
SBA Controle & Automação Vol. 9 no. 1 / Jan., Fev., Mar. e Abril de 1998 31

REINFORCEMENT LEARNING CONTROL SCHEMES
Vilma Alves de Oliveira, Eduardo Fontoura Costa, Aluízio Fausto Ribeiro Araújo e Renato Tinós

Departamento de Engenharia Elétrica
Universidade de São Paulo

Caixa Postal 359, 13560-970, São Carlos, SP, Brazil

Abstract−In this paper, the use of Artificial Neural Network
for the control of non-linear plants is explored. As the plant
parameters or model is considered unknown, it is necessary to
use plant input/output to train the controller and therefore
reinforcement learning control schemes are devised to achieve
desired results. The main features of the developed schemes are
that few trials are required to train the controllers and a variety
of control actions is taken rather than only two actions as in the
standard reinforcement schemes. In addition, a supervised
neural network controller, which is trained using the
reinforcement control schemes, is proposed. An example of a
magnetic suspension system is presented to illustrate the
effectiveness of the control algorithms given. For comparison
purposes, results of a linear optimal controller are included.

Key Words Intelligent controllers, Adaptive critics,
Reinforcement learning, Neural networks.

1 INTRODUCTION
In general, conditions that assert the solution of non-linear
systems control problems are not available, except in local
terms, as in the neighborhood of a point. Also, design
procedures work well only if a number of conditions are
satisfied. The control problems become considerably more
complex when the plant model or parameters are not
completely known.

The use of reinforcement learning provides an interesting
alternative to the control of systems (Milan, 1996; Dorigo and
Colombetti, 1994; Costa et alii, 1997). This technique does not
need plant parameters or plant model (Hoskins and.
Himmelblau, 1992; Barto et alii, 1983) and facilitates the
incorporation of practical constraints in the controller design.
As a result, this technique may be applied to a large class of
systems.

Reinforcement learning addresses the problem of an agent that
must learn behavior through trial-and-error interactions in a
dynamic environment (Kaelbling et alii, 1996). In control
applications this involves determining a function through
experience that maps current state of a plant into control
actions and constructing a critic to judge which control actions
are acceptable (success) and which are not (failure).

The objective of the presented approach is to construct a
control system capable of driving the plant state to an
equilibrium point and holding it at about that point. We present

reinforcement control schemes based on the model-free
Adaptive Critic strategy introduced by Barto et alii (1983)
which has been applied to control systems since then
(Millington and Baker, 1990; Shelton and Peterson, 1992;
Sutton et alii, 1992; Brown and Chairs, 1994). The main
features of the developed schemes are that few trials are
required to train the controller and a variety of control actions
is taken rather than only two actions. The schemes proposed
led us to the development of two control algorithms with the
incorporation of: (a) weight update direction sign and (b)
temporal failure evaluation. A multilayer perceptron neural
network is also proposed as a third control scheme.

This paper is organized as follows. The control problem is
stated in Section 2. Two different reinforcement learning
control schemes are presented in Section 3 and the multilayer
perceptron neural network is presented in Section 4. In Section
5 we present results of the proposed control strategies and for
comparison we include results of a linear optimal controller.

2 PROBLEM STATEMENT
This paper deals with the following class of problem: control of
a dynamic nonlinear system, described by (1), such that the
state and control input are maintained inside a region ∆
established as acceptable for the system.

)](u),(x,[f)(x tttt =� (1)

where x ∈ Rn is the state, u ∈ R is the control input, k denotes
discrete time and fk is a nonlinear function. The state is
assumed to be available, the plant model is unknown and there
are constraints on the state and amplitudes of the control input.

The region ∆ is defined from the constraints on the state and
control input and the desired stability and performance. The
region ∆ may be as complex as needed; for example, ∆ may be
simply the feasible region of the plant, or may be a function of
time, as in the example of Section 5.1.2, in which ∆ includes
performance specification. In this way, control problems such
as state regulation or tracking can be addressed by choosing an
appropriate region ∆.

The control input u is given by adaptive elements (discussed
later) which perform a mapping of the space state into control
actions.

Throughout this paper we consider the following definitions. A
failure state occurs when the system leaves the region ∆. A
state x0 is an equilibrium point of the system (1) if

0)u,x,(f 00 =t for a given u0. A nonlinear system is

autonomous if fk does not depend on its first argument, k
(Vidyasagar, 1993).

Artigo Submetido em 28/10/96
1a.Revisão em 28/02/97; 2a.revisão em 17/06/97; 3a. revisão em
25/09/97
Aceito sob recomendação do Ed.Cons. Prof.Dr. Fernando Gomide

32 SBA Controle & Automação Vol. 9 no. 1 / Jan., Fev., Mar. e Abril de 1998

3 REINFORCEMENT LEARNING CONTROL
SCHEMES

There are two main classes of reinforcement learning
algorithms: model-based algorithms and model-free
algorithms. In the first one, the model-based algorithm learns a
model and use it to derive a controller (Sutton, 1990a; Kumar
and Varaya, 1986; Sutton, 1990b). In the second class, the
model-free algorithms learn a controller but does not learn a
model (Barto, 1983; Watkins, 1989; Dayan and Sejnowski,
1994; Sutton, 1988).

Model based algorithms demand great computational effort in
order to obtain a reward function and a state transition function
(Kaelbling et alii, 1996). Comparative studies suggest that
among the model-free algorithms, the Barto, Sutton and
Anderson algorithm (1983), BSA hereafter, has lower failure
indices (Moriaty and Mükkulainen, 1996).

The main features of the BSA algorithm may be summarized as
follows. The control signal is given by an adaptive search
element (ASE) which is in charge of mapping the plant state in
such a way that one out of two control actions happens, one for
better and one for worse. This mapping is done by associating
weights to partitions of the state space. The weights are
changed by a rule which considers both a control action and a
reinforcement signal in such a manner that decreases the
probability of a control action that has happened at instants
close to a failure occurrence. One can conclude that a failure
inhibits the associated behavior. The reinforcement signal may
be given by a measure of the plant performance.

The training strategy above is not suitable for the incorporation
of a variety of control actions. Actually, a failure occurrence
still indicates that the weights must be changed, however it
does not indicate how, since more than two actions would be
taken. For instance, a failure may indicate that a behavior must
be stimulated rather than inhibited. We will show an illustrative
example of this in Section 5.1.

In this paper fast learning schemes are devised because we use
an on line learning controller with failures occurring during the
training procedure, since the controller learns from experience.
We consider two solutions to the learning problem. In the first
one, the designer analyses the plant in order to provide a
suitable reinforcement criterion. In the second one, the
controller incorporates a temporal failure evaluation criterion.

Following, in Section 3.1 we describe the scheme obtained by
using the first solution, which we call reinforcement learning
control scheme with designer oriented reinforcement criterion
(RSDO), pointing out where it differs from the BSA algorithm.
In Section 3.2 we present the scheme obtained by using the
second solution, which we call reinforcement learning control
scheme with temporal failure evaluation (RSTFE).

3.1 Reinforcement Learning Control
Scheme with Designer Oriented
Reinforcement Criterion (RSDO)

The strategy of the control with designer oriented
reinforcement criterion is as follows. The control problem is
split into sub-problems by dividing the space state Ψ in a
number of partitions. Each partition is associated with a
specific control signal by adaptive elements. These elements
have their weights adjusted by taking into consideration a
reinforcement signal which indicates whether the system

remains inside the region ∆ or not and, in the RSDO, gives the
correct signal of the weight adjustment. The adaptive elements
are called adaptive search element (ASE) and associative critic
element (ACE). A decoder is used to partition Ψ. When the
system is in partition i the decoder output is equal to one and
zero elsewhere, for i=1,...,iT, with iT being the total of
partitions.

The control input u(k) is given by the ASE output which is of
the form

+= ∑

=

n

i
ii tnoisetxtwfty

1

)()()()((2)

where k is the discrete time, wi is the weight associated with
the partition i, di is the decoder output, ns is a real random
variable with probability density function h, and f is either a
threshold, sigmoid or identity function.

The weight update equation is written as

)()()()1(tetrtwtw iii α+=+ (3)

where the positive constant α is the learning rate, �r is the
internal reinforcement signal, described below, and ei is the
eligibility term, which associates the responsibility of the
weights of partition i with failure occurrence. In the BSA
algorithm, the weight adjust depends on the eligibility which
depends on the control action. As said above, such a rule works
well when only two control actions are considered, otherwise it
may be inappropriate. In this section we use a design oriented
reinforcement criterion to set the weight adjustment rather than
the control signal. Thus, the eligibility is given by (4).

)()1()()1(txteke iii δδ −+=+ (4)

where δ, 0 ≤ δ < 1, is a decay rate.

The internal reinforcement signal, �r , is provided by the ACE,
the objective of which is to predict a failure, allowing
antecipative weight adjustment.

The ACE equations we use are the same as in the BSA
algorithm and are presented here for easy reference.

∑
=

=
Ti

i
ii kdkvkp

1

)()()((5)

)1()()()(ˆ −−+= kpkpkrkr γ (6)

())(ˆ)()1(kekrkvkv iii β+=+ (7)

)()1()()1(kdkeke iii λλ −+=+ (8)

where p is the output of the ACE, vi is the weight associated
with partition i, ei is analogous to the eligibility for the ACE,

r is the reinforcement signal, γ and λ are real valued constants
(where 0 < γ ≤ 1 and 0 ≤ λ < 1), and the positive constant β is
the critic learning rate.

The scheme proposed here incorporates the sign (positive or
negative) of weight update direction into the external
reinforcement criterion. This means that the plant has to be
analyzed in order to provide an appropriate criterion.

The steps of the learning algorithm are as follows, where t is
defined as the trial number, tmax as the total number of trials

and kmax as the total of sampling periods.

1. Initialize the ASE and ACE weights, set t=1;
 2. While t < tmax, do:

SBA Controle & Automação Vol. 9 no. 1 / Jan., Fev., Mar. e Abril de 1998 33

 2.1. t=t+1;
2.2. k=0, r(k)=0, initialize x(k);
2.3. While r(k)=0 and k < kmax, do:

2.3.1. k=k+1;
2.3.2. Generate di(k), i=1,...,iT , by decodifying the actual

system state vector x(k);
2.3.3. Calculate the element outputs u(k) (2) and p(k) (5);
2.3.4. Present u(k) to the system and obtain x(k+1)(1);
2.3.5. Calculate ei(k+1) (4) and ei (k+1) (8), i=1,...,iT;

2.3.6. Determine r(k+1) using a defined criterion and)1(ˆ +kr

(6);
2.3.7. Adjust the ASE weights wi(k+1) (3) and the ACE

weights vi(k+1) (7);
2.4 If k = kmax, stop the algorithm.

Remark: There is no distinction between training and operation
phases in the sense that in normal operation the controller
keeps learning with the same algorithm used for training.

The control design may thus be summarized as follows. First,
establish the region ∆ in which the state must remain; this
region may be simply the set of the feasible state or may
incorporate performance specifications (as illustrated in the
example). Then, choose the reinforcement criterion in order to
provide the correct weight adjustment; the value of r must be
zero when the state is inside ∆. After this, define the
partitioning of the state space (this includes choosing iT) and
choose suitable functions h and f. Then, set the controller
parameters α,δ,γ,β and λ. Finally, set the parameters tmax and

kmax and execute the learning algorithm.

The following comments are useful in the choice of the design
parameters. A high number of partitions may lead to a high
number of trials, on the other hand a low number may be
insufficient. The parameter γ is related to how the difference
between the current and previous reinforcement prediction
affects the internal reinforcement (if γ approximates to one, �r
assumes rewarding values and if γ approximates zero, �r
assumes penalizing values). The learning rates α and β have
similar characteristics: if they are too high, the weight
adjustments are too fast and they never reach the correct value
and if they are too low, the learning procedure becomes too
slow. The eligibility decay rates δ and λ are also similar: higher
values lead to weight adjustment relative to partitions in which
the system stayed in a more remote past. The parameter tmax

is chosen in order to guarantee enough trials for the controller
to learn properly. Further details are found in Barto et alii
(1983).

3.2 Reinforcement Learning Control
Scheme with Temporal Failure
Evaluation (RSTFE)

The previous control scheme may be modified to yield a more
generic algorithm in which it is not necessary to analyze the
plant in order to choose an appropriate reinforcement criterion.
Thus, the issue that arises is how to determine the sign of the
weight adjustment by simply observing its effects on the
system performance.

Let us consider that if the failure time instant in the current trial
is higher than that of the previous one the sign is correct,
otherwise the sign must change. Hence the new weight update
equation is:

))1()(,()()(ˆ)()1(−−+=+ tktktsgkekrkwkw ffiii α (9)

where

<−−
≥−

=
0if,),1(

0if,),1(
),(

vvtsg

vvtsg
vtsg (10)

with kf(t) the instant k in which the failure occurs at trial t, and
sg(0,v)=1.

Now, once the reinforcement signal does not need to give the
correct weight adjustment signal, the reinforcement criterion
may be of the form

−

=
otherwise,0

statefailure,1
)(kr (11)

The design procedure and the learning algorithm are basically
the same as in the RSDO. The differences are that here the
reinforcement criterion does not need to provide the correct
weight adjustment and (3) in step 2.3.7 is replaced by (9).

4 CONTROL WITH SUPERVISED NEURAL
CONTROLLER (SNC)

One of the main advantages of the proposed control schemes,
as a result of the space state partitioning, is their fast learning.
However, the use of partitioning leads to a control input which
is discontinuous and varies abruptly. Also, as a specific control
signal is associated with a entire region of Ψ, it is not possible
to stabilize the system asymptotically, except for particular
classes of systems. In this section, we take advantage of the
interpolation capability of multilayer perceptron neural
networks (MPNN) in order to overcome the problems
described above.

There is a vast literature in Neural Network models and
training (Hertz et alii, 1991; Muller et alii; Heskes and
Wiegerinck, 1996) and they will not be presented here. The
MPNN training may be on line or off line. In the former, the
MPNN is trained simultaneously with the RSDO or the RSTFE
according to Figure 1. In the latter, training and test sets are the
state chosen from the feasible region and the corresponding
control actions given by the RSDO or the RSTFE.

The operation of the SNC is summarized in the following
algorithm where W is the weight matrix obtained in the training
process, kmax is the same as for the RSDO or the RSTFE and

the SNC output u(k) is given by

u(k) = N(x(k)) (12)

where the neural network is represented by the operator N.

1. Set the SNC weights equal to W.
2. k=0, initialize x(k);

Figure 1. SNC supervised on line training.

MPNN

PlantAction
uRSTFE

RSDO or

Learning

State
 x

34 SBA Controle & Automação Vol. 9 no. 1 / Jan., Fev., Mar. e Abril de 1998

3. While k < kmax, do:

3.1. k=k+1;
3.2. Calculate the SNC output u(k) (12);
3.3. Present u(k) to the system and obtain x(k+1) (1);
3.4 If k = kmax, stop the algorithm.

5 MAGNETIC SUSPENSION SYSTEM
EXAMPLE

The control problem is to maintain a magnetic suspension
system, which is nonlinear, autonomous and intrinsically
unstable, around an operational point. This system consists of a
steel sphere kept in suspension by a magnetic field. This field
is generated by a current circulating in a coil (Figure 2). The
state variables are the sphere position (x1), speed (x2) and the
coil current (x3). The control action is the voltage on the coil
terminals (u). Practical constraints together with the system
discrete dynamic equations, used here to simulate the plant, are
found in the Appendix.

Figure 2. Magnetic suspension system with u denoting the
input voltage.

The magnetic suspension system can be controlled using linear
system techniques. The linear quadratic regulator (LQR) can be
used with success to find the control law (u = -Kx) which
minimizes a performance function with respect to the system
linear dynamic equations. This controller achieves the optimal
performance around the equilibrium point. However, the
control system may become unstable when initialized in
positions distant from the operational point.

The system dynamic performance is close to the predicted by
the linearized system if it obeys the constraints inequality:

ϕϕ +≤
−+
−+

≤− 1
)()1(

)()1(
1

kk

kk

ljlj

jj

xx

xx
 (13)

where xj l is the state in the linearized model, and ϕ is a real

valued constant. If inequality (13) is not satisfied, the
difference between the behavior of the real system and the
linearized one is significant, and the system may become
unstable. Figure 3 shows a region θL with ϕ=0.2, for the
magnetic suspension system.

5.1 Learning with the BSA algorithm
Before presenting the magnetic suspension system results
obtained, we illustrate the learning difficulties associated with
the reinforcement criterion mentioned in Section 3.

Figure 4 shows a portion of a learning phase in which the
system response gets worse. The algorithm is the BSA with f
being a saturation non-linearity. The control signal is scaled by
us=u-17.4 such that its value is zero at the equilibrium point.
When the failure occurs in trial 6, the control signal us is
negative. Then the weights are adjusted in such a manner that
decreases the probability of a negative control signal
happening in partitions associated with this failure. In this way
the control signal tends to be less negative and the system
response tends to worsen. Here the failure indicates that the
associated behavior must be stimulated rather than inhibited.

0 2 4 6 8 10
0

5

10

15

20

sampling time k

0 2 4 6 8 10 12
0.0054

0.0056

sampling time k

P
o
s
i
t
i
o
n

x

V
o
l
t
a
g
e

u

t=6

t=9

t=6

t=9

reinf. criterion for x 1

1

0.0058

0.0060

Figure 4. A portion of an execution of the BSA algorithm,
showing that the system response gets worse from trial t=6 to

trial t=9.

Numerous simulations were performed for different
parameters, different output functions f, and also considering a
different plant with no consistent learning success. Similar
results to those displayed in Figure 4 were frequent in all these
simulations.

C
u
r
r
e
n
t
x3

(A)

Position x1 (m)
Figure 3. Region of state space with linear behavior for

ϕ=0,2. The points marked by “x” correspond to the
initial state of Figure 5.

0.005 0.0075 0.010 0.0125

2.50

2.125

1.25

0.876

0.625

0

SBA Controle & Automação Vol. 9 no. 1 / Jan., Fev., Mar. e Abril de 1998 35

5.2 Results
In this section we present simulation results for the developed
control schemes.

5.2.1 LQR Results

Figure 5 shows simulation results for LQR design. As already
mentioned, the system becomes unstable when initialized at
positions distant from the operational point. The LQR
parameters (weight matrices Q and R) are found in the
Appendix.

(m)

Sampling Time k
Figure 5. Sphere position for the optimal controller. Gray

curves show initial state that result in instability. Black curves
display stable dynamics.

5.2.2 RSDO and RSTFE Results

The adopted number of partitions of the state space Ψ is 288
for the first two schemes: 12 intervals for x1, 6 for x2, and 4 for
x3. The learning algorithm is executed for different initial state,
as follows: we define a set of initial state X x xi n i = { , . . . , }1 µ

where µ is the total number of initial state. In step 2 the system
state are initialized as x(0)=Xini(nt) and the learning algorithm
is run for nt =1,...,µ. This procedure is repeated until r(k)
remains at zero for every learning algorithm execution with
initial state x(0) ∈ Xini. The typical number of trials for each
initial state was 29 and 37 for the RSDO and RSTFE,
respectively. The controller parameters are found in the
Appendix.

For the RSDO and RSTFE the function f which gives the value
of the controller output is given by (14).

≤
<<

≥
=

minmin

maxmin

maxmax

,

,

,

)(

uhu

uhuh

uhu

hf (14)

The reinforcement criterion for the RSDO is developed by
analyzing the magnetic suspension system and imposing a
minimal acceptable performance. Equation (15) shows the
reinforcement criterion. See also Figure 6.

<<−
>>+

∆∈
=

)()(or)()(if1
)()(or)()(if1

x if0

)(

inf22inf11

sup22sup11

kxkxkxkx
kxkxkxkxkr (15)

where
)}()()(,)()()(:{ sup22inf2sup11inf1

3 kxkxkxkxkxkxRx <<<<∈=∆
with

≥
<+−

=
ccj

cijcijcj
j kkx

kkxkkxx
kx

,

,]/)[(
)(

min

minminmin
inf

≥
<+−

=
ccj

cijcijcj
j kkx

kkxkkxx
kx

,

,]/)[(
)(

max

maxmaxmax
sup

kc is a sampling time chosen by the designer,

x j cmax is the maximum xj at sampling time kc ,

x j cmin is the minimum xj at sampling time kc ,

x j i max is the maximum initial xj,

x j i min is the minimum initial xj,

 j=1,...,ns.

Figure 6 shows simulation results for the RSDO for different
initial positions of the sphere. Note that this criterion is
satisfied by the system.

0 50 100 150 200 250 300
0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

(m)

P
o
s
i
t
i
o
n

x

Sampling time k

1

Figure 6. RSDO results for different initial positions. The
reinforcement criterion is also shown (dashed line).

The reinforcement criterion for the RSTFE was developed by
imposing a minimal acceptable performance. Equation (16)
shows the reinforcement criterion.

−

∆∈
=

otherwise1

if0
)(

x
kr (16)

where

)}()()(

,)()()(:{

sup22inf2

sup11inf1
3

kxkxkx

kxkxkxRx

<<

<<∈=∆

with x1inf , x1sup , x2inf , x2sup are the same as in (15).

Figure 7 shows simulation results for the RSTFE for different
initial positions of the sphere. Note that this criterion is
satisfied by the system.

0 50 100 150 200 250 300
0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0.014

(m)

Sampling time k

i

P
o
s

o
n

x

i
t

1

Figure 7. RSTFE results for different initial positions. The
reinforcement criterion is also shown (dashed line).

36 SBA Controle & Automação Vol. 9 no. 1 / Jan., Fev., Mar. e Abril de 1998

In Hoskins and Himmelblau (1992), Moriarty and
Mükkulainen (1996) and Anderson (1989) we can find control
examples which make use of reinforcement learning to train
neural networks. In these examples the number of trials to train
the controller is more than five times the number of trials
obtained here. Actually, in Hoskins and Himmelblau (1992)
and Anderson (1989) this number increases to one hundred
times. This may be explained by the fact that the decodification
process we used here was not implemented there.

5.2.3 SNC Results

Here an off-line training for the SNC is used. The training
algorithm is the Backpropagation with the Levenberg
Marquardt method, which yields quadratic convergence
(Bazaraa et alii, 1993). The training data set is chosen as
follows. First, we mark the partitions which the system state
has reached during reinforcement training and we obtain tp, the
total number of these partitions. Then, we generate nt equally
spaced state values per partition and we obtain (by using
RSTFE or RSDO) the corresponding control actions. Finally,

we form a training data set X x xa
t= { ,..., }1 n tp and

u x xa = { (),..., ()}u u
nt t p1 . Similarly, for the testing data set

with ns equally spaced state values per partition, we have

X x xt = { ,..., }1 nst p and u x xt = { (),... , ()}u u
nst p1 . There

are other ways to choose training and test data sets, as for
example using a probability density function to generate state
values, which leads to similar results.

The multilayer perceptron neural network used in the SNC
scheme has three layer with 12, 6, and 1 units, respectively
from the first to the last layer. The activation functions are
hyperbolic tangent in the hidden layers and linear in the output
layer. For the RSTFE we have tp = 118; choosing nt = 6 and ns
= 4 we have a training set with 1416 patterns and a test set with
944 patterns. The typical number of epochs is 20.

Figure 8 shows the results of the SNC trained by the RSTFE
for different initial positions. Finally, Figure 9 shows the
control signal for both RSTFE and SNC for initial position at
0.014 m. The RSDO results are also displayed for comparison.
Notice that the SNC control signal is continuous and smooth,
whereas the RSDO and RSTFE signal vary abruptly.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50

Sampling time k

V
o
l
t
a
g
e

u

(V) (a)

Sampling time k

V
o
l
t
a
g
e

u

(V)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50

(b)

Figure 9. (a) Control signal generated by the RSTFE (solid
line) and by the SNC (dotted line) for initial position at 0,014
m. (b) Control signal generated by the RSDO (solid line) and

by the SNC (dotted line) for initial position at 0,014 m.

We remark that despite of the fact that the SNC does not learn
in real time, a hybrid SNC/adaptive critic scheme may be
proposed to again yield an adaptive control system.

6 DISCUSSIONS AND CONCLUSIONS
In this paper, reinforcement learning schemes with adaptive
elements are used in the design of different controllers,
providing a solution to the control problem described. In
addition, an MPNN trained by one of the developed schemes is
used as the controller.

Each controller developed has its own characteristics. The
RSDO can be used on-line, is adaptive and presents fast
learning. The RSTFE can also be used on-line, is adaptive,
presents fast learning and needs no knowledge of the plant
parameters or models. The main features of the developed
schemes are that few trials are required to train the controllers
and a variety of control actions is taken rather than only two
actions as in the standard reinforcement schemes. Finally, the
SNC presents a continuous control signal, removing the
oscillation that may occur when using the other controllers.
Hence, each control scheme can be used with success to solve
different nonlinear control problems.

The example presented showed that all developed control
schemes can cope with a wider operating range for the plant
than that obtained with the quadratic linear optimal controller
presented. Well developed control methods can be successfully
applied to suspension systems, but they are more dependent on
the knowledge of the plant dynamics and uncertainties.

0 50 100 150 200 250 300
0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

(m)

 Sampling time k

P
o
s
i
t
i
o
n

x1

Figure 8. SNC trained by the RSTFE.

SBA Controle & Automação Vol. 9 no. 1 / Jan., Fev., Mar. e Abril de 1998 37

REFERENCES
Anderson, C. H. (1989). Learning to Control an Inverted

Pendulum Using Neural Networks. IEEE Control
Systems Magazine, Vol. 9, pp. 31-36.

Barto, A. G., R. S. Sutton and C. W. Anderson (1983).
Neuronlike Adaptive Elements That Can Solve Difficult
Learning Control Problems. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-13, pp. 834-846.

Bazaraa, M. S., H. D. Sheral and C. M. Shetty (1993).
Nonlinear Programming: Theory and Algorithms. John
Wiley & Sons Inc., New York.

Brown, M. and C. Harris (1995). Neurofuzzy Adaptive
Modeling and Control. Prentice Hall, Englewood Cliffs,
NJ.

Costa, E. F., R. Tinós, V. A. Oliveira and A. F. R. Araújo
(1997). Reinforcement Learning Schemes for Control
Design. Proc. of the 1997 American Control
Conference, Albuquerque, NM, USA, pp. 2414-2418.

Dayan, P. and T. J. Sejnowski (1994). TD(λ) Converges with
Probability 1. Machine Learning, 14 (3), pp. 295-301.

Dorigo, M. and M. Colombetti (1994). Robot Shaping:
Developing Autonomous Agents through Learning.
Artificial Intelligence, 71 (2), pp. 321-370.

Hoskins, J. C. and D. M. Himmelblau (1992). Process Control
via Artificial Neural Networks and Reinforcement
Learning. Computers Chem. Engng., 16 (4), pp. 241-
251.

Kumar, P.R. and P.P. Varaiya (1986). Stochastic Systems:
Estimation, Identification and Adaptive Control,
Prentice-Hall, Englewood Cliffs, NJ.

Kaelbling, L. P., M. L. Littman and A. W. Moore (1996).
Reinforcement Learning: A Survey. Journal of Artificial
Intelligence Research 4, pp. 237-285.

Milan, J. A. (1996). Rapid, Safe and Incremental Learning of
Navigation Strategies. IEEE Transactions on Systems,
Man and Cybernetics, 26 (3), pp. 408-420.

Millington, P. J. and W. L. Baker (1990). Associative
Reinforcement Learning for Optimal Control. AIAA
Guid. Nav. and Contr., Vol. 2, pp. 1120-1128.

Moriarty, D. A. and R. Mükkulainen (1996). Efficient
Reinforcement Learning through Symbiotic Evolution.
Machine Learning, 22 (1), pp. 11-32.

Muller, W. T., R. S. Sutton and P. J. Werbos, Eds. (1990).
Neural Networks for Control. MIT Press, Cambridge,
MA.

Shelton, R.O. and J. K. Peterson (1992). Controlling a Truck
with an Adaptive Critic CMAC Design. Simulation, 58
(5), pp. 319-326.

Sutton, R.S. (1988). Learning to Predict by the Method of
Temporal Differences. Machine Learning, 3 (1), pp. 9-
44.

Sutton, R.S. (1990). Integrated Architectures for Learning,
Planning and Reacting Based on Approximating

Dynamic Programming. Proc. of the Seventh
International Conference on Machine Learning, Austin,
TX, USA, pp. 216-224.

Sutton R. S. (1990). First Results with Dyna and Integrated
Architecture for Learning, Planning and Reacting. In W.
T. Muller, R. S. Sutton and P. J. Werbos (Eds.) Neural
Networks for Control, MIT Press, pp. 179-189.

Sutton R. S., A. G. Barto and R. J. Williams (1992).
Reinforcement Learning is Direct Adaptive Optimal
Control. IEEE Contr. System Magazine, pp. 19-22.

Vidyasagar, M. (1993). Nonlinear Systems Analysis. Prentice-
Hall, Englewood Cliffs, NJ.

APPENDIX
The system suspension dynamic equations:

x k T g
L

am

T x k

x k a
b

1 0
2 0 0 3

1

2

1
2 1 1

()
()

() /
+ = +

+ −

+ − − −2 1 21 1x k x k() () (A-1)

()()x k T x k x k2 0 1 11 1 1() / () ()+ = − − (A-2)

()x k
T R L

Lx k T u k3
0

3 01
1

1() () ()+ =
+

 − + (A-3)

where x1 is the sphere position, x2 the sphere speed, x3 the

coil current, T0 the sampling period, u the coil voltage, g

gravity constant, m the mass of the steel ball, R the coil
resistance, L the coil inductance, Lb0 the coil inductance when

x1 = 0 and a a constant.

Parameters of real system of magnetic suspension:

m=0.02255 kg, R=19.9 Ω, a=0.00607,Lb =0.47 H,

Lb0 =0.0245 H and T0=0.001 s.

Equilibrium point: (x o1 , x o2 , x o3) = (0.01; 0.0; 0.876).

Practical constraints on the state:

 0005 0015 0 2511 3. . .≤ ≤ ≤ ≤x x and

Practical constraints on the control action:

 0 ≤ u ≤ 50 V.

Intervals for x1:
[0.0050 0.0065]; [0.0065 0.0078]; [0.0078 0.0088];
[0.0088 0.0094]; [0.0094 0.0099]; [0.0099 0.0100];
[0.0100 0.0101]; [0.0101 0.0106]; [0.0106 0.0112];
[0.0112 0.0122]; [0.0122 0.0135]; [0.0135 0.0150].
Intervals for x2:
[-0.40 -0.20]; [-0.20 -0.05]; [-0.05 0.00]; [0.00 0.05];
[0.05 0.20]; [0.20 0.40].
Intervals for x3:
[0.00 0 .94]; [0.94 1.26]; [1.26 1.57]; [1.57 2.51].

38 SBA Controle & Automação Vol. 9 no. 1 / Jan., Fev., Mar. e Abril de 1998

Parameters of the LQR:

Q=5×106 I3 ; R=1×10-4.

Parameters of the RSDO:

tmax=100; kmax=500; x1cmax=0.0105; x1cmin=0.0095; umax =

50; umin = 0; α=3; β=0.2; δ=0.85; γ=0.995, λ=0.95, f is the
identity function and ns is a real random variable with normal
probability density function with zero mean and variance equal
to one.

Parameters of the RSTFE:

tmax=100; kmax=500; kc =50; x cmax1 =0.0108;

x cmin1 =0.092; x i max1 =0.015; x i min1 =0.005; x cmax2 =0.1;

x cmin2 =-0.1; x i max2 =0.3; x i min2 =-0.3

x cmax3 = x i max3 = ∞ ; x i max3 = x i min3 =- ∞ ; umax = 50; umin

= 0; µe max=9; for Xini

we set x2=0 and x3=0.876, and we varied x1=0.006 to x1=0.014
in steps of 0.001; α=3; β=0.2; λ=0.7; γ=1, δ=0.9, again f is the
identity function and ns is a real random variable with normal
probability density function with zero mean and variance equal
to one.

