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Abstract: In this work, Artificial Neural Networks are
employed in a Fault Detection and Isolation scheme for robotic
manipulators. Two networks are utilized: a Multilayer
Perceptron is employed to reproduce the manipulator
dynamical behavior, generating a residual vector that is
classified by a Radial Basis Function Network, giving the fault
isolation. Two methods are utilized to choose the radial unit
centers in this network. The first method, Forward Selection,
employs Subset Selection to choose the radial units from the
training patterns. The second employs the Kohonen’s Self-
Organizing Map to fix the radial unit centers in more
interesting positions. Simulations employing a two link
manipulator and the Puma 560 manipulator indicate that the
second method gives a smaller generalization error.

1 INTRODUCTION

The search for Fault Detection and Isolation (FDI) systems for
robotic systems should increase in the next years due to the
moving of robots from accessible areas (like laboratories and
factories) to unstructured and hazardous environments. It is
already usual to talk of robots in space and undersea
exploration, in medicine, in nuclear plants and manipulating
explosives. Furthermore, robots should be a common
household item in the next future. In these environments, and
even in factories, a faulty robot can cause irreversible damages
and inadmissible economic losses..

Unfortunately, faults in robots have been usual. In a research
made by the Japanese Ministry of Labor, 28.7% of the
industrial robots studied had a mean-time-between-failure of
100h or less; 60 % had mean-time-between failure less than
500 h (Dhillon, 1991 ad in Groom et al., 1999). Thus, there are
good reasons to research FDI systems in robotic manipulators.

Usually, the FDI techniques employ the mathematical model to
reproduce the dynamical behavior of the fault-free system. The
outputs of the mathematical model are compared with the real

measurements generating a residual vector that when properly
analyzed, gives the fault information. However, modeling
errors can obscure the faults and can be a false alarm source
(Gertler, 1997). In several cases, it is necessary the use of
robust techniques (Patton et al., 1989; Mangoubi, 1998; Chen
& Patton, 1999). Alternatively, a recurrent Artificial Neural
Network (ANN) may be employed to reproduce the fault-free
system dynamical behavior, generating the residual vector
(Köppen-Seliger & P. M. Frank, 1996; Korbicz, 1997).

Generally in robotic manipulators, the researchers have
proposed FDI schemes utilizing the system mathematical
model (Visinsky et al., 1995; Schneider & Frank, 1996;
Naughton et al., 1996; Vemuri & Policarpou, 1998), employing
different methods for residual analysis. In (Terra & Tinós,
1998a) a Multilayer Perceptron (MLP) trained with the
Backpropagation algorithm has been utilized to reproduce the
dynamical behavior of a fault-free two link manipulator to
generate the residual to be analysed.

The residual classification procedures have been received an
important attention by several researchers, we have two central
categories of analysis on the fault diagnosis: considering static
and dynamic thresholds. For the static threshold  we can see
interesting applications in (Korbicz et al., 1999; Patan &
Korbicz,  2000), and references therein (we can see, too, in
these references, other techniques based on fuzzy-logic sets
and genetic algorithms applied on fault-diagnosis). Obviously
it is hopped that a dynamic threshold should improve the
diagnosis quality, decreasing false alarms.

For dynamics thresholds on the analysis of the residual
classification, we have utilized Radial Basis Function Network
(RBFN). This ANN has been trained using three different
methods: the first, called Forward Selection (FS), employs
Subset Selection to choose the radial unit centers from the
training set; the second method (Global Ridge Regression -
GRR) employs regularization, applying a penalty term in the
large weights; the third method (Local Ridge Regression -
LRR) employs regularization too, but instead of only one term,
a penalty term is applied in each radial unit (Orr, 1996).
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In this paper , a new RBFN training procedure is employed. In
this training procedure, the RBFN centers are chosen by the
Kohonen’s Self-Organizing Map (SOM) that differs
fundamentally of that three training procedures  on the update
of the radial unit centers. We choose the training FS method to
be compared with the SOM procedure because it presents
similarities on the choose of the radial unit centers. A
comparing study among FS, GRR, and LRR in Fault Detection
and Isolation applied in robotic manipulators can be seen in
(Terra & Tinós, 1998b).

This paper is organized as follows: the FDI architecture is
presented in Section 2. In Section 3, the training procedures
employing the Kohonen’s SOM and the FS are given. The
simulation results employing a two link planar manipulator and
the Puma 560 manipulator are presented in Section 4 and,
finally, the conclusions comparing the two RBFN training
procedures are given in Section 5.

2 FAULT DETECTION AND ISOLATION
SCHEME

The dynamic of a fault-free robotic manipulator with actuators
in each joint is given by
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where θθθθ is the vector of joint angular positions, ττττ is the vector
of joint torques, M is the inertia matrix, t is the time index, v is
the vector of Coriolis and centripetal terms, g is the vector of
gravitational terms, z is the vector of friction terms and other
nonlinearities and d is the vector of external uncorrelated
disturbances.

The MLP mapping should reproduce the Equation (1) in order
to generate the residual vector. However, the joint accelerations
usually are not measured in real robotic manipulators.
Considering a small sample rate ∆t,
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can be substituted in Equation (1),
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This is the function that should be reproduced by the MLP
mapping. The residual generation scheme is displayed in
Figure 1.

Figure 1. Residual generation (r is the residual vector).

The next step is to classify the residual vector and the joint
velocities by the RBFN (Figure 2). The RBFN is employed
here because, usually in FDI problems, it produces a  more
interesting classification than the MLP (Leonard & Kramer,
1991). Other advantages over the MLP: there are not local

minimums in the calculation of the weights and the training
time is smaller (Looney, 1997). However, the high number of
radial units calls for more memory and the choice of the radial
units and their parameters are suboptimal.

The RBFN outputs are trained to present signal 1 in the
occurrence of the fault and 0 otherwise. The fault criteria is as
follows: a specified number of sequential RBFN output
samples have to be greater than 0.5 to a fault be detected. This
criteria is adopted to avoid the occurrence of false alarms due
misclassified individual patterns (Tinós, 1999). The sensitivity

of the FDI system can be prejudiced adopting this criteria.
However, if the sample rate is small, it does not represent a
problem.

3 THE RADIAL BASIS FUNCTION
NETWORK

The RBFN employed here has three layers. It does not exist
weights between the first and the second layers. The second
layer has neurons with radial activation functions. Each neuron
j in the hidden layer (called radial unit j) is responsible for the
creation of a receptive field in the p-dimensional input space.
The receptive field of each radial unit is centered in a p-
dimensional vector µµµµ j , called radial unit center. Thus, the
radial unit j has activation according to the vector distance
between the input vector and the radial unit center. There are
weights between the hidden and the output layers and the
activation in the last layer is linear.

Presenting in the sample n the input vector xn=[x1n x2n ... xpn]
T,

the RBFN activation of the output neuron k (k=1,2,...,q) is
given by
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where m is the number of radial units, wkj is the weight between
the radial unit j and the output neuron k, and hj is the activation
of the radial unit j. In this work, the Cauchy radial function is
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Figure 2. Residual analysis.
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employed as activation function in the radial units. Thus, the
activation of the radial unit j is given by
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µµµµ
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where R is a diagonal matrix formed by the individual
parameters defining the receptive field size in each dimension
of the input space and || . || defines a vector norm (here, the
Euclidean norm).

If the RBFN has only three layers, the output layer activation is
linear and the radial unit activations are determined, then this
ANN can be viewed as a linear model. Thus, the training
procedure can be made in two steps: the radial units and their
parameters are determined and, then, the weights are calculated
minimizing a cost function.  In the following the problem of
the ANN generalization will be described.

In order to achieve the best generalization, the complexity of
the model (ANN) needs to be optimized. Considerable insight
into this phenomenon can be obtained decomposing the
generalization error into the sum of the bias squared plus the
variance (Bishop, 1995). A model which is too simple, or too
inflexible, will have a large bias, while a model which is too
flexible in relation to the particular data set will have a large
variance. Consider the mean-squared error applied to the
patterns in the input space (Orr, 1996)

( ) ( )( )E y yMSE n n= −x x"
2

 (6)

where ( )" .y  is the model prediction, ( )y .  is the desired output

and <.> is the expectation taken over the patterns in the input
space. Breaking the Equation (6) in two (Geman et al., 1992)
we have
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where the first part is the squared bias  and the last part is the
variance. The bias indicates the difference between the average
of the model function output and the desired output. The
variance indicates the sensitivity to the peculiarities (such as
noise and choice of the patterns) of each particular training set.
The best generalization is reached when there is the best
compromise between the conflicting requirements of small bias
and small variance. This may be obtained by controlling the
flexibility of the model. To control the flexibility of the RBFN,
regularization can be utilized to decrease the sensitivity to the
training set and, thus, the variance of the model. Other
approach is to control the flexibility changing the number of
adaptive parameters in the RBFN. This is the approach utilized
by the FS method.

3.1 Forward Selection

In this procedure, the RBFN flexibility is controlled by
changing the number of adaptive parameters in the network.
This is obtained comparing  different architectures formed with
different subsets of  radial units chosen from the same training
set. This is called Subset Selection in Linear Regression,
usually employed to identify subsets of fixed functions with
independent variables which can model most of the variation in
the dependent variables. As the search of the optimal subset is
prohibitive, a heuristic procedure is utilized to find a plausible
one. FS is one of these procedures (Rawlings, 1988).

Chen et al. (1991) employed FS to choose the radial units in an
RBFN. FS starts with an empty subset and adds a radial unit at
time: the one which most reduces the sum-of-squared errors
function. The procedure may be more efficient by using a
technique called Orthogonal Least Squares that ensures that the
new column formed by the radial unit activations for the
training set added to the matrix of the growing subset is
orthogonal to all previous columns. To halt the selection (stop
criteria), a fixed threshold on the variance may be utilized.
However the Generalized Cross-Validation may be utilized to
halt the Subset Selection, being more effective than a fixed
threshold (Orr, 1995). When the selection of the radial units is
finished, the optimal weights can be calculated. Minimizing the
sum-of-squared errors function, the optimal weight matrix is
given by

( )"W H H H YT T=
−1

 (8)

where the np x m matrix H is formed by the radial unit
activations hj for the different training patterns (np is the
number of training patterns) and the np x q output matrix Y is
formed by the training desired outputs (q is the number of
neurons in the output layer). Thus, the procedure for the FS is:

1. Start with an empty subset of radial units;

2. Add the radial unit (chosen from the training set) that most
reduces the sum-of-squared error;

3. If the stop criteria is satisfied, go to the next step;
otherwise return to step 2;

4. Compute the matrix H composed by the radial unit
activations (eq. 5) for the training set;

5. Compute the matrix of weights W (eq. 8).

In the following will be presented the Kohonen’s SOM with an
alternative to the RBFN training in FDI.

3.2 The Kohonen’s SOM

The use of the Kohonen’s SOM in the training of RBFN’s is
not a new approach. In (Ojala & Vuorimaa, 1995) for example,
Kohonen’s SOM is employed to find the initial centers of the
radial units and, then, a modified Learning Vector Quantization
(LVQ2.1) algorithm (Kohonen, 1995) is utilized to tune all the
parameters of an RBFN. Here, the Kohonen’s SOM will be
applied to train an RBFN employed to pattern recognition in a
FDI scheme. Some changes will be made to adequate the
Kohonen’s SOM in this problem. The first step is to separate
the training set according to different classes. This procedure is
adopted to prevent that patterns belonging to different classes
to be tuned on the same radial unit. Thus, the algorithm
described below should be repeated for each class.

Initially, all patterns of each class are chosen as radial unit
centers. The neuron activations of all radial units for each
training pattern are calculated employing the Equation (5) and
the unit with the highest activation is selected according to

( ) ( )( ){ }h t h tc
j

j= max x  (9)

where j=1,...,mk (mk is the number of patterns in the class k),
k=1,...,q (q is the number of classes) and t=1,...,tmax is the
discrete-time coordinate. The next step is to update the radial
unit centers according to
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( ) ( ) ( ) ( ) ( ) ( )[ ]µµµµ µµµµ µµµµj j jt t t t t t+ = + −1 α β x (10)

where α (t) is a decaying function of time that defines the
learning rate and β (t) is a function of the vector distance from
the radial unit center µµµµ j to the radial unit center µµµµ c. Here, this
function is given by
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where σ (t) is a decaying function of time that defines the
neighborhood size around the radial unit center µµµµ c. If the
number of iterations (tmax) is sufficiently large and the training
parameters are chosen appropriately, the radial unit centers in
the same cluster will move to the cluster center. Thus, as some
radial units have centers very close, they will be grouped. This
is made calculating the distance between the radial unit centers.
If the norm of the distance of two radial unit centers is very
small, one radial unit is pruned. Thus, the complexity of the
network is reduced because the number of adaptive parameters
decreases. This procedure is important because if there are
radial unit centers very close, then the matrix inverse used to
determine the optimal weights (Equation 8) will have ill-posed
problems.

Performing the training procedure above for all classes, the
radial unit centers are grouped in a single RBFN and the
optimal weight matrix can be calculated using the Equation (8).
A simple example will be presented bellow to demonstrate the
effectiveness of this training procedure.

Example 1: Consider that we have to classify 2-dimensional
patterns in two classes. For the training, we have 40 patterns
(20 in each class). The patterns in the first class are generated
with mean=[0.5 0.5]T and variance=[0.01 0.09]T and in the
second class with mean=[0 0]T and variance=[0.01 0.09]T. The
Figure 4 and 5 show respectively the training patterns and the
receptive fields formed by the RBFN trained by FS and by
Kohonen’s SOM. The two training algorithms described
previously are employed.  The training set and the diagonal of
the matrix R=[0.2  0.6]T that defines the size of the receptive
field are the same for the two procedures. The FS uses a fixed
threshold to halt the radial unit selection and selects two radial
units: the first centered in [0.047  -0.083]T and the second in
[0.578  0.589]T. The Kohonen’s SOM algorithm selects two
radial units centered in [0.015  0.039]T and in [0.513  0.560]T.
For the generalization test, 200 patterns with the same
characteristics of the training set are generated. The Figure 6
displays the generalization test patterns and the receptive field
formed by the RBFN trained by FS and the Figure 7 displays
for the RBFN trained by Kohonen’s SOM. It can be noted that
the RBFN trained by Kohonen’s SOM presents a more
interesting classification.
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Figure 5. Training patterns and the receptive field created
by the RBFN trained by FS.
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Figure 6. Training patterns and the receptive field created
by the RBFN trained by Kohonen’s SOM.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

o Class 1
+ Class 2
* Centers

X 1

X 2

Figure 6. Test patterns and the receptive field created by
the RBFN trained by FS.
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Figure 7. Test patterns and the receptive field created by
the RBFN trained by Kohonen’s SOM.
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4 SIMULATION RESULTS

The FDI scheme is applied in two robotic manipulators
simulated in MATLAB. The first is a two-link planar
manipulator and the second is a Puma 560 manipulator (Corke,
1996). For both systems, the FS and the Kohonen’s SOM are
used to train the RBFN’s.

4.1 Two link manipulator results

For this system, two faults are considered: in the first, the joint
1 is locked and in the second, the joint 2 is locked. This kind of
faults can be caused when, for example, an actuator is locked
in a fixed position or when a brake is improperly applied
(Lewis & Maciejewski, 1997). The MLP utilized to reproduce
the manipulator dynamical behavior has 6 inputs, 13 neurons in
the hidden layer and 2 outputs. The MLP is trained by
backpropagation. The training set has 500 patterns and noises
are added to the measures of joint positions (mean=0 and
variance=0.005) and velocities (mean=0 and variance=0.05).
After 18000 steps of training, the sum-of-squared error for the
training set is equal to 5.21x10-5. After trained, the MLP
reproduces the manipulator dynamical behavior presenting a
small residual vector for nontrained fault-free trajectories. The
Figure 8 shows the residues of a nontrained trajectory in that
occurred fault 1.
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Figure 8. Residues for the nontrained trajectory from
θθθθ=[ππππ/6 ππππ/4]T to θθθθ=[2ππππ/3 ππππ/3]T. The fault 1 occurs between

the samples 10 and 160.

The RBFN employed has 4 inputs (the 2-dimensional residual
vector and the 2-dimensional joint velocities vector) and 2
outputs (one for each fault). The diagonal of the matrix R is
[0.05 0.035 0.1 0.1]T where the two first variables define the
receptive field size for the residual vector and the last two
define the receptive field size for the joint velocities. For the
RBFN training, 9 trajectories with 40 samples each are
employed. During the training procedure, the trajectories are
presented to the RBFN three times: one for each fault and one
for the fault-free operation, performing a total of 1040 patterns.
For the generalization test, 17 nontrained trajectories with 100
samples are presented three times (faults 1 and 2 and fault-free
operation) to the RBFN.

During the RBFN training, FS selects 415 radial units and
Kohonen’s SOM selects 215 radial units. The Table 1 and 2
show the sum-of-squared errors for the training and the test set
for the RBFN’s. The Figures 9 and 10 display the results for a

nontrained trajectory in that the fault 1 occurs. To detect and
isolate the faults, the criteria adopted is: five consecutive
outputs have to be greater than 0.5. The results of the FDI with
RBFN’s trained by the two procedures are displayed in Table
3.

Table 1. Sum-of-squared errors for the training set.
Output 1 Output 2

Forward Selection 0.0008 0.0042
Kohonen’s SOM 0.0100 0.0212

Table 2. Sum-of-squared errors for the test set.
Output 1 Output 2

Forward Selection 0.0699 0.2727
Kohonen’s SOM 0.0273 0.0788

Table 3. FDI Results for the test set.
Number of

trajectories in
that occurred
false alarms

Number of
trajectories

with faults do
not detected

Forward
Selection

1 (1.85 %) 0 (0 %)

Kohonen’s
SOM

0 (0 %) 0 (0 %)
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Figure 9. Outputs of the RBFN trained with FS for the
nontrained trajectory from θθθθ=[ππππ/6 ππππ/4]T to θθθθ=[2ππππ/3 ππππ/3]T.

The output 1 indicates the fault 1 and the output 2 the fault
2, according to the fault criteria. The fault 1 occurs between

the samples 10 and 160.
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Figure 10. Outputs of the RBFN trained with Kohonen’s
SOM the nontrained trajectory from θθθθ=[ππππ/6 ππππ/4]T to

θθθθ=[2ππππ/3 ππππ/3]T. The fault 1 occurs between the samples 10
and 160.
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4.2 Puma 560 manipulator results

Three faults are considered in the Puma 560 manipulator
simulations. In the fault 1, the torque in the joint 1 is set to zero
(free-swinging joint fault). In the fault 2, the torque in the joint
2 is set to zero and the same occurs for the joint 3 in the fault 3.
The MLP has 9 inputs, 29 neurons in the hidden layer and 3
outputs. Free-swinging joint fault can be caused, for example,
by a rupture seal on a hydraulic actuator, by a loss of electric
power and brake in a electric actuator and by a mechanical
fault in a drive system (English and Maciejewski, 1998). The
MLP is trained by backpropagation. The training set has 8100
patterns.  After 8000 steps of training, the sum-of-squared error
for the training set is equal to 1.58x10-5. After trained, the MLP
reproduces the manipulator dynamical behavior presenting a
small residual vector for nontrained fault-free trajectories
(Figure 11).
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Figure 11. The first 3 Normalized joint velocities (solid line)
and respective outputs of the MLP (dashed line) for a

nontrained trajectory from θθθθ=[0 0 0 0 0 0]T to θθθθ=[ππππ  ππππ/3 -
5ππππ/6 ππππ/6 ππππ/2 5ππππ/12]T.

The RBFN employed has 6 inputs (the 3-dimensional residual
vector and the 3-dimensional joint velocities vector) and 3
outputs. The diagonal of the matrix R is [0.022 0.027 0.032 0.8
0.8 0.8]T where the three first variables define the receptive
field size for the residual vector and the last three for the joint
velocities. For the RBFN training, 15 trajectories with 12
samples each are employed. During the training procedure, the
trajectories are presented to the RBFN four times: one for each
fault and one for the fault-free operation, performing a total of
720 patterns. For the generalization test, 30 nontrained
trajectories with 15 samples are presented four times (faults 1,
2 and 3 and fault-free operation) to the RBFN. During the
RBFN training, FS selects 251 radial units and Kohonen’s
SOM selects 255. The Figures 12 and 13 display the results
fornontrained trajectories (in the first three, a different fault
occurs in each trajectory and in the last one, none fault occurs).
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Figure 12. Outputs of the RBFN trained via FS  with 4
trajectories from θθθθ=[0 0 0 0 0 0]T to θθθθ=[ππππ ππππ/3 -5ππππ/6 ππππ/6 ππππ/2
5ππππ/12]T. In each trajectory, a different fault occurs and in

the last one, none fault occurs.
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Figure 13. Outputs of the RBFN trained with Kohonen’s
SOM for 4 trajectories from θθθθ=[0 0 0 0 0 0]T to θθθθ=[ππππ ππππ/3 -
5ππππ/6 ππππ/6 ππππ/2 5ππππ/12]T. In each trajectory, a different fault

occurs and in the last one, none fault occurs.

The Table 4 and 5 show the sum-of-squared errors for the
training and the test set for the RBFN’s. To detect and isolate
the faults, the criteria adopted is: 3 consecutive faults have to
be greater than 0.5. The results of the FDI for the two
procedures are displayed in Table 6.

Table 4. Sum-of-squared errors for the training set.

Out. 1 Out. 2 Out. 3
F. S. 0.0040 0.0017 0.0017
Kohonen’s SOM 0.0096 0.0042 0.0092

Table 5. Sum-of-squared errors for the test set.

Out. 1 Out. 2 Out. 3
F. S. 0.0712 0.0431 0.0347
Kohonen’s SOM 0.0462 0.0400 0.0293

Table 6. FDI Results for the test set.

Number of
trajectories in
that occurred
false alarms

Number of
trajectories

with faults do
not detected

Forward
Selection

8 (6.67 %) 2 (1.67 %)

Kohonen’s
SOM

4 (3.33 %) 0 (0 %)
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5 CONCLUSIONS

The FDI scheme employed presents good results when it is
applied in a two link manipulator and in a Puma 560
manipulator. According to the tests, the FDI scheme can detect
and isolate faults that occur in nontrained trajectories.

In this work, the RBFN’s trained by FS have presented smaller
errors for the training set than the RBFN’s trained by
Kohonen’s SOM. This has occurred because the RBFN’s
trained by FS have presented smaller bias in the sum-of-
squared errors than for the RBFN’s trained by Kohonen’s
SOM. However, the RBFN’s trained by Kohonen’s SOM have
presented the smallest errors for the generalization test set
indicating that the variance in the sum-of-squared errors have
been smaller than for the RBFN’s trained by FS. This shows
that the RBFN’s trained by FS have been more sensitivity to
the peculiarities (such as noise and choice of the patterns) of
the training sets because of the radial unit centers are chosen
from the training patterns. The RBFN’s trained by Kohonen’s
SOM have been more flexible, presenting the best
generalization results because of the radial unit centers have
been fixed near of the cluster center. Furthermore, in the FS
procedure, local minima could occur in the radial unit search.
Nevertheless, it is important to accentuate that these results
have been dependent on the choice of the parameters in each
training procedure and the choice of the parameters in the
Kohonen’s SOM is more complicate than for the FS. It is noted
too in this work, that the Kohonen’s SOM has been simpler
than the FS because it does not employ complex calculus
involving great matrices.
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