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Abstract : In the present paper the swing-by maneuvers are 
studied under the model given by the three-dimensional 
circular restricted three-body problem. A numerical algorithm 
to study this problem is build and used to generate several 
results. The main goal is to study the variation of the 
inclination in the trajectory of a spacecraft that performs this 
maneuver. The results shows that: i) for the planar maneuvers 
the variation in inclination can assume only the values º180±  
and 0º; ii) for the polar maneuver, or for maneuvers with angle 
of approach α = 0º or 180º, the variation in inclination is zero. 
The effects of an out-of-plane component for the velocity at 
periapsis in the variation of the inclination, energy and angular 
momentum of the spacecraft are also described in details. This 
research has applications to design interplanetary missions. 
 

Resumo : No presente trabalho a manobra de "Swing-By" é 
estudada com o modelo dado pelo problema restrito de três 
corpos circular e tri-dimensional. Um algoritmo numérico é 
construído para estudar esse problema e ele é utilizado para 
gerar diversos resultados. O objetivo principal é estudar a 
variação da inclinação na trajetória de um veículo espacial que 
executa uma manobra desse tipo. Os resultados mostram que: i) 
para a manobra plana a variação na inclinação pode assumir 
somente os valores 180º e 0º; ii) para a manobra polar, ou para 
manobras com ângulo de aproximação a = 0º ou 180º, a 
variação na inclinação é zero. Os efeitos de uma componente 
fora do plano para a velocidade do periapse na variação da 
inclinação, energia e momento angular do veículo especial são 
descritos em detalhes. Esta pesquisa tem aplicações para 
planejar missões interplanetarias. 
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1 INTRODUCTION 
The swing-by maneuver is a very popular technique used to 
decrease fuel expenditure in space missions. The most usual 
approach to study this problem is to divide the problem in three 

phases dominated by the “two-body” celestial mechanics. 
Other models used to study this problem are the circular 
restricted three-body problem Broucke (1988 e 1993), Prado 
(1993) and the elliptic restricted three-body problem (Prado,  
1997). In particular, references (Broucke 1988) and Brouche 
(1993) have numerical simulations for the planar maneuvers, 
classifying the orbits according to the effects caused by the 
close-approach maneuvers. A very complete set of numerical 
simulations of the planar restricted three-body can be found in 
(Winter, 1994a) and (Winter, 1994b). Another important 
problem that can be studied with numerical simulations of the 
restricted three-body problem in astronautics is the problem of 
gravitational capture. Some results in this problem are 
available in (Yamakawa,  1992) and (Vieira Neto, and Prado, 
1998). Regarding applications of the swing-by maneuver, some 
examples are: the study of missions to the satellites of the giant 
planets (D’Amario, Byrnes, and Stanford, 1982); new missions 
to Neptune (Swenson, 1992) and Pluto (Weinstein, 1992); the 
study of the Earth's environment (Farquhar, and Dunham,  
1981; Farquhar, Muhonen, and Church, 1985); fast 
reconnaissance missions of the solar system (Flandro,  1966; 
Carvell, 1986); and transfers between hyperbolic asymptotes  
(Gobetz 1963; Walton 1975).  
The present paper comes in the sequence of the literature and 
numerical simulations are made in the three-dimensional 
restricted three-body problem, with the primary goal of 
studying the behavior of the inclination in this maneuver. The 
assumptions made here are: i) the system is formed by two 
main bodies that are in circular orbits around their center of 
mass; ii) a massless third body (the spacecraft) is moving in the 
three-dimensional space under the gravitational attraction of  
the two primaries; iii) the swing-by is performed around the 
secondary body of the system; iv) when the spacecraft is far 
from the secondary body, the system primary-spacecraft can be 
considered a two-body system. 

The main contribution of this paper is to simulate a complete 
set of initial conditions for those orbits and measure the effects 
caused by the close approach in the orbit of the spacecraft. To 
perform this task, the equations of motion are integrated 
numerically forward and backward in time, until the spacecraft 
is at a distance that can be considered far enough from M2. It is 
necessary to integrate in both directions of time because the set 
of initial conditions used gives information about the spacecraft 
exactly at the moment of the closest approach. At the two 
points where the spacecraft is considered far from M2, the 
effect of M2 can be neglected and the system formed by M1 and 
the spacecraft can be considered a two-body system. So, the 
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two-body celestial mechanics formulas are valid to compute 
the energy, angular momentum and inclination. From those 
simulations the effects of the swing-by maneuver are 
calculated, analyzed and explained based in the physical 
model. 

2. THE SWING-BY IN THREE DIMENSIONS 
The swing-by maneuvers in three dimensions consists in 
studying the motion of a massless spacecraft passing close to o 
celestial body M2, that is the smaller body of a system of 
primaries M1-M2, as shown in Fig.1.  

It is assumed that the system has three bodies: a primary (M1) 
and a secondary (M2) body with finite masses that are in 
circular orbits around their common center of mass and a third 
body with negligible mass (the spacecraft) that has its motion 
governed by the two other bodies. The spacecraft leaves the 
point A, passes by the point P (the periapsis of the trajectory of 
the spacecraft in its orbit around M2) and goes to the point B. 
The points A and B are chosen in such a way that the influence 
of M2 at those two points can be neglected and, consequently, 
the energy can be assumed to remain constant after B and 
before A (the system follows the two-body celestial 
mechanics). Among the several sets of initial conditions that 
can be used to identify uniquely one swing-by trajectory, the 
following five variables are used (see Fig. 1): Vp, the velocity 
of the spacecraft at periapsis of the orbit around the secondary 
body; two angles (α and β) that specify the direction of the 
periapsis of the trajectory of the spacecraft around M2 in a 
three-dimensional space; rp the distance from the spacecraft to 
the center of M2 in the moment of the closest approach to M2 
(periapsis distance); γ, the angle between the velocity vector at 
periapsis and the intersection between the horizontal plane (a 
plane parallel to the x-y plane) that passes by the periapsis and 
the plane perpendicular to the periapsis that holds pV

�

.The 
distance rp is not to scale, to make the figure easier to 
understand. The result of this maneuver is a change in velocity, 
energy, angular momentum and inclination in the Keplerian 
orbit of the spacecraft around the central body. Using the 
"patched conic" approximation, the equations that quantify 
those changes are available in the literature (Broucke,  1988). 
Under this approximation the maneuver is considered as 
composed of three parts, where each of those systems are 
governed by the two-body celestial mechanics. The first system 
describes the motion of the spacecraft around the primary body 
before the close encounter (the secondary body is neglected). 
When the spacecraft comes close to the secondary body, the 
primary is neglected and a second two-body system is formed 
by the spacecraft and the secondary body. After the close 
encounter the spacecraft leaves the secondary body, and it goes 
to an orbit around the primary body again. Then, the secondary 
is neglected one more time. The most important equations for 
the planar maneuver under this model are: 
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where δ is half of the total deflection angle of the trajectory of 
the spacecraft, V2 is the linear velocity of M2 in its motion 
around the center of mass of the system M1-M2, Vinf is the 
velocity of the spacecraft with respect to M2 when the approach  

starts, and µ2 is the gravitational parameter of M2. From 
Equations 1-3 it is possible to get the fundamental well-known 
results: a) the variation in energy (∆E) is equal to the variation 
in angular momentum multiplied by the angular velocity of the 
primaries (ω∆C) (Eq. 3); b) if the Fly-By is in front of the 
secondary body, there is a loss of energy, and this loss has a 
maximum at α = 90°; c) if the Fly-By is behind the secondary 
body, there is a gain of energy, and this gain has a maximum at 
α = 270°. 

Equations (1) to (3) use Vinf as an independent parameter. Later 
in this paper the variable Vp will be used. The fact is that both 
parameters are equivalent, since the orbit around M2 is 
considered Keplerian (Hyperbolic) in the approximation used 
to derive those equations (“patched-conics”). They are related 
by the expression  

( )p
2
p

2
inf r2VV µ−= . 

3. THE THREE-DIMENSIONAL CIRCULAR 
RESTRICTED PROBLEM 
For the research performed in this paper, the equations of 
motion for the spacecraft are assumed to be the ones valid for 
the well-known three-dimensional restricted circular three-
body problem. The standard dimensionless canonical system of 
units is used, which implies that: the unit of distance is the 
distance between M1 and M2; the mean angular velocity (ω) of 
the motion of M1 and M2 is assumed to be one; the mass of the 
smaller primary (M2) is given by µ = ( )212 mmm +  (where 
m1 and m2 are the real masses of M1 and M2, respectively) and 
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Fig. 1 - The Swing-By in Three Dimensions 
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the mass of M1 is (1-µ); the unit of time is defined such that the 
period of the motion of the two primaries is 2π and the 
gravitational constant is one. 

There are several systems of reference that can be used to 
describe the three-dimensional restricted three-body problem 
(Szebehely, 1967). In this paper the rotating system is used. In 
the rotating system of reference, the origin is the center of mass 
of the two massive primaries. The horizontal axis (x) is the line 
that connects the two primaries at any time. It rotates with a 
variable angular velocity in a such way that the two massive 
primaries are always on this axis. The vertical axis (y) is 
perpendicular to the (x) axis. In this system, the positions of the 
primaries are: µ−=1x , µ−=1x2 , 0yy 21 == . In this 
system, the equations of motion for the massless particle are 
(Szebehely, 1967): 
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1 r
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where r1 and r2 are the distances from M1 and M2. 

4. ALGORITHM TO SOLVE THE PROBLEM 
A numerical algorithm to solve the problem has the following 
steps: 1) Arbitrary values for the parameters rp, Vp, α, β and 
γ  are given; 2) With these values the initial conditions in the 
rotating system are computed. The initial position is the point 
(Xi, Yi, Zi) and the initial velocity is (Vxi, Vyi, Vzi), where: 

( ) ( )αβ+µ−= coscosr1X pi , (7) 

( ) ( )αβ= sincosrY pi , (8) 

( )β= sinrZ pi , (9) 

( ) ( ) ( )αβαγαβγ sin cossin )cos()cos( )sin( )sin( pppXi rVVV +−−= , (10) 

( ) ( ) ( )αβαγαβγ coscosos )cos()sin( )sin( )sin( pppYi rcVVV −+−= , (11) 

)sin( )cos( γβpZi VV =       (12) 

3) With these initial conditions, the equations of motion are 
integrated forward in time until the distance between M2 and 
the spacecraft is larger than a specified limit d. At this point the 
numerical integration is stopped and the energy (E+) and the 
angular momentum (C+) after the encounter are calculated; 4) 
Then, the particle goes back to its initial conditions at the point 
P, and the equations of motion are integrated backward in time, 
until the distance d is reached again. Then the energy (E-) and 
the angular momentum (C-) before the encounter are 
calculated. 

For all of the simulations shown, a fourth-order Runge-Kutta 
method with step size control and a Runge-Kutta of 8-th order 
was used for numerical integration. The result of this 
comparison is that there is no distinction in the plots obtained. 
The constant value for the Jacobian constant also is a proof that 
both numerical integration methods worked very well. The 
criteria to stop numerical integration is the distance between 
the spacecraft and M2. When this distance reaches the value d = 
0.5 (half of the semimajor axis of the two primaries) the 

numerical integration is stopped. The value 0.5 is a lot larger 
than the sphere of influence of M2 for the Earth-Moon system, 
that is used here (which is, 0.00077 in canonical units), which 
avoids any important effects of M2 at these points. Simulations 
using larger values for this distance were performed, and it 
increased the integration time, but did not significantly change 
the results. To study the effects of numerical accuracy, several 
cases were simulated using different integration methods 
and/or different values for the accuracy required with no 
effects in the results. All of the calculations were performed 
with an IBM-PC computer (Pentium 233Mhz) using the 
Microsoft FORTRAN Power Station 4.0 Compiler. 

5. NUMERICAL SIMULATIONS 

5.1 Effects on the inclination for γγγγ = 0 
An interesting question that appears in this problem is what 
happens to the inclination of the spacecraft due to the close 
approach. To investigate this fact the inclination of the 
trajectories were calculated before and after the closest 
approach. To obtain the inclinations the equation 

CCz)icos( =  is used, where Cz is the Z-component of the 
angular momentum and C is the total angular momentum. Fig. 
2 shows results for a series of initial conditions, considering the 
case γ = 0. This constraint is assumed, because it is the most 
usual situation in interplanetary research, since the planets have 
orbits that are almost coplanar. The horizontal axis represents 
the angle α, and the vertical axis represents the angle β. The 
variation in inclination is shown in the contour plots. All the 
angles are expressed in degrees.  

Several conclusions come from those results. The most 
interesting ones are: i) when β = 0º (planar maneuver) the 
variation in inclination can have only three possible values: 

º180± , for a maneuver that reverse the sense of its motion, or 
0º for a maneuver that does not reverse its motion. Those 
numerical results agree with the physical-model, since the fact 
that β = 0º implies in a planar maneuver that does not allow 
values for the inclination other than 0º or 180º. This is clearly 
shown in the figures, following the line β = 0º. The plots are 
divided in two parts: one with º180 i ±=∆  and the other one 
with º0i =∆ ; ii) Looking at any vertical line (a line of 
constant α) it is clear that the change in inclination goes to zero 
at the poles )º90 ( ±=β . Then, in the case where 

º180 i ±=∆ , the change in inclination starts at zero in β = -
90º, increases in magnitude until β = 0º and then it starts 
decreasing again until zero when β = 90º is reached. When ∆i = 
0º for β = 0º the behavior of ∆i oscillates, with two maximum 
for the magnitude (one in the interval –90º < β < 0º and the 
other in the interval 0º < β < 90º) and three zeros at β = -90º, 
0º, 90º. It is also clear that the variation in inclination is 
symmetric with respect to the angle β (+β and –β generate the 
same ∆i); iii) when º90 ±=β the variation in inclination is 
very close to zero. It means that a passage by the poles with the 
velocity parallel to the X-Y keeps the inclination of the 
trajectory unchanged; iv) when α = 0º or α = 180º there is no 
change in the inclination. This is in agreement with the fact that 
a maneuver with this geometry does not change the trajectory 
at all. Looking at any horizontal line (a line of constant β) it is 
visible that this curve has a maximum in the magnitude of ∆i 
somewhere between the two fixed zeroes at α = 0º and α = 
180º; v) when the periapsis distance or the velocity at periapsis 
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increases, the effects of the swing-by in the maneuver are 
reduced. In the plots shown, this can be verified by the fact that 
the area of the regions where the variation in inclination is 
close to zero increases.  

5.2 Effects of the out-of-plane velocity at 
periapsis 
In this section, the study of the swing-by maneuver is extended 
to consider non-zero values for the out-of-plane component of 

the velocity at periapsis. It means that the angle γ shown in 
Fig.1 is no longer zero. To perform this task the variation in 
energy was calculated and plotted in Fig. 3 as a function of γ. It 
is possible to see that the effects of the variation in γ cause a 
sinusoidal periodic oscillation. The amplitude of this oscilation 
depends on the initial conditions, but it is never greater than 
0.04 canonical units of energy. The maximums and minimums 
of those oscillations are also dependent on the initial 
conditions. The variation in inclination is shown in Fig 4. The 
results show that this angle plays a very important rule in the 
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Fig. 2 – Inclination chance resulting from a close approach. 
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maneuver. Simulations were made for the cases α = 180º, β = 
0º; α = 180º, β = 90º; α = 360º, β = 0º, but the figures are 
omitted here because the variation in inclination was zero for 
all the the values of γ. Fig. 4 shows some results. The 
characteristics of this problem, are: i) The variation in 
inclination is very small (less then 3º for any value of γ) when 
the passage occurs at the poles (β = ±  90º); ii) Looking at 
intermadiate values, like β = ±  45º, it is visible the symmetry 
that occurs both for the values α = 180º and 360º. The values 
for the variation in inclination for γ = 180º + ∆ (0º < ∆ < 180º) 
and 180º - ∆ have the same magnitude and opposite signs; iii) 
For β = ±  45º, it can be seen that the variation in inclination 
for γ and - γ (= 360º - γ) have the same magnitude and opposite 
signs between the two figures for α = 135º and 225º; iv) 
For β = 0º,  there is a symmetry with respect to γ = 180º; v) For 
α = 270º and β = 45º and β = – 45º there is a symmetry where 
the values for the variation in inclination for the range 0º ≤ γ ≤ 
180º are the same ones for the range 180º ≤ γ ≤ 360º between 
the two figures for β = 45º and β = - 45º. 

6. CONCLUSIONS 
In this paper the three-dimensional restricted three-body 
problem is described and used to study the swing-by maneuver. 
The effects of the close approach in the inclination of the 
spacecraft is studied and the results show several 
particularities, like: β = 0º allows only º180±  and 0º for ∆i, 

º90 ±=β or α = 0º or 180º implies in ∆i = 0º, etc. The effects 
of an out-of-plane component for the velocity at periapsis were 
also studied and simulations showed its importance, changing 
the values for the variation in inclination, energy and angular 
momentum, as described in the plots. In this way, this research 
can be used by mission designers to obtain specific mission 
goals. 
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Fig. 4 – Variation in inclination vs. γ.γ.γ.γ. 


