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Resumo: Este artigo trata sobre o problema de modelagem da
máquina de indução através da representação das não-
estacionariedades e das não-linearidades como incertezas do
sistema. O modelo resultante em espaço de estado é utilizado
em um novo esquema de controle digital de velocidade por
orientação do fluxo de rotor. A solução do problema de
controle é obtida pela síntese de um ganho de realimentação de
estado que é robusto às variações da planta.

ABSTRACT: This paper deals with the problem of the
induction machine modelling by representation of non-
stationarity and of non-linearity as system uncertainties. The
resulting state space model is applied in a new scheme of
robust digital speed control by orientation of the rotor flux. The
solution of the control problem is performed by the synthesis of
a state feedback gain which is robust to such plant variation.

1 INTRODUCTION

The development of microprocessors and their
applications in systems engineering has caused quick
technical advances that guarantee some performance
improvement in control systems.  In the case of motor
drive systems, it has allowed the employment of
sophisticated methods of analysis and control of the
induction machine (Krause, 1986; Novotny and Lipo,
1995).

A very commonly accepted method is the vector control
of the induction machine (Hasse, 1969; Blaschke,1972).
The three-phase electrical variables for rotor flux and
stator current are projected on two orthogonal axes,
represented by d and q. The resulting decoupled
components are related to the magnetization and torque
production of the motor, respectively. Setting the q-
component of the rotor flux to zero, the torque response
can be controlled independently of the magnetization
dynamics.

Many proposals have been presented in the literature for

the implementation of vector control by the application of
control systems theory.  Methodologies employing the
classic optimal control (Murata et alii, 1990) and
frequency-domain optimal control (Kao and Liu, 1992)
have been used in this sense. However, the complexity of
the induction machine models, that in general are
nonlinear and non-stationary, requires that these methods
be applied to linearized models, which are obtained for
an unique machine operating point.

In order to provide the machine to work in a wide speed
range, there are several models whose parameters are
updated every sampling period.  These approaches
require the controllers being computed in real time
(Akagi and Nabae, 1986) and this computational efforts
frequently demands the use of digital signal processors
(DSP) (Vainio et alii, 1992).  An alternative solution for
this problem (Ben-Brahim and Kawamura, 1992) consists
in the off-line computation of the system matrices and in
the storage of these values in a look-up table.

In this work, we propose a new methodology for the
representation of non-stationarity and non-linearity of the
induction machine state space discrete-time models. The
basic fourth order model (Bottura et alii, 1993) is
composed by electrical equations for stator current and
rotor flux variables, represented in the dq synchronously
rotating reference frame.  Then, a speed equation is added
to this model. Once we consider wide changes in the
machine operation, the electrical equations become non-
stationary while the motion equation is naturally
nonlinear. Besides, all the equations depend on changes
in the machine parameters mainly because of temperature
variation.

The non-stationarity and non-linearity characteristics of
the model described above are dealt as systems
uncertainties. The specification of limit values for the
stator and slip frequencies, as well as for the dq
components of the rotor flux, defines a set of the machine
operating points in the parameter space. The convex
combination of such points results in a polytope that
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contains all possible trajectories of the system parameters
either in steady state or in transient conditions.

The uncertainty representation via convex polyhedral sets
leads to an uncertain linear model which is very suitable
for the application of robust control techniques. The
primary objective of providing the systems quadratic
stability all over the parametric domain is guaranteed by
the verification of the asymptotic stability of the nominal
system at the vertices of the polyhedral sets (Horisberger
and Belanger, 1976). Besides that, the convex nature of
the system representation guarantees the synthesis of
globally optimal controllers (Geromel et alii, 1991).

Based on the above concepts, we also propose an optimal
robust controller for the field oriented speed regulation of
the induction machine. This controller is constituted by a
state feedback gain, computed off-line, that minimizes an
upper bound for the H2 norm of the transfer function
from the disturbance input to the output of the system
(Geromel et alii, 1993). The controller synthesis is done
in the basis of the so called full information problem
(Zhou et alii, 1996; Colaneri et alii, 1997), so the state
vector, and consequently the rotor flux, is considered
known.

The validation of the proposal is verified through some
simulation results.

2 THE INDUCTION MACHINE MODEL

Consider the non-stationary discrete time model of the
induction machine in dq synchronously rotating reference
frame, proposed in Bottura et alii (1993):
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whereω , ωs  are the stator and slip frequencies, Rs , Ls , Rr

and Lr  are the stator and rotor resistances and inductances, M

is the mutual inductance and h is the sampling period.
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This model is completed with the torque and motion equations:
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where ωr  is the rotor frequency, P is the number of pairs of

poles, C1 is the viscous friction, TL  is the load torque, Jm  is

the system inertia and C PC Jm2 1= − .

In order to derive a fifth-order state space representation with

[ ]X i iqs ds qr dr r
T

= λ λ ω

as the state vector, let us substitute (2) in (3) and rewrite (1) to
get:
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or, in a compact form:
X k X k Sw k V ks( ) ( ) ( ) ( )+ = + +1 Φ Γ (5)

where Φ and Γ are the state and input matrices, respectively,
and w(k), which contain the load torque, is the perturbation
vector pondered by the matrix S.

Note that the above model is non-linear and non-stationary
once ϕ i i, ,...,= 1 8  and γ i i, ,= 1 2 , vary with ω and ωs , and

ϕ9  and ϕ10  depend on the d-axis and on the q-axis

components of the rotor flux vector.  Conversely, this model is
very suitable for the representation of those characteristics as
system’s uncertainties.  Defining maximum and minimum
values for ω and ωs , as well as the maximum value for the

rotor flux (based on the machine saturation), we obtain the
variation range of each element of the matrices of the model.
By combining these values, we find the matrices that determine
the vertices of a convex polytope in the parameter space, which
contain all the possible matrices of the system.  This polytope
is represented by the convex combination of the vertices, as
follows:
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where N is the number of  vertices.

3 SPEED CONTROL
The proposed digital speed control method for the induction
machine allows its employment in applications which require a
wide operation range. This technique constitutes a development
of the oriented flux torque regulation scheme presented in
Bottura et alii (1996). The objective is to calculate a voltage
Vs  that, applied to the machine, minimizes the rotor flux and

rotor frequency errors, given the references

[ ]λ λro dro
T= 0  and ωro .  This voltage is computed from

the stator current equation. In order to find an error equation,
we define a stator current reference i kso ( ) , calculated every

sampling period, as follows. From (4), in steady state:
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Note that the computation of i kqso ( )  depends on the value of

the load torque, which can be estimated from the measurement
of the rotor speed and its reference. By decomposing the load
torque in two parts, the first one constant ( TLo ) and the other

one variable due to the exogenous perturbation ( ∆TL ), the

motion equation can be rewritten, respectively, in a generic
instant and in steady state, as:
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electromagnetic torque at the instant k compensates the load
torque variation at the instant (k-1), the following equality
holds: ∆ ∆T k T ke L( ) ( )= −1 . Then, applying one period

delay, the iteractive relation follows:
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T
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Remark 1: The stability of equation (11) depends on the
stability of the system. When ωr reaches its reference value,

the speed error is zero and ∆ ∆T k T kL L( ) ( )= −1 . Next

section presents a robust control method that guarantees the
system stability all over the speed operating range.

Remark 2: The assumption that ∆ ∆T k T ke L( ) ( )= −1  is

reasonable once the stator current reference is calculated based
on the variation of the load torque. As the electrical dynamics
is faster than the mechanical one, it is commonly expected that
the generated torque evolves to compensate such variation.
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Remark 3: The slip frequency evaluation is done by
ωs r qs r dsR i L i= /

The equation for X o  is obtained by partitioning the matrices

of (4):
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By applying an one period delay in (14), the value of V kso ( )
is calculated by:

( )V k i k Iso so ro ro( ) ( ) ( )= − − −





− −Γ Φ Φ Φ Φ1
1

1 3
1

4 2λ λ (16)

where the non-singularity of Γ1  and Φ3 is guaranteed in
Bottura et alii (1993). By subtracting (14) from (5) we derive
the error equation:

e k e k Sw k V k( ) ( ) ( ) ( )+ = + +1 Φ Γ (17)
where

e k X k X ko( ) ( ) ( )= − (18)

V k V k V ks so( ) ( ) ( )= − (19)

for which asymptotic stability can be attained by the
application of state feedback.  So,

V k Ke k( ) ( )= − (20)

Equations (16), (19) and (20) determine the voltage V ks ( ) :

V k V k V ks so( ) ( ) ( )= + (21)

Remark 4: The state feedback gain K, considered in the
control law (20), determines the dynamics of the
servomechanism problem represented by equation (17). The
estimation of the load torque is done in equation (11), through
the difference between the actual and the reference motion
equations, whose dynamics is affected by the control gain.
Therefore, system rejection to disturbances in the load torque
depends on the location of the closed-loop poles of the whole
system.

Once the matrices entries of the error equation are
uncertain, the synthesis of the state feedback controller
must guarantee the asymptotic stability for every
combination of  Φ Φ∈ D  and Γ Γ∈ D . The search for a

gain which is robust to the plant variation and to the
nonlinearity is the aim of the next section.

Besides the stability and robustness characteristics,
another objective of the following synthesis procedure is
to compute a control gain that minimizes an upper bound
to the H2 norm of the transfer function from the
disturbance input to the output of the system.

Note that the control law (18)-(20) requires the
knowledge of the rotor flux, which is not available for
measurement. Many results has been presented in the

literature to try to overcome this problem through
estimation theory. Although the discrete model used in
this paper is apropriate for the application of state
observers (Bottura et alii, 1993), the solution of the rotor
flux estimation problem is out of the scope of this paper.
Therefore, the results of the following section are
obtained under the hypothesis of full information, that is,
the state vector is completely known.

4 ROBUST DISCRETE CONTROLLER

The definition of an output equation leads to the
following generic representation for the error equation
(17). We consider the presence of impulsive disturbances
in the state equation, so the following system is defined:
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where Φ Φ
n n D× ∈ , Γ Γ

n m D× ∈  , CTD=0 and DTD>0.

The stability of the system (22) is discussed based on the
closed loop equation:

( )e k K e k e kf( ) ( ) ( )+ = − =1 Φ Γ Φ (23)

This system is quadratically stabilizable via linear control
for any Φ Φ∈ D  and Γ Γ∈ D  if  and only if  there exists

a matrix  P = P T  > 0,  such that:
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If DΦ  and D Γ  are polyhedral sets, this quadratic
stability condition has to be verified only in its N vertices
(Horisberger and Belanger, 1976). Then,
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T

f iP P i N− < =0 1, , ... ,

It is equivalent to say that the augmented system
associated to (22), proposed in Barmish (1983), given by

z k Fz k Gr k( ) ( ) ( )+ = +1

is quadratically stable, where F p p∈ℜ × ,  p=n+m,  and

the constant matrix G p m∈ℜ ×  are defined by:
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That is, if the set DF  is polyedral, there exists a matrix

W=WT >0, such that F WF Wi i
T − < 0 , i=1...N, and the

stabilizing gain of the closed loop system (23) can be

evaluated by K W WT= −
2 1

1 , where:
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with  W n n
1 0> ∈ℜ ×  and W n m

2 ∈ℜ ×  .

The above necessary and sufficient conditions guarantee
that the poles of Φ f  are allocated in the interior of the
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unity circle. Based on these concepts, the robust gain K
can be computed by the convex optimisation problem
proposed in Geromel et alii (1993).

Min Trace RW

s t v FWF W v

W
T T

( ( ))

. . ( )− < 0 (25)
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Consider the transfer function from w(k) to y(k) of the
closed loop system defined by:

H s C DK sI K S( ) ( )( ( ))= − − − −Φ Γ 1

The H2 norm of H(s) is defined in function of the
controlability Grammian, Lc, by:
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2
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L k SS kC f
k
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f
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The optimisation problem (25) constitutes na upper
bound for the H2 norm of the transfer function H(s).
Besides that, it is the LQR problem for the certain
systems (N=1). In this case, the cost function is
equivalent to:

J y k y kT

k

=
=

∞

∑ ( ( ) ( ))
0

where y(k)=Ce(k)+Du(k) and its minimisation is obtained
by the solution of the discrete Riccati equation.

5 SIMULATION RESULTS

This section presents the simulation results for an 1 Hp,
230/380V, 60Hz, 4 poles squirrel cage induction
machine, whose parameters are: Rs = 7 1. Ω , Rr = 58. Ω ,

L L mHs r= = 310 5. , M mH= 284 56. ,

J kgmm = 0 0038 2. and C Nms1 0 0015= . . The first step is
to characterize the plant variation in order to obtain the
model based on the parameter space. For this machine,
the parameters range are listed below, for the sampling
period h=2ms.

0 2707 05189 0 0784 0 0784

0 0080 05776 4 3379 0
1 8

2 9

. . . .

. . .

≤ ≤ − ≤ ≤
≤ ≤ − ≤ ≤

ϕ ϕ
ϕ ϕ

− ≤ ≤ − ≤ ≤
− ≤ ≤ ≤ ≤

4 3867 0 7447 14460 14460

14418 14 1454 0 0365 0 0402
3 10

4 1

. . . .

. . . .

ϕ ϕ
ϕ γ

00105 0 0106 4 0233 10 0 0146

0 0004 0 0004 0 9984

0 9596 0 9628 10518

5
6

2

6 11

7 1

≤ ≤ × ≤ ≤
− ≤ ≤ =

≤ ≤ = −

ϕ γ
ϕ ϕ

ϕ

. . .

. . .

. . .s

These intervals were stated by defining the machine
operating range restricted to ω ∈ [ , ] /0 380 rad s ,

ωs rad s∈ −[ , ] /40 40 , λqr ∈ −[ . , . ]05 05  and λdr ∈ [ , . ]0 15 .

The non-stationarity and the non-linearity of the discrete
time model are represented by the combination of the
extremes values of the above parameters.

A important computational aspect of the definition of the
optimisation problem is with respect to determining the
set of constraints. If all these variant matrix entries were
independent to each other, the generated set in the
parameter space would have 4096 vertices, what would
make the problem impracticable. However, this number
is much smaller once there are several correlated
elements. In order to exemplify such correlations,
consider ϕ i i, ,...,= 5 8  plots shown in Fig. 1. Note that

ϕ5  and ϕ7  as well as ϕ6  and ϕ8  have their maximum

and minimum points at the same value of ωs . This

characteristic and the consideration that ϕ5  and ϕ7  are

independent of  ϕ6  and ϕ8  reduce the total number of
vertices to be considered. Fortunately, using the same
treatment for the others parameters, it is found that only
16 vertices compose the polyhedral set which describes
the whole system and restricts the optimisation problem
(26).

Fig 1 - Parameters changes

The definition of the matrices
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C D=
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
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
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
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
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0 0 0 0 0
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0 0 0 0 0
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0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0
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0 0

1 0

0 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

,    and

S =

−























1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 10518.

determines the optimisation cost that leads to the
stabilizing gain

K = − − − ×
×













−

−
12 68 381 497 80 88 03 8 6 10

4 37 14 33 122 90 440 34 4 3 10

4

4
. . . . .

. . . . .

The root locus of the closed loop system (23),
considering the computed gain, is shown in the Fig. 2.
The robust gain guarantees the stability of the system all
over the specified operating range. The poles near to the
point (1,0) are due to the speed equation, while the ones
near to the origin of the z-plane are due to the electrical
equations. This pole placement determines a faster
dynamics for the electrical variables than that for the
mechanical ones. These characteristics are in accordance
with the conditions remarked at section 3.

Fig. 2 - Closed loop poles

The performance of the drive system can be evaluated
through figures 3 to 7.  Initially, the rotor flux reference,

λro
T= [ ]0 1 , is provided to the system, while the speed

reference is set to zero. The load torque is composed by
two components: one constant, set to 25% of the motor’s
rated torque while the other one is proporcional to the
shaft speed. Figures 3 and 4 show that the system

presents a good response to very slow speeds and that
vector control is reached once the rated rotor flux is
oriented to the direct axis. Still refering to figures 3 and
4, at instant 2 seconds, the speed reference is changed to
ωro rad s= 300 / . Note that the change in the rotor
speed does not cause any consirable transient in the rotor
flux orientation and the rotor speed reaches the desired
value with no errors.

Fig. 3 - Rotor speed

Fig. 4 - Rotor flux

The performance of the system in the presence of load
torque perturbation is shown in figures 5 to 7. Initialy, the
speed reference is ωro rad s= 300 /  and the rotor speed
is in steady state. Then, at the instant t=3s  a 100 %
increase  in the load torque is applied. As a response to
the external perturbation, the generated torque promptly
changes to try to keep the speed unaltered (figure 6) and
the speed is driven to its reference value (figure 5). It is
important to notice that the system dynamics to
disturbance  rejection depends on the dynamics of the
load torque estimation, given by equation (11), which is
discussed in remarks 1 and 4. In the present case, the
+100 % step in the load torque caused a –2 % deviation
in the shaft speed, which is a quite acceptable result.
Besides that, the influence of the perturbation in the rotor
flux orientation is very low, as shown in the figure 7.
These results demonstrate a good disturbances rejection.
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Fig. 5 - Rotor speed - Perturbed system

Fig. 6 - Electromagnetic Torque - Perturbed System

Fig 7 - Rotor Flux - Perturbed system

6 CONCLUSIONS
In this paper, a new proposal for induction machine
modelling and robust digital vector control was
presented. In this proposal, the non-stationarity and the
non-linearity of the system were absorbed by the
description of the parameters changes of a linear
uncertain system. This approach allowed the employment
of a robust controller synthesis by an H2 optimisation
method. The simulation results validate the proposal.

REFERENCES
Akagi, H., and A. Nabae (1986). High performance control

strategy of cycloconverter-fed induction motor drive

system based on digital control theory. IEEE
Transactions on Industrial Electronics, IE-33, 126-131.

Barmish, B. R. (1983). Stabilization of uncertain systems via
linear control. IEEE Transactions on Automatic
Control, AC-28, 848-850.

Ben-Brahim, L., and A. Kawamura (1992). A fully digitized
field oriented controlled induction motor drive using
only current sensors. IEEE Transactions on Industrial
Electronics, 39, 241-249.

Blaschke, F. (1972). The principle of field orientation as
applied to the new transvector closed loop control
system for rotating field machines. Siemens Review, 39,
217-220.

Bottura, C. P., J. L. Silvino and P. Resende (1993). A flux
observer for induction machines based on a time-variant
discrete model. IEEE Transactions on Industry
Applications, 29, 349-354.

Bottura, C. P., S. A. Augusto Filho and J. L. Silvino (1996). H2
robust digital vector control for the induction machine.
IEE Proceedings Control Theory Applications, 143,
237-243.

Colaneri, P., Geromel, J. C. and Locatelli, A. (1997). Control
Theory and Design, an RH2 and RH∞ viewpoint,
Academic Press, New York.

Geromel, J. C., P. L. D. Peres and J. Bernussou (1991). On a
convex parameter space method for linear control
design of uncertain systems. SIAM Journal of Control
and Optimization, 29, 381-402.

Geromel, J. C., P. L. D. Peres and S. R. Souza (1993). H2
guaranteed cost control for uncertain discrete-time
linear systems. International Journal of Control, 57,
853-864.

Hasse, K. (1969). On the dynamics of speed control of a static
AC drive with a squirrel-cage induction machine. Ph. D.
Dissertation, Techn. Hochschule Darmstadt.

Horisberger, H. P. and Belanger, P. R. (1976). Regulators for
linear, time invariant plants with uncertain parameters.
IEEE Transactions on Automatic Control, 21, 705-708.

Kao, Y. T., and C. H. Liu (1992). Analysis and design of
microprocessor-based vector controlled induction motor
drives. IEEE Transactions on Industrial Electronics, 39,
46-54.

Krause, P. C. (1986). Analysis of electric machinery, McGraw-
Hill, New York.

Liaw, G. M., and F. J. Lin (1994). A robust speed controller
for induction motor drives. IEEE Transactions on
Industrial Electronics, 41, 308-315.

Murata, T., T. Tsuchiya, and I. Takeda (1990). Vector control
for induction machine on the application of optimal
control theory. IEEE Transactions on Industrial
Electronics, 37, 283-290.

Novotny, D. W. and Lipo, T. A. (1995). Dynamics and control
of induction motor drives, Clarendon Press, Oxford.

Vainio, O., S. J. Ovaska and J. J. Pasanen (1992). A digital
signal processing approach to real time AC motor
modelling. IEEE Transactions on Industrial
Electronics, 39, 36-45.

Zhou, K., Doyle, J. C. and Glover, K. (1996). Robust and
Optimal Control. Prentice Hall, New Jersey.


	INTRODUCTION
	THE INDUCTION MACHINE MODEL
	SPEED CONTROL
	ROBUST DISCRETE CONTROLLER
	SIMULATION RESULTS
	CONCLUSIONS

