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Resumo Estimação linear ótima estocástica de parâmetros é
utilizada para gerar um novo método iterativo, para a solução
paralela de sistemas algébricos de equações. No limite, a
abordagem proposta leva a algoritmos iterativos que resolvem
em paralelo sistemas lineares, variável por variável. É
mostrado, tanto no caso de sistemas determinados como no de
sistemas indeterminados, que o método iterativo de solução
paralela desenvolvido é equivalente, em cada iteração, a se
aplicar a uma função objetivo quadrática, e definida positiva,
um método de Newton modificado, com convergência
garantida. A motivação é se ter um método que explore as
possibilidades oferecidas por processamento paralelo, que pode
ser útil na solução eficiente de sistemas de larga escala,
especialmente aqueles envolvendo matrizes de coeficientes
esparsas.É mostrado também que a abordagem mais geral por
estimação estocástica leva a um método que generaliza e que,
em consequência, se espera ter melhor desempenho que o
método usual de Jacobi. Embora sejam apresentados exemplos
numéricos, este trabalho não trata do aspecto de testes e
avaliação de desempenho numérico e está focado no
desenvolvimento heurístico e na verificação de convergência
do método proposto.

Palavras Chaves: Sistemas Lineares, Solução Paralela de
Sistemas Lineares, Método Generalizado de Jacobi.

Abstract Stochastic optimal linear estimation of parameters is
used to generate a new iterative method for the parallel solution
of systems of linear algebraic equations. In the limit the
approach proposed leads to iterative algorithms which in
parallel can solve linear systems, variable by variable. It is
shown, for both determined and undetermined systems, that the
parallel iterative method developed is in each iteration
equivalent to apply to a quadratic positive definite functional a
modified Newton method, with guaranteed convergence. The
motivation is to have a method which explores the possibilities
offered by parallel processing and that can be useful in the

efficient solution of large scale systems, especially those with
sparse coefficient matrices. It is shown also that the more
general stochastic approach taken leads to a method which
generalizes and which as a consequence is expected to perform
better than the usual Jacobi method. Though numerical
examples are presented, this paper does not yet address the
aspect of testing and evaluation of numerical performance and
is focused in presenting the heuristic development and
verification of convergence of the proposed method.

Keywords: Algebraic linear systems; Parallel solution of linear
systems; Generalized Jacobi method.

1 INTRODUCTION
The sequential solution, equation by equation, of linear
algebraic equations has been treated with success using both
deterministic approaches (Huang, 1975; Abbaffy et alii, 1984;
Spedicato, 1995) and stochastic optimal linear estimation
approaches (Rios Neto, 1981; Pinto and Rios Neto, 1990). The
resulting methods are appropriate for the existing sequential
processing machines and have been shown to be not only
effective but also efficient in iterative schemes to deal with ill
conditioned systems (Wederley, 1997).

The advent of computational parallel processing means justify
the research effort to develop parallel solution type methods.
The motivation is to explore the new possibilities available to
gain in efficiency and to facilitate the treatment of large scale
systems, searching for methods which iteratively solve a
system of linear equations by processing in parallel groups of
its variables or, in the limiting case, variable by variable, as the
Jacobi method does.

The use of least squares (e.g., Chen and Billings, 1992) and
Kalman filtering (e.g., Rios Neto, 1995; 1997) to generate
parallel processing algorithms in the supervised training of
artificial neural networks has called the attention upon the
possibility of also using stochastic optimal linear estimation for
generating methods for the parallel solution of linear algebraic
equations. In what follows, this possibility is explored
developing a method with these characteristics.
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2 PROPOSED METHOD

2.1 Determined Systems

Consider the system of linear algebraic equations:

ε+= Axb                                                                       (1)

where A is a given nxn full rank real matrix; x is the nx1 vector
of unknown variables; b is a given nx1 real vector; and ε  is to
represent the numerical accuracy expected to be attained.

In an iterative solution scheme, the problem can be viewed , in
a typical iteration, as:

εα +−=− )xx(A)xAb(                                              (2)

where x  is the initial guess or the value from the previous
iteration; and 10 ≤< α  is to be chosen to adjust the solution
search step size.

If jk,n,...,2,1k,xk ≠=  is viewed in each iteration as given by:

kkk xx η+=                                                                    (3)

where kη  is the error which represents the quality of kx , and

taking this information back in Eq.(2), there results the
following set of approximate and redundant equations in jx :
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where i=1,2,…,n. If now the linear problem of Eqs.(4) is

treated as one of unbiased parameter estimation, the errors j
iv

can be viewed as outcomes of zero mean, normally distributed
random errors. In order to evaluate their dispersion, it seems
reasonable to model them as zero mean, not correlated random
variables with variances which are an approximation of the
order of magnitude of the dispersion of their most probable
realizations around zero. Since the first hand terms in Eqs.(4)
are residues, with lower boundaries limited by the accuracy to
be attained, it seems reasonable to consider:
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where E[.] is the expected value operator; ke  are the standard

deviations of the random errors specified to model the final

accuracy sought for kx ; and iβ  is a factor to adjust the order

of magnitude of the most probable dispersion of j
iν . A natural

and certainly not unique and conservative way of adjusting this
dispersion is to consider a maximum likelyhood statistical
consistency type of criterion (see, for example, Jazwinki,
1970):
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With this modeling approach, the problem of solving for the
generic component jx  in Eqs.(4) can be biewed as one of

stochastic linear parameter estimation, in each iteration. For
n,...,2,1j = , the observation like Eqs.(4) can then in each

iteration be processed in parallel, using a without a priori
information Gauss-Markov estimator (see, for example,
Liebelt, 1967), to get an estimate of the components jx :
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where jA  is the jth column of A; and
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Noticing that the without a priori information form of the

estimator in Eq. (7) allows to cancel out the factor 22 βα  in

R , and that R is the same for j=1,2,…,n, it is then possible to
combine the estimates jx̂ , of the parallel processing

estimation, to get the equivalent following estimator for the
whole vector x:

)x(Sgx)x(fSxx̂ T αα −=∇−=                                   (9)
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)x(gˆ)bxA(RA)x(f 1TT =−=∇ −                           (11)

and α<0  can be chosen such as to minimize )x(f  in a given

iteration, if it is taken as (Luenberger, 1984):

)x(gg),gASRSAg/()gSg( 1TTT == −α                   (12)

Since S  and ARA 1T −  are positive definite matrices, the
estimator of Eq.(9) is equivalent to a modified Newton method
applied to the functional of Eq.(10).

Convergence of the parallel processing method of Eqs.(7)
can now be verified considering its Newton method equivalent
form, using the Kantorovich inequality and concluding that in
each iteration ( see for example Luenberger, 1984, pp. 261-
262):

]x[Q]x̂[Q 2β≤                                                          (13)

*)xx(ARA*)xx(2/1]x[Q 1TT −−= −                        (14)
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)/()( mMmM λλλλβ +−=                                        (15)

x*  being the value of x that leads to the minimum of f(x) in
Eq.(10); and mM ,λλ  the largest and smallest eigenvalues of

the positive definite matrix ARSA 1T − .

In what concerns numerical performance, the proposed method
of Eqs. (9)-(11) is expected to perform better than the same
purpose existing Jacobi’s method, for at least the reasons that
follow.

(i) Even in the most recent and elaborated form of Jacobi’s
method, as presented in Björck (1996), the relative
influence of errors is not taken in account. The weight
matrix R (in Eq.(10)) is particularized to be the
indentity matrix and thus the information about
accuracies sought is not considered in the relative
weighting and priority to be given to the components
of Eq.(1) in the search process.

(ii) In Jacobi’s method, α  in Eq.(10) is simplified to always
take the value 1.0 and thus the full rank of the matrix
of coefficients A is not sufficient to guarantee
convergence.

(iii) The stochastic modelling of the accuracies je  in jx

together with the statistical consistency criterion of
Eqs.(6) lead to a way of evaluating and distiguishing
the numerical zeros in the components of Eqs.(1).
Thus the square roots of the diagonal terms of R
(Eq.(8)) and the je  can be used to get realistic

stopping conditions, in the numerical search.

2.2 Undetermined Systems

Consider now the system of linear algebraic equations as in
Eq.(1), where now A is a mxn, rank m matrix, with m<n; and b
as a consequence is a mx1 real vector. In this case a unique
solution does not exist, unless a criterion to be satisfied for the
solution is imposed. If a norm of x  closest to the origin  is
sought, then the problem is that of a constrained minimization,
and the following solution results:

)b(]AA[Ax 1TT ε+= −!
                                              (16)

where a given and arbitrary occurrence of the zero mean error
ε  is considered. Thus, at the cost of increasing the condition
number of the matrix of coefficients (Stoer and Bulirsch,
1980), the solution is reduced to the one developed for the
determined case, noticing that:

yAx,by)AA( TT !! =+= ε                                (17)

This undetermined problem can also be viewed and
treated in a suboptimal way as the following stochastic linear
estimation problem:

η+= x0    , n
T IP][E,0][E === ηηη                (18)

ε+= Axb  , εεεε R][E,0][E T ==                         (19)

where nI  is the identity matrix of order n; and εR  is a

diagonal matrix with variances considered to be negligible as
compared to the dispersion caused by the variances of P .

In a parallel iterative solution scheme, this problem can be
viewed , in a typical iteration, as one of optimal linear
estimation , with a priori information given by the jth
component of :

ηα +−=− )xx(x                                                        (20a)

and observations given by, for i=1,2,…,m:
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where, based on the experience with the determined case, and
unless of constant factors, iν  is modeled as zero mean, with

uncorrelated components and covariance matrix R as defined in
Eq. (8).

The solution to this problem is now given by ( see, for
example, Liebelt, 1967):
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where R is defined as before, in Eq. (8). Combining the
estimates for n,...,2,1j,x̂ j =  , there results an estimator x̂  for

x of the form of Eq.(9), but where:

]n,...,2,1j:]ARAI.[[diagS 1
J

1T
j =+= −−              (22a)

}xx]bAx[R]bAx{[2/1)x(f T1T +−−= −                 (22b)

where α  as before can be chosen in each iteration such as to
minimize f(x) in Eq.(22b):

)gS)IARA(Sg/()gSg( n
1TTT += −α ,

).x(f)x(gg T∇==                                                             (23)

Since S and )IARA( n
1T +−  are positive definite matrices, it

results that the parallel iterative approximation given by
Eq.(21) is again equivalent to a modified Newton method
applied now to the functional of Eq.(22). Convergence to the
solution of the f(x) of Eq. (22b) can be demonstrated following
steps analogous to those of Section 2.1.

2.3 Preliminary Numerical Testing

For the case of determined systems, the proposed method is a
generalization of the unique of this type Jacobi’s method, thus
it is relative to this method that an evaluation has to be made.

The following results illustrate the numerical behavior of the
method when applied to the solution of simple and well
conditioned determined and undetermined problems. Tests
conducted with an ill conditioned problem (condition number
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1441) were also done. As expected, Jacobi’s method diverged.
Though the proposed method also converged in this case, it did
with too many iterations (thousands), indicating the need of
further research to explore the possibility of getting more
efficient algorithms.

In all the cases tested, the numerical calculation of the optimal
α  using Eq.(12), when the gradient g  gets near zero, and to

avoid a numerical ill behavior, is done as follows:

iiiii e/g/if,e).g(signg ≤= .

(i) Determined Case: Well-Conditioned

A = 
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Figure 1 – Variables convergence for the proposed method

Figure 2 – Numerical residue for the proposed method

Figure 3 – Variables convergence for the Jacobi method

Figure 4 – Numerical residue for the Jacobi method

Figures 1 and 2 illustrate a convergence behavior for the
proposed method which is significantly better than that
illustrated in Figures 3 and 4 for the Jacobi’s method when
applied to the same problem.
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(ii) Determined Case: Ill-Conditioned

A = 
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Figure 5 –Variable convergence for the proposed method:
ill-conditioned case

Figure 6 – Numerical residue for the proposed method: ill-
conditioned

(iii) Undetermined Case: Optimal Solution
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Figure 7 – Variables convergence for the proposed method:
optimal solution

Figure 8 – Numerical residue for the proposed method:
optimal solution
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(iv) Undetermined Case: Suboptimal Solution

A = 
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Figure 9 – Variables convergence for the proposed method:
suboptimal solution

Figure 10 – Numerical residue for the proposed method:
suboptimal solution

As it would be expected, the suboptimal solution does not
coincide with the optimal one, and can be viewed as a the
pseudo inverse generated by the criterion corresponding to the
minimization of the functional of Eq.(22b).

3 CONCLUSIONS

Stochastic optimal linear estimation was used to develop a new
method for the parallel solution of linear algebraic systems of
equations. This was done exploring analogies with the problem
of supervised training of artificial neural networks when local
training Kalman algorithms are used.

For the case of determined systems, the method resulted to be a
generalization of the only existing method of the type, which is
the Jacobi’s method.

Due to the particular diagonal structure of matrix S (Eqs. (10)
and (22a)) the method was also shown to be in each iteration
numerically equivalent to a modified Newton method which
attains convergence.

Since the time spent to converge in each variable is of about
the same order, then it is expected that, except for small
differences due to the calculation of the α ´s, this should also
be the order of the time spent to solve the whole system,
independently of the number of equations, as long as there are
enough parallel processors.

An interesting feature that results from adopting the more
general approach of stochastic optimal linear estimation is that
the S  matrix in the resulting modified Newton Method ( see
Eq.(9)) can be naturally and easily obtained using a criterion of
statistical consistency . As a matter of fact, with the particular
criterion  chosen S resulted to be iteration independent.

In this phase of research, the objective was to explore the
possibilities of optimal linear estimation to have a method of
parallel processing solution of linear systems developed.
Further studies shall address the numerical testing and
evaluation of efficiency of algorithms based on this method.
The higher level of sophistication of the developed method as
compared to the Jacobi method and the good performance of
algorithms derived from its analogous, Kalman filtering based,
parallel processing, neural networks training method, rises the
expectation of a satisfactory performance.
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