Controle de processos industriais com tempo morto: quando usar um PID ou um controlador avançado

Prof. Julio Elias Normey-Rico

DAS UFSC

Webinar SBA - julho 2023

Dead-time processes

Dead-time processes are common in industry and other areas

Main dead-time (or delay) causes are:

- •Transportation dead time (mass, energy)
- •Apparent dead time (cascade of low order processes)
- •Communication or processing dead time

Control of dead-time processes

- Dead time makes closed-loop control difficult
- Simplest solution:
 - PID trade-off robustness and performance
- Basic dead-time compensator Smith Predictor (SP)
- Improved solutions: Modified SP (ex. FSP)
- Advanced solution: Model Predictive Control MPC

Most used in industry PID – DTC – MPC *

Industry 4.0 – complex controllers at low level

* A Survey on Industry Impact and Challenges Thereof. IEEE CONTROL SYSTEMS MAGAZINE 17

When to use advanced control?

models

compensates dead-time and can use high order models is optimal and consider constraints

Objectives: Analysis of PID, DTC and MPC for dead-time processes

- 1. Motivating examples, PID and DTC control.
- 2. Ideal control of dead-time processes
- 3. PID tuning using DTC ideas
 - 1. Unified tuning using FSP (stable and unstable plants)
 - 2. Trade-off performance-robustness
 - 3. Comparing PID and DTC
- 4. MPC, FSP and PID controllers
 - 1. Unconstrained case
 - 2. Constrained case Using anti-windup
- 5. Conclusions

Motivating examples

Simple model – big delay

Simple model with large delay and large modelling error

Conclusions Simple model with Well known delay (network) small modelling error $P_n(s) = \frac{e^{-0.2s}}{s+1}$ Fast PID tuning (without oscillations) disturbance 0.1 Even for a small 0 delay DTC offers -0.1 Process better response -0.2 0.5 1.5 2.5 3.5 2 0 1 3 1.5

Fast response – small delay

Motivation examples

MPC FSP and PID

Ideal control

PID tuning

Control

0.5

0.5

0L 0 Robust DTC for the assumed modelling error

2

2.5

3.5

3

1.5

1

To study the advantages of advanced controllers

for dead-time processes related to:

• Process dead-time

• Process modeling error (robustness)

• Other aspects: Model complexity

Constraints handling

PID control of dead-time processes: robustness, dead-time compensation and constraints handling

Ideal control of deadtime processes

Smith predictor of a pure delay process

Ideal control PID tuning MPC FSP and PID Conclusions

Motivation examples

Smith predictor of a FOPDT process

Ideal Control – Achievable Performance

Normal index

 $J = \int_0^\infty |e(t)| dt$

e(t) = r(t) - y(t)

No controller can act before

Ideal Control – Achievable Performance

Ideal Control – Achievable Performance

PID control of dead-time processes: robustness, dead-time compensation and constraints handling

Is it ideally possible to achieve $J_{min} = 0$?

Motivation examples Ideal control

MPC FSP and PID Conclusions

PID tuning

Is it ideally possible to achieve $J_{min} = 0$?

The same myr as SP

$$C(s)G_n(s)e^{-Ls}$$

Motivation examples

MPC FSP and PID Conclusions

PID tuning

$$H_{yr}(s) = \frac{\mathcal{O}(\mathcal{O})\mathcal{O}_n(\mathcal{O})\mathcal{O}}{1 + C(s)G_n(s)} F(s)$$

Is it ideally possible to achieve $J_{min} = 0$?

$$H_{yr}(s) = \frac{C(s)G_n(s)e^{-Ls}}{1 + C(s)G_n(s)}F(s)$$

Motivation examples Ideal control

MPC FSP and PID Conclusions

PID tuning

Filtered Smith Predictor

The filter *Fr(s)* allows:

- Eliminates the open-loop dynamics from the input disturbance response
- □ FSP for unstable plants
- □ FSP for ramp and other disturbances
- Robustness-Performance trade-off

$$H_{yq}(s) = P_n(s) \left[1 - H_{yr}(s)F_r(s)\right]$$

Is it ideally possible to achieve $J_{min} = 0$?

Motivation examples Ideal control

MPC FSP and PID Conclusions

PID tuning

Filtered Smith Predictor

The filter *Fr(s)* allows:

Eliminates the open-loop dynamics from the input disturbance response

- □ FSP for unstable plants
- □ FSP for ramp and other disturbances
- Robustness-Performance trade-off

$$H_{yq}(s) = P_n(s) \left[1 - H_{yr}(s)F_r(s)\right]$$

Example: Integrative plant

Simple Process
$$P(s) = \frac{e^{-Ls}}{s}$$

Controller: $C(s) = k_c$

Motivation examples

MPC FSP and PID Conclusions

Ideal control

Filter $F_r(s) = 1 + Ls$

$$H_{yr}(s) = e^{-Ls}$$
$$H_{yq}(s) = \frac{e^{-Ls}}{s} - \frac{e^{-2Ls}}{s} - Le^{-2Ls}$$

Ideal Tuning: $k_c \to \infty$

Many FSP successful applications in practice:* Termo-solar systems, Compression systems, Neonatal Care Unit. FSP autotuning for simple process**

Idea: To derive a PID tuning for dead-time

processes using the FSP approach

PID is a low frequency approximation of the FSP.

$$C(s) = \frac{K_c(1+sT_i)(1+sT_d)}{sT_i(1+s\alpha T_d)}$$

*Torrico, Cavalcante, Braga, Normey-Rico, Albuquerque, I&EC Res. 2013. **Normey-Rico, Sartori, Veronesi, Visioli. Control Eng. Practice, 2014 *Flesch, Normey-Rico, Control Eng. Practice, 2017 * Roca, Guzman, Normey-Rico, Berenguel, Yebra, Solar Energy, 2011

PID tuning using FSP

Tuning procedure

• Process models: FOPDT, IPDT, UFOPDT

$$G_n(s) = \frac{K_p}{1+sT} \qquad G_n(s) = \frac{K_p}{s} \qquad G_n(s) = \frac{K_p}{sT-1}$$

- PI primary controller (only P for the IPDT) $C(s) = K \frac{1+s\tau_i}{s\tau_i}$
- FO predictor filter $F_r(s) = \frac{1+sT_1}{1+sT_2}$ (tuning for step disturbances)
- Tuning for a delay-free-closed-loop system with pole (double pole) in $s=-1/T_0$
- *To* is the only tuning parameter for a trade-off robustness-performance

Tuning procedure

Equivalent 2DOF controller

Tuning advantages of the predictor-PID

- □ Unified approach for FOPDT, IPDT and UFOPDT (L<2T) □ It has only one tuning parameter T_0^*
- $\hfill \Box$ Has similar performance than well known methods*
- □ It is a low frequency approximation of the ideal solution for first order dead-time models

Interesting PID tuning method to use in comparisons with dead-time compensators and predictive controllers

Next: To compare PID and FSP

* Normey-Rico and Guzmán. Ind. & Eng. Chem. Res., 2013 * Astrom and Hagglund, Research Triangle Park, 2006

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC formula for the formula for

Performance Index

$$J = \lambda \int_{t=t_s+L}^{t_d} |r(t) - y(t)| + (1 - \lambda) \int_{t=t_d+2L}^{t_{ss}} |r(t) - y(t)|$$

 $\lambda \in [0, 1]$ $\lambda = 0.5$ in this work

PID control of dead-time processes: robustness, dead-time compensation and constraints handling

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC FSP Conclusions MPC FSP and PID Conclusions C

Robustness

Robust condition $R(\omega) > \overline{dP}(\omega) \ge |dP(j\omega)| \quad \forall \omega > 0$

Conservatism can be avoided separating dead-time uncertainties*

*Larsson and Hagglund (2009), ECC 2008

PID control of dead-time processes: robustness, dead-time compensation and constraints handling

0

 $\left(\right)$

0.5

Motivation examples

MPC FSP and PID Conclusions

Ideal control **PID** tuning

JFSP

 T_0/L

2

1.5

1

Motivation examples

MPC FSP and PID Conclusions

Ideal control PID tuning

Motivation examples

MPC FSP and PID Conclusions

Ideal control PID tuning

- Robust tuning $J_{FSP} \approx J_{PID}$
- Fast tuning $J_{FSP} < J_{PID}$

Motivation examples

MPC FSP and PID Conclusions

Ideal control PID tuning

- Robust tuning $J_{FSP} \approx J_{PID}$
- Fast tuning $J_{FSP} < J_{PID}$
- PID for robust solutions FSP has advantages with good models

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC FSP and PID Conclusions

Integrative plant

• Similar to Lag-dominant plants

- Same conclusions as in FOPDT
- UFOPDT Robustness has a limit increasing T_0 *
 - * Normey-Rico and Camacho, 2007, Springer

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC FSP and PID Conclusions

Tuning: Trade-off Robustness-Performance

Minimise J for robust stability for a given modelling error

Particular tuning using: $R(\omega) > \overline{dP}(\omega) \quad \forall \omega > 0$

• Minimise J for robust stability for a given $R_m = \min_{\omega} R(\omega)$ General tuning using R_m (or M_S) $\frac{1/M_s}{\sqrt{-1}}$

PID control of dead-time processes: robustness, dead-time compensation and constraints handling

FSP-PID comparative analysis

Tuning: Trade-off Robustness-Performance

Minimise J for robust stability for a given modelling error

Particular tuning using: $R(\omega) > dP(\omega) \quad \forall \omega > 0$

Minimise J for robust stability for a given $R_m = \min_{\omega} R(\omega)$ General tuning using R_m (or M_S) $j\omega$ $1/M_s$ Control effort (total variation) and σ noise attenuation are directly related to robustness indexes as R_m (or M_s)* $C(j\omega)P_n(j\omega)$ * Grimholt and Skogestad 2012, IFAC PID 2012.

PID control of dead-time processes: robustness, dead-time compensation and constraints handling

Conclusions

Ideal control PID tuning

Motivation examples

MPC FSP and PID Conclusions

- Case 1: poor model information (large modelling error)
 - Simple model is used for tuning
 - High robustness is mandatory
 - Step disturbances

PID will be the best solution, even for dead-time dominant systems

- Case 2: good model is available (small modelling error)
 - Fast responses are required
 - Low robustness is enough
 - Complex models or disturbances

FSP will be better (even for lag-dominant systems) because of the PID nominal limitations

FSP-PID comparative analysis

Conclusions

Concerning dead-time: dead-time value is less important than dead-time modelling error.

Implementation issues:

•FSP is implemented as a 2DOF discrete controller
•FSP is a complex algorithm (delay order (in samples) + model order)
•PID is simple to implement

General problems in industry: large modelling error, noise, simple models and solutions

Use a well tuned PID for dead-time processes
Motivation examples Ideal control **PID tuning** MPC FSP and PID Conclusions

Example 1: High-order system

$$P(s) = \frac{e^{-s}}{(s+1)^3}$$

$$P_n(s) = \frac{e^{-2s}}{(2s+1)}$$

Prediction Model for FSP

FSP and PID have the same performance

**Garpinger, O. and T. Hägglund (2015), Journal of Process Control.

** SWORD Matlab software tool.

Motivation examples Ideal control **PID tuning** MPC FSP and PID Conclusions

Example 2: PID, SP and FSP

$$P(s) = \frac{e^{-10s}}{1 + \frac{2\xi s}{\omega_n} + \frac{s^2}{\omega_n^2}}$$

- SP and FSP with the same primary PID controller
- PID tuning for min IAE for *Ms*=2 (using sword tool)

Robustness : FSP stable up to -35% or +35% delay error, SP unstable for 20% delay error

Example 2: PID, SP and FSP

Motivation examples Ideal control **PID tuning** MPC FSP and PID Conclusions

$$P(s) = \frac{e^{-10s}}{1 + \frac{2\xi s}{\omega_n} + \frac{s^2}{\omega_n^2}}$$
$$\xi = 0.2, \, \omega_n = 1$$

- SP unstable for this case
- PID and FSP similar responses

FSP and PID with plant constraints

- In real process control action is limited, as well as slew rate
- Also, process output should be between limits
- Anti-windup (AW) can be used to mitigate the effect of the saturation in the integral action in PID and FSP
- MPC appears as a direct solution to implement optimal control under system constraints

When is MPC a better choice?

MPC, FSP and PID

GPC – Generalized predictive controller

General MPC idea

Motivation examples

MPC FSP and PID Conclusions

Ideal control

Motivation examples

MPC FSP and PID

Ideal control

Motivation examples

MPC FSP and PID

Ideal control

Motivation examples

MPC FSP and PID

Ideal control

Motivation examples

MPC FSP and PID

Ideal control

Prediction computation

Motivation examples

MPC FSP and PID

Ideal control

Conclusions

Prediction computation

Motivation examples

MPC FSP and PID

Ideal control

Conclusions

PID tuning

GPC structure ?

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC Conclusions MPC SP and PID

Prediction computation

Motivation examples Ideal control GPC analysis for Dead-time Processes **PID** tuning **MPC FSP and PID** Conclusions Prediction computation $y(k+d+j/k) \quad j=1...N$ $y(k+j/k) \quad j = 1...d$ u_{past} past Delay horizon Prediction horizon of J y_{past} $k+d \quad k+d+1$ k+d+Nk GPC structure ? w(k) q(k)**y**(**k**) (unconstrained) F(z)C(z)P(z)C(z) integral action z^{-d} $G_n(z)$

 $y_p(k)$

optimal predictor

 $\operatorname{order} \{G_n(z)\} \to \operatorname{order} \{C(z), F_r(z)\}$

coefficients related to N, N_u, λ

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions

Unconstrained GPC structure

- GPC is equivalent to a discrete FSP
- FSP can be tuned using GPC method (exactly the same solution)
- FSP-MPC can be used (for robust controllers and easy tuning)*
- For 1st order models \rightarrow GPC \Rightarrow 2DOF FSP (PI primary controller)

Comparison FSP-PID is valid for GPC-PID for 1st order models

Is valid for other linear MPC (simply a model rearrangement)

Constrained case?

* Normey-Rico and Camacho, 2007, Springer

* Lima, Santos and Normey-Rico, 2015, ISA Transactions

Motivation examples

MPC FSP and PID

Ideal control

Conclusions

Motivation examples

MPC FSP and PID

Ideal control

Conclusions

Motivation examples

MPC FSP and PID

Ideal control

PID tuning

Conclusions

Motivation examples

MPC FSP and PID

Ideal control

Conclusions

GPC gives goods results with small N_u (in many applications $N_u=1$ is enough*)

* De Keyser and Ionescu, IEEE CCA 2003

Motivation examples

MPC FSP and PID

Ideal control

Conclusions

Motivation examples Ideal control MPC FSP and PID Conclusions AW scheme $r(k) \leftarrow e(k) \leftarrow C(z) \leftarrow u(k) \leftarrow u_{min} \leftarrow u_r(k) \leftarrow P(z) \quad \forall k) \leftarrow \psi(k) \leftarrow \psi($

 $u_i(k)$ has the integral action of PID or FSP

$$u(k) = u_i(k) + u_d(k)$$

 $u_d(k)$ has the rest of the control action of PID or FSP

AW originally derived for control action constraints

Several AW strategies in literature

Recalculation of the error signal at every sample

Objective: to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

* Flesch and Normey-Rico, Control Eng. Practice, 2017

*Silva, Flesch and Normey-Rico, IFAC PID 18

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC PID tuning

Recalculation of the error signal at every sample

Objective: to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

PID case $\begin{bmatrix} u(k) = u(k-1) + n_0 e(k) + n_1 e(k-1) + n_2 e(k-2) \\ u(k) > u_{max} \rightarrow u_r(k) = u_{max} \end{bmatrix}$

* Flesch and Normey-Rico, Control Eng. Practice, 2017

*Silva, Flesch and Normey-Rico, IFAC PID 18

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC FSP and PID

Recalculation of the error signal at every sample

Objective: to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

PID case $\begin{bmatrix} u(k) = u(k-1) + n_0 e(k) + n_1 e(k-1) + n_2 e(k-2) \\ u(k) > u_{max} \rightarrow u_r(k) = u_{max} \end{bmatrix}$ Consider: $u_r(k) = u(k-1) + n_0 e^*(k) + n_1 e(k-1) + n_2 e(k-2)$?

* Flesch and Normey-Rico, Control Eng. Practice, 2017

*Silva, Flesch and Normey-Rico, IFAC PID 18

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC FSP and PID

Recalculation of the error signal at every sample

Objective: to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

PID case $\begin{bmatrix} u(k) = u(k-1) + n_0 e(k) + n_1 e(k-1) + n_2 e(k-2) \\ u(k) > u_{max} \to u_r(k) = u_{max} \end{bmatrix}$ Consider: $u_r(k) = u(k-1) + n_0 e^{*}(k) + n_1 e(k-1) + n_2 e(k-2)$? $(k) = e(k) + \frac{u_r(k) - u(k)}{n_0}$ Used in the code to update the error: $e(k-1) = e^{*}(k)$

* Flesch and Normey-Rico, Control Eng. Practice, 2017

*Silva, Flesch and Normey-Rico, IFAC PID 18

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC FSP and PID

Recalculation of the error signal at every sample

Objective: to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

PID case $\begin{bmatrix} u(k) = u(k-1) + n_0 e(k) + n_1 e(k-1) + n_2 e(k-2) \\ u(k) > u_{max} \to u_r(k) = u_{max} \end{bmatrix}$ Consider: $u_r(k) = u(k-1) + n_0 e^*(k) + n_1 e(k-1) + n_2 e(k-2)$? Used in the code to update the error: $e(k-1)=e^*(k)$

ER* better results, principally in noise environment

* Flesch and Normey-Rico, Control Eng. Practice, 2017

*Silva, Flesch and Normey-Rico, IFAC PID 18

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions
MND for dead-time processes

Including several constraints in AW scheme

 $u(k) < U_{max}$ $\Delta u(k) < \Delta u_{max}$ $y(k) < y_{max}$

 $\Delta u(k) < \Delta u_{max} \qquad \qquad y(k) < y_{max}$

Including several constraints in AW scheme

Including several constraints in AW scheme

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC for dead-time processes

Including several constraints in AW scheme

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions MPC for dead-time processes

Including several constraints in AW scheme

SIMPLE CASE: FOPDT

Motivation examples

MPC FSP and PID Conclusions

Ideal control

$$y(k) = ay(k-1) + bu(k-d-1)$$

SIMPLE CASE: FOPDT
$$y(k) = ay(k-1) + bu(k-d-1)$$

MPC FSP and PID

Conclusions

$$y(k+d) = a^{d}y(k) + ba^{d-1}u(k-d) + \dots + bu(k-1)$$

SIMPLE CASE: FOPDT
$$y(k) = ay(k-1) + bu(k-d-1)$$

MPC FSP and PID

Conclusions

$$y(k+d) = a^{d}y(k) + ba^{d-1}u(k-d) + \dots + bu(k-1)$$
$$y(k+d+j) = a^{j}y(k+d) + \underbrace{(a^{j-1} + a^{j-2} + \dots + 1)b}_{K_{j}}u(k)$$

SIMPLE CASE: FOPDT y(k) = ay(k-1) + bu(k-d-1)

Motivation examples

MPC FSP and PID Conclusions

Ideal control

$$y(k+d) = a^d y(k) + ba^{d-1}u(k-d) + \dots + bu(k-1)$$

$$y(k+d+j) = a^{j}y(k+d) + \underbrace{(a^{j-1} + a^{j-2} + \dots + 1)b}_{K_{j}}u(k)$$

$$y(k+d+j) < y_{max}$$
 $\sum \left(u(k) < \frac{y_{max} - a^j y(k+d)}{K_j} \right)$

SIMPLE CASE: FOPDT
$$y(k) = ay(k-1) + bu(k-d-1)$$

Ideal control

MPC FSP and PID Conclusions

$$y(k+d) = a^d y(k) + ba^{d-1}u(k-d) + \dots + bu(k-1)$$

$$y(k+d+j) = a^{j}y(k+d) + \underbrace{(a^{j-1} + a^{j-2} + \dots + 1)b}_{K_{j}} u(k)$$

$$y(k+d+j) < y_{max}$$
 $\sum \left(u(k) < \frac{y_{max} - a^j y(k+d)}{K_j} \right)$

$$u(k) < \min\{U_{max}; \Delta u_{max} + u(k-1); \frac{y_{max} - a^j y(k+d)}{K_j}\}$$
Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions GPC or FSP(PID) ER-AW?

- Constrained GPC or FSP-ER-AW
 - Good tuned FSP with ER-AWP **equivalent** to GPC (Nu=1)
 - On-line optimization is avoided with FSP
 - FSP filter tuning is **easy** in practice

Several successful applications in solar systems and refrigeration plants *

- In robust industrial solutions \rightarrow PID-ER-AW
 - Simple models are used
 - **Robust tuning** (low *Ms* or high *Rm* values)

* Roca, Guzman, Normey-Rico, Berenguel and Yebra, Solar Energy, 2011 * Flesch and Normey-Rico, Control Eng. Practice, 2017

Water temperature control

Motivation examples

MPC FSP and PID

Ideal control

PID tuning

Conclusions

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions

Temperature control

$$\frac{T(s)}{U(s)} = \frac{0.76}{304.7s+1} e^{-108s}$$
$$u_{max} = 95\%$$
$$u_{min} = 5\%$$

Motivation examples

MPC FSP and PID Conclusions

Ideal control

PID tuning

$$\frac{T(s)}{U(s)} = \frac{0.76}{304.7s+1} e^{-108s}$$
$$u_{max} = 95\%$$
$$u_{min} = 5\%$$

Motivation examples

MPC FSP and PID

Ideal control

Conclusions

PID tuning

Important

- To maintain Inlet temperature
- Fast set-point response
- Fast disturbance rejection
- Delay error well estimated

$$\frac{T(s)}{U(s)} = \frac{0.76}{304.7s+1} e^{-108s}$$
$$u_{max} = 95\%$$
$$u_{min} = 5\%$$

Motivation examples

MPC FSP and PID

Ideal control

Conclusions

PID tuning

Important

- To maintain Inlet temperature
- Fast set-point response
- Fast disturbance rejection
- Delay error well estimated

FSP ER-AWP

Motivation examples

MPC FSP and PID

Ideal control

PID tuning

Conclusions

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions

Conclusions

- When controlling dead-time processes....
 - Performance measurement after the dead-time
 - Ideal solution can be achieved by FSP (or other improved DTC)
 - Dead-time estimation error is very important
 - Constrained case: ER AW FSP can be equivalent to MPC
- PID for dead-time processes
 - Can be tuned as a low order approximation of FSP
 - Performance improvement is limited in complex cases
 - For high robust solutions PID is equivalent to FSP (even for high L)
 - ER AW PID sub-optimal solution with good results.

Motivation examples Ideal control PID tuning MPC FSP and PID Conclusions

Conclusions

- When controlling dead-time processes....
 - Performance measurement after the dead-time
 - Ideal solution can be achieved by FSP (or other improved DTC)
 - Dead-time estimation error is very important
 - Constrained case: ER AW FSP can be equivalent to MPC
- PID for dead-time processes
 - Can be tuned as a low order approximation of FSP
 - Performance improvement is limited in complex cases
 - For high robust solutions PID is equivalent to FSP (even for high L)
 - ER AW PID sub-optimal solution with good results.

Low-order-process models
Large modelling error
Noise environment
Typical constraints

Well tuned robust PID with AW is the best option

- PID still has an important figure in process industry
- DTC strategies with PI or PID primary controllers can be considered as extensions of simple PID control and used in particular cases
- Improved AW PID algorithms (or FSP AW) can be the solution in modern real-time distributed control systems for simple constrained systems
- MPC solutions are important in complex well modeled systems and at second level control

Obrigado

julio.normey@ufsc.br

PID control of dead-time processes: robustness, dead-time compensation and constraints handling