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Resumo: Os métodos não-lineares Primal-Duais de Pontos
Interiores têm sido reconhecidos como ferramentas numéricas
de grande potencial para resolver problemas de otimização
restritos em sistemas de potência elétrica. Atualmente, novas
versões deste algoritmo têm sido propostas na área da
programação matemática. Neste trabalho, é analisada a
aplicação do algoritmo de Máximo Passo na Trajetória Central
ao problema de Fluxo de Potência Ótimo. O algoritmo
utilizado propõe uma trajetória de busca próxima ao caminho
central para atingir a solução ótima. Testes com sistemas reais
são utilizados para analisar o comportamento da metodologia
proposta.

Abstract: Nonlinear Primal-Dual Interior Point methods have
been recognized as a numerical tool of great potential to solve
constrained optimization problems in electric power systems.
Recently, a number of versions of the primal-dual Interior
Point algorithm have been proposed in the area of
mathematical programming. In this work, the application of the
Largest-Step Central-Path algorithm to the Optimal Power
Flow problem is analyzed. This algorithm is based on
following a central trajectory to reach the optimal solution.
Tests with real systems are used to assess the performance of
the proposed methodology.
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1 INTRODUCTION

The real time Optimal Power Flow (OPF) aims at optimizing
the power system operation in steady state, preventing
violations in the operational limits (Ramanathan, 1996). The
OPF is a nonlinear problem of static optimization, with both
equality and inequality restrictions. In the last three decades,
many nonlinear programming methods have been used in the
solution of OPF problems, resulting three classes of approach:
a) extensions of the conventional power flow method (for

example, Dommel and Tinney, 1968). In this type of approach,
a sequence of optimization problems is alternated with
solutions of the conventional power flow; b) direct solution of
the optimality conditions for Newton's method (Sun et alii,
1984). In this type methodology, the approximation of the
Lagrangian function by a quadratic form is used, the inequality
constraints being handled through penalty functions. In spite of
the good theoretical characteristics of convergence, the
manipulation of the inequalities via penalty functions is not
efficient; and c) by Interior Point algorithms, approach used in
the present work, which is described as follows.

The Interior Point method (El-Bakry et alii, 1996) has been
extensively used in both linear and nonlinear programming.
Many research works have been devoted to the study of its
characteristics and applications in optimization problems. In a
recent past, the solution of the OPF problem through Interior
Point methodologies was proposed. These approaches
(Granville, 1994; Wu et alii, 1994; Wei et alii, 1998) show the
potential of the Interior Point method to deal with the
inequality constraints in large-scale optimal power flow
problems.

With respect to the optimization algorithm, some alternative
versions of the primal-dual Interior Point algorithm have been
developed. The main modifications exploit the characteristics
of the path to the optimal solution, to improve the robustness
and/or the convergence speed. One of the versions more
frequently used in the OPF is the Predictor-Corrector Interior
Point method, proposed for linear programming by Mehrotra
(1992). This algorithm aims at reducing the number of
iterations to the convergence, estimating the “need” of the
centralization in the trajectory to the optimal solution (Wu et
alii, 1994; Wei et alii, 1998, Castronuovo et alii, 2000).

In the present work, the Largest-Step Central-Path algorithm is
applied to solve the OPF. This method is based on centralizing
the trajectory to the optimal solution, to increase the robustness
of the methodology. This optimization algorithm was proposed
in references (Gonzaga and Bonnans, 1996) and (Gonzaga,
1997) for linear complementary problems. The application of
this strategy to the nonlinear OPF is analyzed in the following
sections.
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The analysis of the performance of the Largest-Step Central-
Path algorithm is based on the results obtained for three test
systems (IEEE 30, 57 and 118 buses) and two real networks,
equivalent to the South-Southeastern Brazilian (SSB) power
system (176 and 352 buses).

2 MATHEMATICAL FORMULATION

Suppose a general optimization problem represented by

Min.          f(x) (1.a)

s. t.           h(x)=0 (1.b)

                 g(x) ≤ 0 (1.c)

where, x is the vector of optimization variables; f(x) represents
the performance index to be optimized;  h(x)  and g(x) are the
equality and inequality constraints, respectively.

The optimality conditions of Karush-Kuhn-Tucker (KKT) for
problem (1) are expressed in equations (2).

∇ xL(x,λh,λg) = 0 (2.a)

h(x) = 0 (2.b)

g(x) ≤ 0 (2.c)

[λg] g(x) = 0 (2.d)

λg ≥ 0 (2.e)

where,∇ xL(x,λh,λg)=∇ xf(x)+∇ xh(x) λh +∇ xg(x) λg is the vector
of first derivatives of the Lagrangian function with respect to
the variables x; λh and λg are the Lagrange multipliers of the
equality and inequality constraints, respectively; and [..]
denotes a diagonal matrix with the variables considered.

In the iterative process based on Interior Points methods, two
modifications of the KKT conditions are proposed (El-Bakry et
alii, 1996): the conversion of the inequalities (2.b) in equalities
by using the slack variables s > 0, and the perturbation of the
complementarily equations (2.d) through the parameter µ. The
new set of equations is

∇ xL(x,λh,λg) = 0 (3.a)

h(x) = 0 (3.b)

g(x) + s = 0 (3.c)

[λg] s - µ e = 0 (3.d)

(s, λg , µ) ≥ 0 (3.e)

where, µ is called the parameter of perturbation; and e is the
unitary vector [1,...,1]t.

The solution of the nonlinear equations (3) is obtained through
Newton’s method. At each iteration, the increments in the
primal and dual variables are determined in two steps
(Granville, 1994). In the first, the corrections ∆x and ∆λh are
evaluated by solving the reduced set of linear equations
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In the second step, the increments in the slack variables and
corresponding multipliers are obtained by
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In order to assure the non-negativity of s and λg, two step sizes
are used to update the primal and the dual variables
respectively (equations 7) (Granville, 1994).
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where the factor 0.99995 assures that constraint (3.e) is
satisfied.

The primal and dual variables for the following iteration are

xk+1 = x + αp ∆x (8.a)

sk+1 = s + αp ∆s (8.b)

λh
k+1 = λh + αd ∆λh (8.c)

λg
k+1 = λg + αd ∆λg (8.d)

At each iteration, the parameter of perturbation (µ) is gradually
reduced to zero, such that at the final solution the KKT
conditions expressed by equations (2) and (3) are equivalent. In
the present work, the parameter of perturbation µ is evaluated
as suggest in (Gonzaga, 1994), through of the primal-dual
distances to the optimal point, measured in the
complementarily restriction. This value is dependent on a
parameter σ, as expressed in equation (9).
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where, σ is the so-called parameter of the direction
combination; µ̂ is the complementarily condition average

distance; and niq is the number of inequality constraints.

3 DETERMINATION OF THE DIRECTION
COMBINATION PARAMETER

The distance between a point of the search direction and the
current solution (measured in the complementarily equations)
is unique ( µ̂ ). Therefore, σ is the parameter that actually

determines the perturbation used in the complementary
equation (3). Thus, the shape of the trajectory followed to find
the optimum is defined by the parameter σ.

The meaning of the parameter σ can be understood, by
observing that the right side of equations (4) and (6) are
affected by the parameter of perturbation µ, which is in turn
dependent on the parameter σ. With respect to the value of σ,
two cases must be analyzed:

•  σ = 0, which corresponds to the so-called affine-scaling
direction. If only the affine-scaling direction is used along
the iterative process, the search for the optimal point can
be interpreted as the simple non-perturbed solution of the
KKT conditions;

•  σ = 1, which results in the so-called centralization
direction. In this case, a perturbed set of nonlinear
equations witch does not correspond to the KKT
conditions of the original problem is solved. Therefore, if
only the centralization direction is used in the iterative
process, a non-optimal solution is founded, without
appreciable diminution in the initial value of µ.

The value of σ between these limits represents a linear
combination of the affine-scaling and the centralization
directions. To decrease the value of µ during the iterative
process, it is necessary that 0 < σ <1, as suggested in El-Bakry
et alii (1996). Note that in the conventional Interior Points
method, σ is a value pre-determined by the user, and constant
during the iterative process. That is, the linear combination of
the direction is constant along the search.

Based on the principle of the superposition, it follows that the
Newton steps (4) and (6) satisfies equation (10).

 (∆x, ∆s, ∆λh, ∆λg) = σ (∆xc, ∆sc, ∆λh
c, ∆λg

c) +
(1-σ) (∆xa-s, ∆sa-s, ∆λh

a-s, ∆λg
a-s) (10)

where (∆xa-s, ∆sa-s, ∆λh
a-s, ∆λg

a-s) and (∆xc, ∆sc, ∆λh
c, ∆λg

c) are
the solution of equations (4) and (6) in the present iteration,
with σ=0 and σ=1, respectively.

It can be noted from (10) that, depending on the value of σ at
each iteration, there is an infinity of search paths that leads to
the optimal point. A point (x, s, λg) rely in the central path if it
satisfies the equations (3.c), (3.e) and [λg] s = µ̂  e. However,

this point is at a distance δ from the central path if it satisfies
equation (11).
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where ...  represents the Euclidean norm.

The Largest-Step Central-Path algorithm allows searching the
optimal solution through a trajectory close to the central path.
In the next iteration, the point must be at a pre-specified
distance δ of the central path (Gonzaga, 1997). For this
purpose, σ is calculated in order to satisfy the equation (12).
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The steps αp and αd are evaluated after the determination of the
search direction. Therefore, in the σ calculation, equation (12)
can be approximated by expression (13).

(xk+1, sk+1, λh
k+1, λg

k+1) ≅  (x, s, λh, λg) +

(∆x, ∆s, ∆λh, ∆λg) (13)

Consequently, the primal-dual product is expressed as

(λg
k+1)t sk+1 = (λg)

t s + (λg)
t ∆s + (∆λg)

t s + (∆λg)
t ∆s

(14)

The substitution of equation (6.b) in (14) and (12), results in
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The replacement of the values of ∆s and ∆λg by those obtained
from the equation (10) provides
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where ε > 0 is the pre-specified value of distance to the central
path in the next iteration, in units of µ.

The control over the value of ε allows modifying the proximity
of the search trajectory to the central path. In optimization
problems with low degree of convexity, a trajectory closer to
the central path is generally required. This implies in a
compromise between the convergence speed and the
robustness.
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 For a pre-specified value of ε, the only variable of (16) is σ.
Therefore, σ is obtained by solving a quartic equation. The
value of σ can be determined through a bisection scheme. This
provides the largest root of (16) in the interval 0 <σ <1. In
some circumstances, there are not real roots in this interval. In
these cases, the value σ = 0.1, similarly to the conventional
primal-dual Interior Point Method, can be taken.

The calculation of two directions (affine-scaling and
centralization) at each iteration does not request a high
additional computational effort. Since the value of σ only
affects the right side of the linear system, each direction is
obtained through a backward-forward substitution after the
linear system factorization. High Performance Computation
Techniques can be efficiently used in order to reduce the cpu-
times corresponding to the solution of the linear system, as
showed in Castronuovo et alii, 1998 and 1999.

The Largest-Step Central-Path algorithm can be summarized in
the following algorithm.

LARGEST-STEP CENTRAL-PATH ALGORITHM

Data: ε > 0, (x0, λh
0), (s0, λg

0) > 0
DO

Affine-Scaling Direction: Solve equations (4) and (6) for
σ = 0, obtaining (∆xa-s, ∆sa-s, ∆λh

a-s, ∆λg
a-s).

Centralization Direction: Solve equations (4) and (6) for
σ = 1, obtaining (∆xc, ∆sc, ∆λh

c, ∆λg
c).

Bisection Scheme: Find the largest root in the 0 < σ <1
interval, that satisfies equation (16).

Direction Combination: Solve equation (10).

Actualization of the Variables: Solve equations (7), (8)
and (9).

Convergence Test: Evaluate the convergence tolerances
in (µ,∇ xL(x,λh,λg), h(x)).

END DO

4 RESULTS

In this section, the results of the application of the Largest-Step
Central-Path algorithm to the OPF problem are shown. In order
to observe the robustness of the proposed methodology with
respect to the convexity of the objective function, two
performance indexes were considered. In the first, the
minimum price of the active power generation is sought, with
the generation prices represented by quadratic curves. In the
second, the minimization of a reference bus active power
injection with the power injection of the other buses fixed in a
pre-specified value is proposed.  In both cases, the equality
constraints are the power balance equations and the inequality
constraints are the limits in the active and reactive power
generation and the bus voltage magnitude. The optimization
variables are the bus voltages and the active power generation.

The tolerance for the power mismatches, the right-side vector
and the parameter of perturbation (µ) for convergence is 10-6.
The pre-specified distance to the central path is ε = 3.0. The
algorithm was implemented in Fortran 90 and the numerical
results were obtained in a computer Pentium II 400Mhz with

128Mb of Ram memory. To assess the performance of the
proposed algorithm, three IEEE test systems (30, 57 and 118
buses) and two Brazilian South-southeast (SSB) real systems
(of 176 and 352 buses) were used. The main characteristics of
these networks are show in the Table 1.

Table 1
Characteristics of the Test Systems

IEEE 30 IEEE 57 IEEE 118 SSB 176 SSB 352

Branches 41 78 179 196 385

Generators 6 7 34 30 30

In the Table 2, the results of the applications of the Largest-
Step Central-Path and the Interior Point algorithms are
presented. The latter algorithm was implemented in its
conventional form, as formulated in the  section  2   (with σ =
0.1).

Table 2
Minimum Price of the Active Power Generation.

Number of Iterations and Computational Times (seconds).

Interior Point Largest-StepTest

System Iter. Time Iter. Time

IEEE 30 10 0.21 10 0.27

IEEE 57 12 0.59 12 0.71

IEEE 118 16 2.18 18 2.75

SSB 176 16 1.63 18 2.03

SSB 352 16 3.20 18 4.48

From Table 2, the solution of the optimization problem by the
Largest-Step Central-Path algorithm requires cpu-times larger
(average of 26%) than to those obtained with the conventional
Interior Point algorithm. There are two main reasons for this:
the increase in the number of iterations for the largest systems
and additional operations at each iteration. The increase in the
number of operations fundamentally results from the additional
backward-forward substitution requested by the Largest-Step
Central-Path algorithm in the calculation of σ. The
computational times to the convergence of the Largest-Step
Central-Path algorithm are slightly larger than those obtained
with the conventional Interior Point algorithm.

In Fig. 1, the some indexes related to the iterative process of
the Largest-Step Central-Path algorithm are shown, for the
system SSB 352 buses.
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The values of µ are shown in Figure 1.a. The sudden changes
in the value of µ are due to variations in the value of σ (Fig.
1.b). The Largest-Step Central-Path algorithm searches for a
direction close to the central trajectory, determining the value
of σ such as to ensure the expected proximity ε. This algorithm
combines the centralization and the affine-scale directions,
calculating an appropriate value of σ in terms of the proximity
at the central path. From Figure 1.b, it can be observed that at
the first iterations the algorithm does not obtain the previously
defined distance, and thus uses a pre-specified value of σ (in
this work, 0.1). In the following iterations, the value of σ that
assures the expected proximity to the central path is obtained.

Fig. 2: Distances to the Central Path, in units of µµµµ.
SSB 352 - (semi-logarithmic scale)

Figure 2 shows the distances between the search trajectory and
the central path for both the Largest-Step Central-Path and the
conventional Interior Point algorithms. The distances are
expressed in terms of the Euclidean norms. It is observed in
this figure, the trajectory to the optimal solution obtained with
the conventional Interior Point algorithm does not result in
minimum distances to the central path. In reality, this
trajectory, at any iteration, is considerably far from the central
trajectory. On the other hand, the Largest-Step Central-Path
algorithm is effective to guarantee the pre-specified distance.
At the first iterations, the algorithm does not find an
appropriate σ and thus, follows the path of the conventional
Interior Point method. At the subsequent iterations, the
algorithm follows a trajectory as central as previously
specified. In Fig. 2, measures of the distances for two values of
ε (3.0 and 1.5) are shown. The centralization characteristic of
the algorithm results in a number of iterations, which is
dependent on the specified value of ε.

To test the Largest-Step Central-Path algorithm in problems
with low convexity characteristics, a loss reduction problem is
proposed. The objective is the minimization of the active
power generation in a reference bus, with pre-specified active
powers in the other generation buses. The solution space of the
problem is modified by reducing the intervals of variation of
the active powers around pre-specified values. In the present
case, the pre-specified active generation is the optimal solution
of the OPF, and the adopted variations are ±0.1 p.u. In Table 3,

the number of iterations and the cpu-times for this problem are
shown.

Table 3
Minimization of the Active Power Losses.

Number of Iterations and Computational Times (seconds).

Interior Point Largest-StepTest

System Iter. Time Iter. Time

IEEE 30 11 0.22 10 0.22

IEEE 57 11 0.55 9 0.52

IEEE 118 10 1.32 8 1.30

SSB 176 11 1.05 9 0.98

SSB 352 10 2.12 8 1.98

The number of iterations of the conventional Interior Point
method in this case are generally lower than those obtained in
the minimum cost problem. This is due to the reduction in the
number of the variables of the first problem. In this second case
only the active power generation in the reference bus can be
effectively changed. The small interval of variation of the other
active power generation buses reduces the convexity of the
solution space, emphasizing the efficiency of the Largest-Step
Central-Path algorithm. From Table 3, it is observed that the
centralization ability of this algorithm results in a number of
iterations and cpu-times lower than those obtained with the
conventional Interior Point method. In Fig. 3, the distances at
the central path for both algorithms are shown, for the SSB 352
network.

Figure 3 shows that the Largest-Step Central-Path algorithm
has the ability of maintaining a pre-specified distance of the
central path. For ε =1.5, the proposed algorithm request five
iterations to find an adequate combination between the affine-
scale and the centralization directions. Afterwards, the
algorithm follows a pre-specified  distance  to  the  central
path. For ε =3.0, only in the first and in the third iterations a
direction combination witch provides the pre-specified distance
is not obtained. This gives an idea about the efficiency of the
Largest-Step Central-Path algorithm in low convexity
problems.

5 CONCLUSIONS

The conventional nonlinear Interior Point method search for
the optimal solution maintaining a variable distance between
the current solution and the central path.  A new version of this
method, the Largest-Step Central-Path algorithm, allows the
monitoring of this distance, providing the possibility of
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increasing the robustness of the Interior Point method.
Although in some cases the speed of the convergence becomes
compromised, the search along the central trajectory can be
more suitable if optimization problems with low degree of
convexity are considered.

The application of the Largest-Step Central-Path algorithm to a
nonlinear OPF problem shows the efficiency of this method.
Tests performed with real systems, shown the potential of the
proposed algorithm.
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