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Abstract: This paper focuses a methodology to determine
corrective adjustments in the electric network when the steady
state power system equations have no real solution. Generally,
this happens if the system is heavily loaded and/or if a severe
contingency occurs. The proposed methodology is a version of
the Newton optimization method with step length control. The
summation of the squared active and reactive power
mismatches is used as the cost function. The efficiency of the
proposed strategy is assessed with five power systems, the
IEEE 14, 30 and 118 buses and two real networks of 749 and
1916 buses equivalent to the Brazilian South-Southeastern
power system.
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1 INTRODUCTION

Under critical load conditions, the solutions of power flow
equations coexist in a saddle node bifurcation (Dobson, 1992;
Taylor, 1994). In this point, the system has a trend to both
voltage instability and loss of the system steady state stability.
If the load level is higher than the critical load, the power flow
equations have no real solution, that is, the traditional methods
(Newton-Raphson method, for instance) fail to find a power
flow solution. This generally happens if the active and reactive
loads reach too high levels or if a stressed system is submitted
to a contingency. In this situation, the availability of efficient
numerical tools to determine the modifications in the load is
essential to restore the solution of the power flow equations.

From the point of view of solvability, the set of power flow
solutions can be divided into two regions of the parameter
space (Wu et alii, 1988; Mercede et alii, 1988; Alvarado et alii,
1991):

• Solvable region - is a set of operating points for which
the power flow equations have real solutions. If the operation

limits are satisfied the system is said to be in the normal state.
If operation limits are violated the system is considered to be in
the emergency state. Usually, it is possible to operate the
system in the latter state for a short period of time.  In the
solvable (feasible) region the power flow equations have two
solutions, only one of which is usable for power system
operation.

• Unsolvable region - is a set of points for which the
power flow equations have no real solutions. Naturally, it is not
possible to operate the power system in this region.
Nevertheless, if adequate changes in the controls are
performed, the solution of power flow equations can be
restored. Since many power systems operating close to the
maximum loadability have been subject to these conditions, the
development of methodologies to restore the solvability of the
power flow equations has become essential in the power
system steady state analysis.

The solvable and unsolvable regions are separated by a
surface, denoted here by Σ, as in Overbye (1994), which can be
interpreted as the boundary of the solvable and unsolvable
regions. On this surface, there is only one solution for the
power flow equations. This means that the two solutions of the
solvable region vanish in a saddle node bifurcation, the system
being subject to voltage instability.

Review of the power system literature shows that some
attention has been given to this subject. In Overbye (1994) and
Overbye (1995) is proposed the computation of a measure of
the unsolvability with corresponding determination of the
changes in the power system variables to restore the solution of
the network equations. This method is based on both the load
flow in cartesian coordinates with step length control (Iwamoto
and Tamura, 1981) and the use of the left eigenvector
associated with zero eigenvalue of the singular Jacobian matrix
(Dobson and Lu, 1992). In Granville et alii (1996) a method to
restore the solvability of the load flow equations based on
optimization techniques is presented. The Primal-Dual Interior
Point Method is used, with the minimum load shedding as the
cost function. While in Overbye (1994) and  Overbye (1995)
only the constraints in the reactive power generation are
modeled (recall that this approach uses the traditional power
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flow algorithm), in Granville et alii (1996) it is possible to
model any operation constraint (active and reactive power
generation limits,  voltage magnitude limits, line flow limits,
etc).

This paper presents an approach to solve the problem of the
power flow solvability based on the combination of the
simplicity of the steady state network equations with the
efficiency of the Newton optimization method. The proposed
methodology requires less computational effort as that of the
methodologies in which the whole set of operational
constraints is modeled (Interior Point based methods, for
instance). Similarly to Overbye (1994) and Overbye (1995), in
the proposed approach only the reactive power generation
constraints are modeled. Once an initial solution is obtained,
the violations in the other inequality constraints could be
removed through conventional security analysis methods. The
main feature of the proposed approach is the use of the Newton
optimization method to find the least squares of the summation
of the power flow mismatches. From the point of view of
formulation of the constraints, this approach has the advantage
of allowing the modeling of null injection buses and/or buses
where the scheduled load must be rigorously satisfied.

This paper is organized as follows. First, the Newton
optimization method is revised. Next, the problem least sum of
squares of the power flow mismatches is formulated in terms of
the power system variables. Finally, the proposed corrective
strategy is assessed through the results obtained  with 14, 30
and 118-bus network and two real systems with 749 and 1916
buses, equivalent to the Brazilian South-Southeastern power
system.

2 NEWTON OPTIMIZATION METHOD

The optimization problem with equality constraints can be
stated as (Sun et alii, 1984)
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where f(x) is the objective function;
g(x) is the vector of the equality constraints;
x is the vector of the optimization variables.

The Lagrangean function corresponding to the equality
constrained problem (1) is (Gill et alii, 1981; Luenberger,
1984)
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where λλλλ is a vector with the Lagrangean multipliers.

The application of the first order optimality conditions to
equation (2) provides
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The solution of the nonlinear equations (3) and (4) can be
obtained through the Newton-Raphson method (Björck, 1990).
At each iteration the following linear system is solved:
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In matrix notation, the linear system of equations (5) and (6)
can be written as
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The linear system of equations (7) is large but with a high
degree of sparsity, such that special techniques must be
employed to factorize its coefficient matrix.

The new estimates of the optimization variables are
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It is well known that the Newton method depends on how close
the initial estimate is to the final solution. However, the
evaluation of an adequate initial solution rarely is an easy task.
Frequently, it is necessary to use other techniques in addition to
the Newton method, to obtain fast and secure convergence of
the iterative process. In the following section  this aspect is
discussed in details.

3 PROPOSED METHOD

The problem of restoring the solvability of the power flow
equations can be stated as the minimization of the summation
of the squares of the power flow mismatches subject to equality
constraints, that is
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where f(x) is the vector of the active power mismatches in
PQ and PV buses and reactive power mismatches in PQ buses;
g(x) is the vector of the active and reactive power mismatches
in buses whose demand must be rigorously satisfied.
Economical and technical criteria can be used to choose the
components of the vector g(x). For instance, null injection
buses compose the g(x) vector for technical reasons.

Therefore, the first order optimality conditions for problem (9)
are
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The submatrix W(x, λλλλ) in equation (5) is given by
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The convergence of the iterative process is dependent on the
initial estimates of the optimization variables. If the initial
point is close to the final solution, the  convergence is fast.
Otherwise, the iterative process can have slow convergence or
may even diverge. In order to improve the search for the
optimal solution in the beginning of the iterative process, a
Gauss-Newton direction is used in the first iterations. This
implies in  neglecting  the second order term H(x, λλλλ) in
equation (13), that is

)()]([) ,( xxx FFW T=λλλλ (14)

At the subsequent iterations, Newton direction is used until the
convergence is obtained. This strategy is based in the following
observations:

• If the power flow equations have real solution, the
minimum value of the objective function is zero, that is,
fi(x) = 0, i = 1, 2, ..., n. Since at the optimal point the
first order optimal conditions are satisfied, it can be
concluded, from equation (10), that all components of
vector λλλλ are zero. Therefore, in equation (12) the
summations become zero, and thus the submatrix W(x,
λλλλ) is just [F(x)]T F(x).

• In the optimization problem considered here, the
coefficient matrix in equation (7) is not positive
definite. This means that the movement in the Newton
direction does not necessarily decrease the value of the
Lagrangean function.

• Rigorously, the second order terms should be included
in W(x, λλλλ) during the complete iterative process.
Nevertheless, in the case of high load levels, it is not
possible to envisage if the power flow equations have
real solution. Besides, in the solvable region the use of
the Gauss-Newton direction results in a faster
convergence to the optimal solution. Therefore, it is
reasonable to combine these two directions, to obtain
faster convergence.

In the present approach the reactive power generation limits are
modeled as in the conventional power flow. At each iteration,
these limits are verified. If the limit is violated, the PV bus is
converted to PQ bus, and a new coefficient matrix and the
gradient vector of the Lagrangean function are computed.
Aiming at improving the iterative process, the modeling of
reactive power generation limits requires the use of a step
length control. Here, a strategy based on linear search is
applied to calculate the step length. This technique consists of
determining a scalar α, called step factor, so that the
Lagrangean function value has a reasonable decrease at each
iteration of the iterative process. The corrections of the
optimization variables and Lagrange multipliers are given by
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where 0 < α ≤ 1.

4 LEFT EINGENVECTOR AND OPTIMAL
POINT

The solution of the optimization problem expressed by
equation (9) provides the optimal direction in the parameter
space, in which the load curtailment must be done to restore the
power flow solvability. In this direction, the smallest distance
between the scheduled loading and the largest loading that can

be supplied by the energy system is found. At convergence, the
iterative process provides the left eigenvector associated with
the zero eigenvalue of the singular Jacobian matrix of the
conventional power flow. This can be seen from the first order
optimality condition, equation (10). Let x∗  and λλλλ∗  be the values
at optimal solution. Hence
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This equation can be rewritten as
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Note that [F(x∗ )T  G(x∗ )T]T is the Jacobian matrix of the
conventional power flow at the optimal solution. Therefore,
[f(x∗ )T  (λλλλ∗ )T] is more than the left eigenvector associated to
zero eigenvalue of the singular Jacobian matrix. This vector
defines the magnitude and direction in which the load must be
curtailed to bring the power flow equations to the solvable
region. In Dobson and Lu (1993) it is showed that the direction
of the left eigenvector of the zero eigenvalue of the singular
Jacobian matrix is parallel to the direction of the normal vector
to the surface Σ at optimal solution. Figure 1 illustrates this fact
for a hypothetical system composed of two buses.

Figure 1. Relation between left eigenvector and normal
vector in a hypothetical system.

Note in Figure 1, that the vector normal to the surface Σ at
optimal solution points outward at the solvable region. Since
the left eigenvector corresponding to zero eigenvalue of the
Jacobian matrix has the same direction as the normal vector,
the opposite direction can be used to realize load curtailments
to restore power flow solvability.

Although the load curtailment based on the left eigenvector is
theoretically possible, in realistic cases there are some
difficulties to do so because this curtailment involves null
injection buses, where any load curtailment is not possible.

5 NUMERICAL RESULTS

To assess the performance of the proposed methodology, tests
with power systems of different sizes, ranging from 14 to 1916
buses (including two real networks), were performed. In this
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section, some general results for all systems and detailed
results for a real network are shown. These results were
obtained in a Pentium II, 300 MHz computer with 128 Mb of
RAM. Three aspects were analyzed: the convergence of
Newton’s algorithm, the quality of the solutions in terms of
load shedding and the performance with respect to the
methodology proposed in Overbye (1994). These aspects are
discussed in the following subsections.

5.1 Analysis of the Convergence

The study of the convergence of the proposed methodology
was based on two points: the use of the Gauss-Newton (G-N)
direction at the initial iterations and the application of a step
length control. Both  strategies aim at increasing the robustness
of the algorithm. Tests with five power systems were
performed: the IEEE 14, 30 and 118 buses and two reduced
power networks of the Brazilian South-Southeastern region.
The first of these real networks have 749 buses, 1275
transmission lines and 87 generators, whereas the second has
1916 buses, 2788 transmission lines and 153 generators. Table
1 shows the type of tests realized and Table 2 summarizes the
general features of the convergence. In Table 2, ‘nc’ means non
convergent and the number in parenthesis is the number of the
G-N iterations.

Table 1. Type of tests.
Strategy

Test G-N direction Step length

A no no

B yes no

C no yes

D yes yes

Table 2. Convergence process for the tested systems.
System Test A Test B Test C Test D

14 8 5   (2) 8 7   (2)

30 7 6   (3) 7 6   (3)

118 nc 7   (2) 13 9   (2)

749 nc 10   (5) nc 10   (5)

1916 nc nc nc 11   (5)

With respect to Table 2, the following must be remarked:

a) if the G-N direction is not used, convergence is obtained
only for the 14 and 30 buses power networks. In the
case of the 749 and 1916 bus power systems, this
strategy is essential for obtaining convergence;

b) for all tested systems the step length control has
influence on convergence. It is observed that, if the
convergence is reached without using the step length
control, the use of this strategy could result in an
increase in the number of iterations (see columns 3 and
5 of Table 2). In case of the 118 buses power system the
simple use of the step length control provides the
convergence. In case of the 1916 bus power network,
the use of the step length control is essential for
obtaining convergence;

c) both strategies can improve the convergence
performance.

Tables 3 and 4 show in detail the influence of the G-N
direction and the step size control on convergence for the 749
bus power system. From these tables, it is observed that the use

of the G-N direction can improve the convergence features of
the iterative process. However, the increase in the number of
G-N iterations does not necessarily imply in improving the
convergence characteristic of the complete process. Note that if
the number of G-N iterations increases from 5 to 6, the worst
case of convergence is obtained.

Table 3. Convergence for test B in 749-bus system.
G-N

iterations
1 2 3 4 5 6

Total
iterations

nc 11 12 10 10 14

time
(sec)

3.41 3.52 2.91 2.86 3.79

Table 4. Convergence for test D in 749-bus system.
G-N

iterations
1 2 3 4 5 6

Total
iterations

nc 9 8 9 10 11

time
(sec)

3.02 2.64 2.91 3.02 3.13

From Table 3, the best feature of convergence corresponds to
the cases in which 4 or 5 G-N iterations are used. Although the
total number of iterations for convergence is the same in both
cases (10 iterations), a small difference is noticed in terms of
computing time. This is due to the number of Newton iterations
performed. That is, if 4 (or 5) G-N iterations are used, 6 (or 5)
Newton iterations are required for reaching the final solution.
It must be pointed out that the computational effort required for
a Newton iteration is greater than that corresponding to the G-
N iteration.

From Tables 3 and 4, it is observed that in this case the use of
the step length control generally reduces the number of
iterations, and therefore the computing times. It is also
observed that from the point of view of convergence, the best
result is obtained by using 3 G-N iterations and step size
control (Table 4).

5.2 Analysis of the Solutions

The solutions obtained through the proposed methodology
were analyzed from two points of view: the amount of satisfied
demand (or  load shedding) and the number of buses chosen for
load curtailment. Two situations were considered: 1) the load
of every bus is subjected to curtailment; 2) buses of a specified
region are guaranteed to have their load satisfied.

Table 5 presents the results for the 749-bus system, whose total
demand is 27,464.50 MW and 10,239.68 MVAr. For this load
level there is no real solution for the power flow equations. For
technical reasons, this system has 307 buses in which the
power injection must be assured. In Table 5, ‘ngi’ corresponds
to the number of buses whose demand is guaranteed and ‘npq’
is the number of buses subject to load shedding. Besides, Psatisf

and Qsatisf are the satisfied active and reactive power load,
respectively, in real values and percentage of total load. From
this table, it can be observed that:

a) if the load of all buses is available for curtailment (case
1), the total load shedding has the largest value. This is
due to the nature of the objective function. The
optimization process tends to attribute load curtailment
to every bus, which results in a large amount of load
shedding;
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b) if the load of the buses of a given region is guaranteed
to be satisfied (cases 2 and 3) it is noted that the total
amount of satisfied load increases (columns 2 and 3);

c) furthermore, from columns 3 and 4 of this table, it is
observed that the greater the number of buses with
guaranteed power injection (the smaller the number of
buses with demand subject to load shedding) the larger
is the total amount of satisfied load.

Table 5. Results for 749-bus system.

Case
Psatisf

MW and %
Qsatisf

MVAr and %
ngi npq

1
26,686.37
97.17%

9,971.44
97.38%

307 355

2 26,791.31
97.55%

9,994.41
97.60%

394 268

3 26,975.89
98.22%

10,058.12
98.23%

566 96

5.3 Accuracy of the Solutions

In order to have an  idea about the accuracy of the solutions
determined with the proposed methodology, these were
compared to those obtained through the approach proposed in
Overbye (1994). Two aspects were observed: the total amount
of satisfied demand and the index, suggested in Overbye
(1994), representing the distance from the best solution to
schedule load. This index is defined by

])([])([ SxfSxf −−= bTbd (19)

where xb is the best solution supplied by the algorithm;
S is the scheduled demand.

Table 6 illustrates the results obtained through these two
techniques. It can be observed that, in terms of the two
amounts considered, the solution determined with the proposed
methodology is as accurate as that obtained through the
technique proposed in Overbye (1994). A detailed analysis of
the results reveals that the load curtailment at each bus
suggested by these two methodologies is also similar. This
shows the satisfactory level of accuracy of the solutions
provided by the proposed approach.

Table 6. Numerical accuracy of the proposed method.

Methodology
Psatisf

(MW)
Qsatisf

(MVAr)
d

Proposed 26,343.06 9,817.03 0.7192

Overbye 26,348.83 9,815.30 0.7192

6 CONCLUSIONS

Corrective solutions for the network equations can be obtained
through Newton’s method, formulating the determination of
the load curtailment as a least squares  optimization problem.
The main advantage of the proposed approach is the
combination of the simplicity of the steady state power flow
equations with the potentiality of Newton’s method.

Numerical results show that Gauss-Newton iterations at  the
beginning of the iterative process (and in some cases the step
length control) are essential for convergence.

The proposed technique allows to select buses for which the
power injection must be guaranteed. This procedure shows that
the total load shedding can be reduced if these buses are
suitably chosen.
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