,
the estimation of f is straightforward.

2.2.2 The Optical Distortion Model

One reason for optical distortion is the occurrence of errors
either in lens design and manufacture or in the assembly of the
lens-camera apparatus. As a result, the projections on the
image plane become distorted. Physically, one has:

u u u v v v u vu v' ( , ) ' ( , )= + = +δ δ   ;    (2.7)

where u’,v’ are the observed projections on the image plane
and u,v are the non-observable ideal projections.
δ δu vu v u v( , ), ( , )  denote the projection errors due to optical

distortion. Four types of optical distortion are concisely
described as radial distortion, tangential distortion,
misalignment distortion and prismatic distortion in Weng et alii
(1992). In order to keep the model from becoming excessively
complex, the present work considers lens radial distortion
solely, depicted in Figure 3, and modelled according to:

δ α δ αu vu v u u v u v v u v( , ) ( ); ( , ) ( )= + = +1
2 2

1
2 2       (2.8)

with α1 denoting the radial distortion coefficient.

Equations (2.3) and (2.7) yield:
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Figure 1: (a) The Otelo vision head. (b) The active vision

system.

y
c

x
c

z
c

c

r

u

vO'

O
c

O
c

O' -  =f

O
w

x
w

y
w

z
w

Figure 2: Reference frames.
Figure 3: Effect of radial distortion on the imaging

process (Weng et alii , 1992):
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The image plane coordinates normalized by the focal length are:

! '/ ! '/u u f v v f= =   ;    (2.10)

such that
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( , )δ δ

   ;    (2.11)

As u and v are non-observable, δ δu vu v u v( , ), ( , )  above should

be expressed in terms of the observable coordinates !, !u v .
Therefore (2.11) is rewritten as:
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δ' ( !, !) !( ! ! ) ( / ) ' ( ' ' )v u v k v u v k f v u v= + = +1
2 2

1
3 2 2      (2.12c)

Assuming that the distortion at the observed position (u’,v’) is
approximately the same as at the ideal position (u,v), i.e.:

δ δ αu uu v f u v f u u v f( , ) / ( ' , ' ) / ' ( ' ' ) /≅ = +1
2 2      (2.13)

then from (2.11), (2.12) and (2.13) one obtains the normalized
optical distortion factor

k f1 1
2= − α (2.14)

and from (2.5) and (2.12) results the camera model with optical
distortion:
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One proceeds to formulate the calibration problem as follows:

given a set of 3D control points [ ]x y z i nw i w i w i, , , ; , ... ,
T

= 1  and

the corresponding observed projections (ri, ci) in pixels,
estimate in some optimal sense the intrinsic and extrinsic
parameter vector and the optical distortion coefficient

[ ]m T R R R1 2 3= r c f fu v0 0

T  and d=[k1], respectively. R1,

R2 and R3 are column-vectors in the rotation matrix R.

3 THE CALIBRATION METHODOLOGY
The two-step calibration methodology proposed here has been
adapted from Weng et alii (1992) with some modifications to
improve its robustness to 3D point measurement errors.
Furthermore, it draws from this reference an accuracy index for
the evaluation of method performance. This index includes a
normalization by the image spatial resolution, thus allowing the
comparison of the attained calibration accuracy in distinct
vision systems. The first step is direct and non-iterative,
consisting of a least-squares parameter estimation under the
assumption of ideal optics, i.e., d=k1=0. This initial estimate,
m , is then further refined in the second step which attempts to
correct deviations of the image-plane projections caused by
optical distortions and image digitization. Non-linear
optimization is employed to find the optimal values (m*,d*) in
a sense to be later defined. In order to avoid divergence or

convergence to local minima, it shall be seen that the 3D
control points and respective projections should be measured
with adequate accuracy such that the initial estimate m  results
in the vicinity of the global optimum. The contribution of the
second step to the improvement of calibration accuracy
depends fundamentally on the quality of the measurements and
on the initial least-squares solution.

3.1 The Solution to the Calibration Problem

Let Ω represent the set of all 3D control points and ω the set of
corresponding image points. The identification problem is
defined as follows, where F(⋅,⋅,⋅,⋅) is later defined.

( )min F
m d

m d
,

, , ,Ω ω (3.1)

Firstly, an initial estimate m  is sought via least-squares
assuming ideal optics, i.e., d=0. However, m* depends on
knowledge of d. Still assuming ideal optics, non-linear
optimization of F is initiated taking into account only those 3D
control points with their respective projections lying within
some region around the image center. Optical distortion should
not be significant there, thus yielding an improved estimate ~m .
A circular region with radius equal to a fourth of the square
image side is employed in Weng et alii (1992). Here a
rectangular region with adjustable dimensions has been used.
The effect of varying the region dimensions upon calibration
accuracy shall be discussed in Section 4.3. In the second step,
the estimate ~m  of m* is kept fixed and F is minimized over d,
thus producing di

*  which represents the i-th estimate of d*. m i
*

is subsequently estimated by keeping d d= i
*  fixed and

minimizing F over m. This procedure is iterated k times
yielding the estimates m k

*  and dk
* . This artificial decoupling

between m and d is justified in Weng et alii (1992) as a means
of circumventing convergence to local minima. An adequate
initial estimate m  is required to produce adequate estimates
m k

*  and dk
* . Our implementation of the method includes two

modifications to the original algorithm:

1. The orthonormalization of rotation matrix R has been
skipped since minor improvements have been observed
which did not justify the additional computational
workload;

2. Pruning of 3D control points which caused excessive error
in its corresponding estimated projection on the image
plane as the least-squares approach used for non-linear
optimization is inherently sensitive to inconsistent data.

3.1.1 The First Step

The first step comprises an initial estimation of m via least-
squares subject to d=0, resulting in the initial estimate m . It is
followed by non-linear optimization of F over m subject to d=0
with m  as the initial guess, thus yielding ~m . A detailed
description follows.

3.1.1.1 PART I: Least-squares estimation of m subject to
d=0

Under the assumption of ideal optics, d=0, and taking into
account solely central points, the camera model (2.5) provides
two equations for each 3D control point [ ]x y zw w w i

T  and its

projection (ri,ci) on the image plane. The non-linear equations
in the camera parameters are:



SBA Controle & Automação Vol. 10 no. 02 / Maio, Jun., Jul., Agosto 1999      93

( )( ) ( )′− + + + = + + +r r r x r y r z t f r x r y r z ti w i w i w i z u w i w i w i x0 31 32 33 11 12 13, , , , , ,

( )( ) ( )′ − + + + = + + +c c r x r y r z t f r x r y r z ti w i w i w i z v w i w i w i y0 31 32 33 21 22 23, , , , , ,

Each point provides two equations and there are 16 parameters
to estimate. A mapping is then sought that transforms the
above non-linear identification problem into a linear one in
auxiliary parameters that can be solved via least-squares (Weng
et alii, 1992). The transformation is:

W R R W R R W R1 1 0 3 2 2 0 3 3 3= + = + =f r f cu v ;   ;    (3.2a)

w f t r t w f t r t w tu x z u x z z4 0 4 0 6= + = + = ;   ;  (3.2b)

where R1, R2 and R3 are the columns of R. The resulting 2n
equations that relate to the n central points can be expressed as
AW=0, where [ ]W W W WT T= 1 2 3 4 5 6w w w  is the vector of

12 auxiliary parameters and

A =

− − − ′ ′ ′ − ′
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− − − ′ ′ ′ − ′
− − − ′ ′ ′ − ′
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(3.3)

Among all possible solutions of the above homogeneous linear
system, the aequate solution should satisfy the following
requirements: (1) the 2-norm of W3 must equal unity, since it is
a column of the orthonormal rotation matriz R; and (2) the sign
of w6=tz must be compatible with the location of the origin of
the camera reference frame { }O x y zc c c c

 relative to the world

reference frame { }O x y zw w w w
, having in mind that the

translation vector is represented in the camera reference frame.
The homogeneous system can be rewritten as a
nonhomogeneous one by temporarily imposing w6=tz=1 thus

yielding:

A’W’+B = 0 (3.4)

where A’ is a matrix with the eleven first columns of A; B’ is
the last column of A and W’ is vector W correspondingly
reduced of w6=tz=1. The least-squares solution for W’ in (3.4)
is then obtained. In order to enforce the aforementioned
requirements, the following normalization is carried out (Weng
et alii, 1992):
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and the parameters [ ]m R R R= r c f f t t tu v x y z0 0 1 2 3

T
 are

determined according to:

r c f r f c0 1 3 0 2 3 1 0 3 2 0 3= = = − − = −S S S S S S S ST T
u v ;   ;   ;  (3.6a)

t s r s f t s c s f t sx u y v z= − = − =( ) / ( ) /4 0 6 5 0 6 6 ;   ;  (3.6b)

R S S R S S R S1 1 0 3 2 2 0 3 3 3= − = − =( ) / ( ) /r f c fu v ;   ;  (3.6c)

3.1.1.2 PART II: Non-linear optimization of the initial
estimate m subject to d=0

Let Ω denote the set of 3D control points,

[ ]ω= u v u v u vn n1 1 2 2 #
T  the set of the respective ideal

projections of the 3D control points on the image plane and
ω ω'= + N  the set of observed projections. Let the actual
imaging process be described by a non-linear function f(m,d).
Assuming that d is known and letting m=m , the observed
projections on the image plane are initially predicted as
ω= f ( , )m d . Linearizing f(⋅,⋅) with relation to m at m=m

yields:

ω
∂

∂
ω' ( , ) ( , ) ( )

( , )
( )= ≅ + − = + −

=

f f
f

m d m d m m
m d

m
J m m

m m

(3.7)

with J as the Jacobian of f(⋅,⋅). The minimum variance
estimator in the vicinity of m  is then given by
~ [ ]m m m

m
= −min E 

2

2 . Assuming N as zero-mean uncorrelated

observation noise, it is claimed that, for d=0, the above cost
function to be minimized is equivalent to the sum of squared
errors (SSE):

F E( , ' , , ) [ ]Ω ω m d 0 m m
d 0

= = − =
=2

2

{ }= − = + − =
=

∑α [ ' ( , )] [ ' ( , )]r r c ci i i i
i

n

m d 0 m d 02 2

1

(3.8)

where α is a constant, (ri(m,d),ci(m,d)) are the estimated
projections of the 3D control points on the image plane
according to the imaging function f(m,d) and (r'i,c'i) are the
measured projections, all within the central region. The
optimization procedure determines the new estimate ~m  which
minimizes F(⋅,⋅,⋅,⋅) subject to d=0, with m  as initial guess:

{ }~ [ ' ( , )] [ ' ( , )]m m d 0 m d 0
m

= − = + − =






=

∑min r r c ci i i i
i

n
2 2

1

(3.9)

This is a non-linear optimization problem due to the non-linear
imaging function f(m,d).

3.1.2 The Second Step

The second step, which is iterative, comprises three parts,
namely: 1) least-squares estimation of d d= j

* , subject to

m m= −j 1
* , m m0

* ~= ; (2) elimination of image points with

excessive error; and (3) estimation of m m= j
*  subject to

d d= j
* . This step utilizes all 3D control points that have not

been eliminated due to excessive projection errors.

3.1.2.1 PART I: Least-squares estimation of d subject to
m m= −j 1

* , m m0
* ~=

The estimation of d utilizes the camera model in equations
(2.5) to (2.15). This model is linear with relation to the optical
radial distortion k1, and therefore one is to solve a linear

identification problem via least-squares. The cost function to
optimize is again the SSE defined in (3.8). According to the
camera model, the error in the i-th estimated projection on the
image plane (in pixels), i=1,...,n denoting the n control points,
is:
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Each image point provides two equation that are linear in k1.
Analogously to Section 3.1.1.1 the above equations can be
rewritten as Qd+C=0 with Q and C defined as:
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At the j-th iteration the solution that minimizes Qd C+ 2

2

subject to m m= −j 1
* , m m0

* ~=  yields

{ }d m d m d
d

j i i j i i j

i

n

min r r c c* * *[ ' ( , )] [ ' ( , )]= − + −






− −

=

∑ 1
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1
2

1
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3.1.2.2 PART II: Elimination of image-points with
excessive error in their the estimated projections

The measured projections (r’i,c’i) on the image plane are
compared to the estimated projections
(ri( m dj j− 1

* *, ),ci( m dj j− 1
* *, )). 3D control points giving rise to an

estimation error above a selected threshold are discarded in
order to reduce the detrimental impact of inconsistent data in
the measurement sets Ω and ω’.

3.1.2.3 PART III: Non-linear optimization of m subject
to d d= j

*

This is analogous to equation (3.9) in Section 3.1.1.2 except for
the modified constraint d d= j

*  and initial guess m j− 1
* , thus

resulting the estimate m m= j
* . The overall calibration

algorithm is as follows.

1. Given the 3D control points and the corresponding image-
plane projections, consider only those with projections
lying within the central region;

2. Obtain the least-squares solution of the linear estimation
problem defined in (3.2), (3.3), (3.4) and the estimate m
from equations (3.5) and (3.6);

3. Refine the above estimate via the non-linear optimization
in equation (3.9) with m  as the initial guess and d=0
yielding the estimate ~m ;

4. Consider now all 3D control points and the corresponding
image-plane projections;

5. j←1, m m0
* ~= , select a pruning threshold, iterate k times;

6. Obtain the least-squares solution of the linear estimation
problem defined in (3.11) subject to m m= −j 1

* producing

the estimate d j
* ;

7. Prune the 3D control points which give rise to projection
errors above threshold;

8. Refine estimate m j− 1
*  via the non-linear optimization in

equation (3.9) with m j− 1
*  as the initial guess and subject

to d d= j
*  yielding the estimate m j

* ;

9. j←j+1;

3.2 Accuracy Evaluation

In Tsai (1987) accuracy evaluation has been carried out based
on the 3D reconstruction error. Generally, some particular
criterion for accuracy evaluation is proposed which, depending
on the vision system and experimental setup, arises difficulties
regarding the comparison of results of calibration algorithms
that have been implemented in distinct vision systems. The
proper formulation of an adequate accuracy index is quite
convenient. Accuracy evaluation based solely on the grounds
of 3D reconstruction error is unfortunately affected by the
capabilities of the underlying vision system and the quality of
the measurement equipment and experimental setup. Among
such factors one should notice the spatial resolution of image
acquisition and errors in the mesurement of 3D control points
and respective projections on the image plane. Let the pixels be
backprojected on the scenery such that to each backpropagated
pixel corresponds a certain area of the imaged surface at a
given depth zc (Figure 4). The area denotes the position

uncertainty  of a 3D point at depth zc due to the finite

resolution of the image.

Letting a and b represent the dimensions of the backpropagated pixel
upon the object plane perpendicular to the optical axis at depth zc

relative to the center of projection, the following relations hold:

a cm

z cm

pixel

f pixel

b cm

z cm

pixel

f pixelc u c v

  

 
  ;   

  

 

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]
= =1 1 (3.13)

The vertical digitization error εv (in centimeters) of a pixel
backprojected to depth zc may be modelled as a random variable with
uniform probability density in the interval [ ]− a a/ ; /2 2 , thus

yielding the corresponding mean µεv = 0  [cm] and variance

σεv a2 2 12= /  [cm2]. Proceeding likewise for the horizontal

digitization error εh yields the mean µεh = 0  [cm] and variance

σεh b2 2 12= /  [cm2]. The total uncertainty in the 3D position of a

point at a distance zc from the camera due to image digitization is

modelled as ε ε ε= +h v
2 2  [cm], i.e. the vertical and horizontal errors

are uncorrelated. σ ε ε ε σ σε ε ε
2 2 2 2 2 2= = + = +E E E[ ] [ ] [ ]v h v h

 [cm2] is

thus the variance of the total 3D uncertainty at depth zc and can be
rewritten as:
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2 2 2
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1 1=
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= +
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f f
c

u v

(3.14)

The Normalized Calibration Error (NCE) is an accuracy index defined
as the RMS value of the ratio between the backprojected position error
at depth zc of a given 3D point and its corresponding total uncertainty



SBA Controle & Automação Vol. 10 no. 02 / Maio, Jun., Jul., Agosto 1999      95

as given in (3.14) (Weng et alii, 1992). The NCE is therefore
expressed as:

NCE =
− + −

+
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where [ ]x y zc i c i c i, , ,

T
, i=1,..., n denote the measured i-th 3D point

coordinates represented in the camera reference frame and

[ ]! !, , ,x y zc i c i c i

T
 are the backpropagated estimates at depth zc,i

computed according to the estimated camera parameters. The
transformation from the world reference frame where the 3D control
points are originally represented to the camera reference frame
defined in (2.1) employs the estimated extrinsic parameters T and R.
The NCE index is useful for evaluating the calibration accuracy of a
monocular system because it does not require the reconstruction of the
3D control points. This index is robust to image spatial resolution and
the distance to the 3D control points, since they affect equally both
numerator and denominator of (3.15). NCE ≤ 1 indicates that
quantization errors are more significant than the calibration errors on
the backpropagated position. In this case the calibration method
successfully extracts the useful information embedded in the
measurement set up to the limit imposed by image resolution. The
effect of errors in the measurement of 3D control points on calibration
accuracy is then negligible as long as the error magnitude remains
inferior to that of the backprojected digitization error at depth zc. On
the other hand, NCE >> 1 signals a poor calibration in which errors in
the estimated parameters result in backprojected estimates far more
incorrect than the expected effect of backprojected digitization errors.

An additional calibration accuracy index is the SSE between measured
image points and estimated image points according to the identified
camera parameters. The image-plane projection error SSE is given by
Weng et alii (1992):

( )SSE = − + −
=

∑ [ ' ( , )] [ ' ( , )]* * * *r r c ci i i i

i

n

m d m d2 2

1

   (3.16)

Finally, another accuracy index is the comparison between the
theoretical standard deviation of the image-plane projection error µ
and its estimate µ’ for a normalized image plane with focal length f =
1 cm. The variance σε

2  defined in (3.14) consists of the location

uncertainty of a 3D point at depth zc from the camera due to the finite
resolution of the image. Therefore one has the adimensional standard
deviation of the projection error at depth f = 1 cm as

µ0
2 2 1 212= +− −( / ) /f fu v

. Figure 5 shows that to each pixel

corresponds infinite 3D points within the backprojection volume of
that pixel. Therefore, minute 3D measurement errors will be masked
by the image resolution. The quality of 3D measurements is as critical
for adequate calibration accuracy as that of the image-plane
measurements (Li and  Lavest, 1996). For the latter, subpixel accuracy
is often recommended and implemented by means of image
processing for the detection and location of the relevant image points.
For image points provided with subpixel accuracy by image
processing techniques µ=µ0/5 is proposed as a more realistic
adimensional estimate of the standard deviation of the positional error
on the normalized image plane (Weng et alii, 1992).

From the estimates m* and d*, the estimate µ’ of µ is:

µ'
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An accurate calibration yields µ’(m*,d*) close to µ. The required
accuracy for the 3D measurements is directly related to image
resolution, which is dictated by pixel size, to the field of view, which
depends on focal length, and to the distance between the object and
the camera. From Figure 4 and assuming that the distance to the object
is kept constant, the improvement of image resolution requires smaller
pixels if the focal length remains unchanged. On the other hand, if the
pixel size remains constant, an increase in focal length produces a
smaller field of view per pixel and therefore the 3D coverage per pixel
results in a more detailed image (zoom-in effect). One concludes that
the 3D measurement accuracy should match the image resolution
dictated by pixel size and the 3D coverage defined by the focal length
in order to attenuate the detrimental effects on calibration accuracy.
As the distance to the object zc increases, the backpropagated image

digitization error at such distance increases proportionally and as a
result the calibration method will be more compliant to 3D
measurement errors. For instance, at zc = 120 cm, image resolution
320×240 pixels, CCD size 0.88cm×0.66cm and with f = 1.1 cm, the
acceptable 3D measurement error magnitude in the vertical direction
as indicated by (3.13) is at most:

a
z

f

z

f s
c

u

c

u

= = = =
120

11 240 0 66
0 3

( . )( ) / ( . )
.  cm    (3.18)

Since the focal length in pixels is the same in both directions the same
value stands as the maximum acceptable horizontal error magnitude in
3D measurement. One concludes as well that the larger the focal
length the higher the sensitivity to 3D measurement errors.

4 IMPLEMENTATION AND RESULTS

A rectangular grid pattern has been used for the selection of the
3D control points as depicted in Figure 5(a). The vision head
was positioned in such a way that the camera optical axis was
perpendicular to the grid. Four stations were defined for the
grid, with a 10 cm distance between each one. The origin of the
world reference frame { }O x y zw w w w

 was fixed at the closest

station from the camera with plane { }O x y zw w w w
 parallel to the

grid. The rotation matrix R in this setup was close to identity
(R≈I3). The dimension of the grid cells have been measured
and their vertices used as 3D control points. Station 1 was
positioned around 120 cm from the camera. Images acquired at
the four stations were used to provide depth information to the
set of control points. Image-plane projections were manually
selected as those pixel coordinates that corresponded to sharp
vertices. The set of image-plane projections was composed of
164 pixel positions with resolution 320×240 as shown in
Figure 5(c). Figure 5(d) shows the 3D control points.

4.1 Calibration with Synthetic Data

Calibration with synthetic data allows the initial evaluation of
the algorithm accuracy as the parameters of a virtual camera
are perfectly known. The procedure is suitable for the
preliminary analysis of the impact of optical distortion and
image digitization upon calibration accuracy. It consists of the
following steps: (1) determine the virtual image-plane
projections of the 3D points using the known parameters of the
virtual camera; (2) estimate the camera parameters from the 3D
measurements and respective image-plane projections; (3)
compare the calibrated parameters with the actual values; and

Figure 4: Backprojection on the object of a pixel on the
image plane.
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(4) project the 3D points on the virtual image-plane using the
estimated parameters and compare with the results of step 1.
Simulation of optical distortion and image digitization may be
included in step 1.

Virtual image resolution was selected as 320×240 with ideal
optics and camera-lens assembly thus resulting the image
principal pont (r0,c0) at the geometrical center of the image
plane. Ground-truth values for the extrinsic parameters T and
R were selected such that the resulting image points resembled
those in the actual images. Ground-truth world and camera
reference frames were assumed as perfectly aligned. The
following ground-truth values for the virtual camera were used:
principal point (r0,c0)=(120,160) pixels, focal lengths
(fu,fv)=(−2su,2sv) pixels, R=I3, T=[−11 8 130]T, k1=0.05, the
latter being used according to circumstances as follows. The
calibration method was tested under three circumstances: (1)
ideal optics and no digitization errors, (2) optical distortion by
use of k1 and no digitization error, and (3) optical distortion and
digitization errors. The digitization model employed is based
on rounding off the pixel coordinates of an image-plane
projection to the nearest integer value. For the virtual camera
one has µ≈2.25×10−4.

The results related to ideal optics and no image digitization are
discussed in the following. A rectangular central region sized
1/4 of the image dimensions was used yielding 69 central
image points. The solution achieved by the end of Part I in step
1 was perfect. Part II of step 1 of the algorithm iterated once
with this solution as the initial guess yielding practically the
same solution and moreover SSE = µ’ = 0. The use of perfect
information thus resulted in exact estimates except for
!k1

66 10= − × − . Other ground-truth values for the camera

parameters were tried out also yielding perfect results.

In more realistic conditions, however, measurements are
expected to become corrupted by noise and parts of the
scenario to get out of focus because of finite field of depth. In
order to evaluate the effect of optical distortion, the 3D
projections were simulated but this time including the radial
distortion model. Less accurate estimates were attained with
SSE = 0.21 and µ’=3.3×10−5 which is an order of magnitude
smaller than the theoretical µ related to image resolution.
Figure 6(a,b) shows the image-plane projection errors. Since no
excessive error occurred by the end of step 1, no image points
were excluded from further processing. One concludes that in
this case the effect of distortion upon calibration was minor.

In actual applications the image resolution may seriously affect
calibration accuracy. Table 4.1 summarizes the results for the
virtual camera with spatial quantization effects included. The
central region was again selected with size 1/4 of the acquired
image side and ground-truth radial distortion coefficient
k1=0.05. Figure 6(c) shows that the detrimental effect of
digitization is far more important than that arising from optical
distortion. The high SSE value by the end of step 1 is in
agreement with this assertion. Figure 6(d) depicts the
estimation error after one iteration of step 2 with 1.14 pixel as
the largest error. 3D measurements with corresponding
projection errors above 0.7 pixel were then discarded, therefore
removing fifteen 3D measurements and the corresponding
projections from the measurement set. A second iteration of
step 2 with this pruned measurement set significantly reduced
the SSE value and the largest estimation error value, as shown
in Table 4.1 (in the last page) and Figure 6(e), respectively.

In order to have the estimated image-plane projections close to
the measurements, the identified principal point should be
displaced to the left and up by means of the translation
components tx and ty. Therefore, estimation errors in (r0,c0)
were compensated by errors in the estimation of tx and ty. As
the estimation of (r0,c0) improved with step 2, so did the
estimation of ty and ty. Estimation of ty was seen to be quite
accurate. The above results obtained from synthetic data
indicate that the method is adequate for calibration provided
that the 3D measurements are sufficiently accurate.

4.2 Estimation of Confidence Intervals with
Synthetic Data

The above results were produced with one realization of the 3D
measurement set. Moreover, it occurs often that a useless
biased estimate yields a small relative error because the
estimation error is small compared to the magnitude of the
estimate. By contrast, the magnitude of the ratio between the
estimation error and the uncertainty range provides information
on whether the estimate is biased to a point which makes it
useless for a given purpose. It encouraged further statistical
evaluation based on Montecarlo simulation. The calibration
method has been utilized with 30 random realizations of the 3D

(a)

                4           3          2           1

(b)   

(c)   

(d)   

Figure 5: (a) Experimental setup scheme. (b) Image
acquired of grid at station 1. (c) Actual image-plane

projections. (d) 3D control points in the world
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measurement set. The virtual camera parameters were selected
equal to the ground-truth in Section 4.1 except for the
translation T=[−11 8 116]T and the focal length. To the latter
was assigned the minimum nominal value, 1.1 cm, in order to
provide maximum depth of field when calibrating the actual
vision system and therefore (fu,fv)=(−1.1su,1.1sv) pixels.

The simulated grid was positioned at four distinct stations and
the coordinates of the cell vertices randomly generated as
multiples of the actual grid cell dimensions. 3D occluded
points were pruned from the measurement set. The number of
measurements at each station was kept similar to that acquired
by the real vision system, thus yielding a total of 160 synthetic
3D measurements. The interval estimator of the uncertainty
range of the parameters is proposed as follows (Papoulis,1991).
Let !η  denote the estimate of the constant parameter η from

noisy measurements ηi, i.e., η η νi i= + , i=1,2,...,n; vi white

noise with N(0,σ2). It is required to estimate the γ-confidence
interval in which η lies with a given probability γ (confidence
coefficient) or confidence level δ=1−γ. In this case, the γ-
confidence interval is ! ! ( ) /η σ± t nu 30 , u=1−δ/2, where tu(30)

is the standard Student-t density percentile for n=30 samples,

!η  is the mean ( )1
1

/ n i
i

n

η
=

∑  and ( )! / ( ) ( ! )σ η η2 2

1

1 1= − −
=

∑n i

i

n

 is

the unbiased estimate of the noise variance. The following
mean estimates and confidence intervals for γ=0.95
(tu(30)=2.05) were obtained:

( ) ( )! !r c . .0 0 131 2 24 161 2 63= ± ± (4.1a)
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[ ]! . . . .T = − ± ± ±7 53 0 652 8 0 767 116 0 485
T

(4.1d)

With regard to the size of the central region, the behavior of the
NCE index was observed as the side of the central region
hk=image_size/k, k=1;1.5;2;2.5;...;9.5;10; varied. For each
central region size, 30 realizations of the 3D measurement set
were employed and the average NCE value and its
corresponding standard deviation computed. The results
remained essentially invariant with an average NCE just under
unity and standard deviation 0.034 for k within the interval
[1;5.5]. This indicates that the simulated optical distortion had
a minor effect. However, small central regions (k>5.5) resulted
in too few points remaining for an adequate initial estimation
thus yielding a massive increase in the NCE statistics and
hence a high sensitivity to variations in the measurement set.

4.3 Calibration of the Actual Vision System

For the calibration of the monocular tracking vision system the
servo-actuated lens was set to its minimum nominal focal
length of 1.1 cm in order to keep the whole scenario in focus.
This is necessary due to the assumption of pin-hole camera
optics used by the algorithm, with which the image is focussed
regardless of the depth of an object within the field of view.
The size of the central region was set to 1/4 of the image size
yielding 116 central points. The correspondence between the

image-plane projections and 3D measurements was carried out
by the operator. The results are shown in Table 4.2. The

(a)   

(b)   

(c)   

(d)   

(e)   

Figure 6: (a) Image-plane projection errors, radial
distortion only, step 1 concluded. (b) Idem, step 2

concluded. (c) Image-plane projection errors, radial
distortion and digitization, step 1 concluded. (d) Idem,

step 2 concluded. (e) Idem with pruned measurement set,
step 2 concluded.
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resulting image-plane projection error after the initial
identification of k1 (see Section 3.1.2.1) and the twelve
discarded measurements due to estimation error above 0.7
pixel are shown in Figure 7(a,b). Such pruning of inconsistent
data in the measurement set significantly reduced the SSE,
NCE and µ’ values as observed in Table 4.2. The resulting
SSE, NCE and µ’ indicate that adequate calibration was
achieved. The estimated focal length was employed in the
background motion compensation module of a tracking
algorithm with good results (Waldmann and Francisco Jr,
1997).

The statistical evaluation of the confidence intervals from the
actual data requires a number of realizations of the
measurement set which is not feasible. Thus, one resorts to the
confidence intervals obtained for the virtual camera in equation
(4.1) and the estimates in Table 4.2. Regarding the principal
point, the confidence interval is much smaller than the distance
from the estimate to the nominal image center, an occurence
which indicates a possible misalignment between the camera
and the lens assembly or a significant bias in this estimate.
Likewise, the error between the the nominal focal length and
its estimate, when compared to the corresponding confidence
interval, again indicates the occurrence of either a biased
estimate or considerable incorrectness in the datasheet
provided by the lens manufacturer. However, the resulting
parameter estimates represent quite well the imaging process
from the 3D measurement set to the image-plane projections.
This claim is confirmed by NCE<1 in Table 4.2 and the results
of Figure 7(c,d).

5 CONCLUSIONS

A two-step calibration method has been evaluated in an actual
vision system. The first step yielded an initial solution under
the assumption of ideal optics whereas the second step refined
it by taking the radial distortion into account. The estimated
focal length was considered satisfactory for the intended
purpose of visual tracking. The estimated focal length was
successfully used to carry out the background motion
compensation due to camera motion.

The calibration results strongly depended on the quality of the
3D measurements. The pruning of inconsistent 3D
measurements was seen to significantly improve the results.
Calibration accuracy was seen to be sensitive to a sharp
decrease in central region size causing too few points to be
used in the estimation of an initial solution. Furthermore, a
decrease in the field of view due to zooming had a detrimental
effect on calibration accuracy as 3D measurement errors
became more significant. Confidence intervals were produced
via Montecarlo simulation of a virtual camera and 3D
measurements. The resulting confidence intervals together with
the NCE value showed that in spite of the estimates for the
actual vision system being biased, the calibration algorithm
succeeded in the extraction of useful information about the
imaging process from the available measurement set.

The calibration method here evaluated will be useful to
characterize the relationship between the actual focal length
and the distance to a focussed object and their respective
commanded values as computed by the lens control algorithm.
The characterization of errors in the closed-loop optics control
will enable the evaluation of exploration and tracking modes as
they compete and cooperate within the framework of an
attentive strategy.
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Table 4.1: Calibration results for virtual camera with radial distortion and digitalization error.
Camera parameters Solution by the end of step 1

(central region only)
Idem, by the end of step 2

(whole image)
Principal point (r0, c0)   [pixels] (133,169) (119,166)
Focal length (fu , fv)   [pixels] (−1.96su , 1.98sv) (−1.98su , 1.98sv)
Translation T   [cm] [−8.68  6.36  128]T [−11.3  6.91  128]T

Rotation R
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0092.10053.00068.0

0128.00054.10006.0

0138.00002.00087.1

Radial distortion coefficient k1 − − − 0.3752

SSE   [pixels2] 30.643 17.482

µ’ 7.69×10−4 3.30×10−4

Table 4.2: Calibrated parameters of the actual vision system.
Camera parameters Solution by the end of step 1

(central region only)
Idem, by the end of step 2

(whole image)
Principal point (r0, c0)   [pixels] (100,171) (100,171)
Focal length (fu , fv)   [pixels] (−1.21su , 1.23sv) (−1.21su , 1.23sv)
Translation T   [cm] [−21.2  5.96  116]T [−21.2  5.89  116]T

Rotation R
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−

0093.10673.00194.0

0772.00014.10036.0

0403.00031.00021.1

















−
−

−

0005.10437.00534.0

0767.00014.10000.0

0410.00014.00006.1

Radial distortion coefficient k1 − − − 6.51×10−3

SSE   [pixels2] 1013 9.282
NCE 6.0899 0.93879

µ’ 7.81×10−4 7.07×10−4


