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Abstract: The recent worldwide epidemic of Covid-19 disease, for which there is no vaccine or
medications to prevent or cure it, led to the adoption of public health measures by governments
and populations in most of the affected countries to avoid the contagion and its spread.
These measures are known as nonpharmaceutical interventions (NPIs) and their implementation
clearly produces social unrest as well as affects the economy. Frequently, NPIs are implemented
with an intensity quantified in an ad hoc manner. Control theory offers a worthwhile tool for
determining the optimal intensity of the NPIs in order to avoid the collapse of the healthcare
system while keeping them as low as possible, yielding in a policymakers concrete guidance.
We propose here the use of a simple proportional controller that is robust to large parametric
uncertainties in the model used.
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1. INTRODUCTION

The novel SARS-CoV-2 Coronavirus, which produces the
disease known as Covid-19, was first reported on December
2019 in Wuhan, province of Hubei, China. With amazing
speed it spread to the majority of the countries in the
world. The outbreak has been declared as a public health
emergency of international concern by the World Health
Organization (WHO) on Jan. 30, 2020 and as a pandemic
on March 11.

At the moment, there is no vaccine against this virus or
effective medicines to cure the disease. Health systems only
try to mitigate its consequences to avoid complications and
fatal outcomes. This disease showed a great capacity of
contagion and high fatality rates (see updated reports in
Worldometers (2020)).

Patients affected by this disease experience a number of
symptoms, not all clearly identified at the moment, but
which are mainly cough, breathing difficulties, fever, loss
of taste and smell and extreme tiredness. Frequently, pa-
tients develop a form of viral pneumonia that requires
hospitalization and artificial mechanical ventilation in in-
tensive care units. The large number of patients affected
by this disease threatens to collapse public health systems,
increasing the fatality rates by lack of available health
assistance.

In this context, is very important to predict the trend of
the epidemic in order to plan effective strategies to avoid
its spread and to determine its impact. As the contagion
is produced very easily by simple contact between people,
several measures were adopted by the governments, public

health systems and populations in order to reduce the
transmission by reducing contact rates. Examples of these
measures, the so called nonpharmaceutical interventions
(NPIs) include the closing of schools, churches, factories,
as well as quarantine or physical-distancing policies, con-
finement of people in their homes, among other social
impositions that produce discomfort and clearly harm the
economy.

This goal sparked many articles recently published on the
epidemic behavior. A number of them are addressed to-
wards determining a mathematical model that represents
the dynamics of different agents involved in a population
affected by the disease. The dynamic described by the
model aims to make possible to answer crucial issues,
such as the maximum number of individuals that will
be affected by the disease and when that maximum will
occur, and makes key predictions concerning the outbreak
and eventual recovery from the epidemic. This information
allows to devise public policies and strategies to mitigate
the social impact and reduce the fatality rate. The semi-
nal work Ferguson et al. (2020) exemplifies and analyses
different strategies to control the transmission of the virus.

Most of the models adopted to represent the dynamical
behavior of the Covid-19 are based on the SIR model, first
introduced by Kermack and McKendrick (1927). The SIR
model is a basic representation widely used which describes
key epidemiological phenomena. It assumes that the epi-
demic affects a constant population of N individuals. The
model neglects demography, i.e. births and deaths by other
causes unrelated to the disease 1 .

1 In Argentina, the daily death rate is 2.055 10−5.
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The population is broken into three non-overlapping
groups corresponding to stages of the disease:

• Susceptible (S). The population susceptible to ac-
quire the disease.
• Infected (I). The population that has acquired the

virus and can infect others.
• Recovered (R). The population that has recovered

from infection and presumed to be no longer suscep-
tible to the disease 2 .

A brief description of these compartments is given below.
Susceptible people are those who have no immunity and
they are not infected. An individual in group S can move
to group I by infection produced through contact with
an infected individual. An infected individual recovered
from the disease is moved from the group I to the group
R. Some references (see, for example Lin et al. (2020);
Savi et al. (2020); Liu et al. (2020b)) considers the group
R as removed population, or closed cases, which includes
those who are no longer infectious from recovery and the
ones who died from the disease. The summation of these
three compartments in the SIR model remains constant
and equals the initial number of population N .

In order to describe better the spread of epidemics,
many works (see, for example Kantor (2020); Gutierrez
and Varona (2020); Stewart et al. (2020); Nesse (2020))
adopted the SEIR model. In the SEIR model a fourth
group denoted as Exposed (E) is added between the group
S and the group I:

• Exposed (E). The population that has been infected
with the virus, but not yet in an infective stage
capable of transmitting the virus to others.

Other works (see Abdulrahman (2020) for example) con-
sider an additional compartment at the end of the SIR or
of the SEIR model to distinguish between recovered and
death cases:

• Dead (D). The population dead due to the disease.

Thus, these models become the SIRD or the SEIRD
models, respectively.

Other works as Tang et al. (2020); Lin et al. (2020); Savi
et al. (2020); Liu et al. (2020b) consider the existence of
other groups seeking to match the models proposed with
the data obtained from the actual Covid-19 disease.
The work presented in Giordano et al. (2020) has to be
specially mentioned. This work studies the evolution of
the Covid-19 in Italy, and proposes a model denoted as
SIDARTHE, where the letters correspond to eight groups
denoted as Susceptible, Infected, Diagnosed, Ailing, Rec-
ognized, Threatened, Healed and Extinct respectively. All
of them are subgroups of those presented in the SEIR
model. This model discriminates between detected and
undetected cases of infection, either asymptomatic or
symptomatic, and also between different severity of illness,
having a group for moderate or mild cases and another one
for critical cases that require hospitalization in intensive
care units. The authors affirm that the distinction between

2 At the moment, is an open question if a recovered person can
get re-infected. Even though some cases were recently reported, the
reinfection rate value appears to be statistically negligible based on
early evidence.

diagnosed and nondiagnosed is important because nondi-
agnosed individuals are more likely to spread the infection
than diagnosed ones, since the later are typically isolated,
and can explain misperceptions of the case fatality rate
and the seriousness of the epidemic phenomena. The fact
of considering more groups in the SIDARTHE model than
in the SEIR model allows a better discrimination between
the different agents involved in the epidemic evolution.
In Liu et al. (2020b) the authors also consider a model
that disciminates between reported and unreported symp-
tomatic cases. However, the fact of increasing the number
of groups implies the knowledge of more rates and proba-
bilities that determine the dynamics between the groups.
Many of these values are difficult to know in practice, as
well as to estimate the population of some groups, such
as Ailing (symptomatic infected undetected). The authors
choose these constants and quantities to fit the model to
the actual data. In order to achieve the goal of better
determining public policies, we believe that the existence
of some of these groups in the model used is not necessary.
We propose the use of the control theory to guide the
determination of NPIs.
Control theory has been successfully implemented in sev-
eral areas other than physical systems control, for which
it was initially designed. For example in economics, eco-
logical and biological systems, many works demonstrate
the success of its implementation. Of course, regardless
of the area focused, a good control strategy depends on
the adequate modeling of the dynamical system to be
controlled.
The proposal to use control in this epidemic is not new.
It has been first presented in Stewart et al. (2020). In this
work, the authors use the SEIR model to show that a sim-
ple feedback law can manage the response to the pandemic
for maximum survival while containing the damage to
the economy. However, the authors illustrate with several
examples the benefits of using feedback control, but they
do not present the mathematical control laws as well as
they do not prove the convergence of the trajectories in the
closed loop system. Examples are implemented by mean
of several computational experiments which illustrate the
different strategies proposed. In Sadeghi et al. (2020) a
open loop control action based on two different constant
levels of NPIs is studied on the SIR model. The authors
analytically calculate the peak of infected people according
to the day of application of the NPIs and the duration of
these policies. Simulations were also made for other models
of epidemic dissemination proposed in the literature.

We propose here the use of a simple proportional con-
troller, a standard tool in control theory, to calculate the
control action. This variable guides how to determine NPIs
in order to avoid the collapse of the health system while
reducing the damage to the society and the economy. A
partial and preliminary version of this work has been first
published in Pazos and Felicioni (2020).

2. THE SEIHRD MODEL

This section is addressed to model adequately the disease.
A suitable model should avoid making unnecessary classi-
fications in order to obtain key data on the behavior of the
epidemic. These data include number of deaths, maximum
number of infected people, time at which the maximum
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Fig. 1. Rate processes that describes the progress between the
groups in the SEIHRD model.

infection rate will occur, among other information useful to
prevent and reduce the damage produced by the outbreak.

The SEIR model assumes that exposed people have been
infected but are not able to transmit the virus before a
latency period. We will consider that those people continue
to be in the susceptible group S, whereas we consider
the group E as people who have been infected but have
no symptoms yet and are capable of transmitting the
virus. Part of this group will present symptoms after an
incubation time (moving to the group I) and another
part will remain asymptomatic. Asymptomatic people who
have been diagnosed as positive also will be considered in
the group I, so this group includes all known positive cases,
symptomatic or not. Note that our classification highlights
the distinction between diagnosed and undiagnosed cases,
whether they are symptomatic or not, because reported
positive cases tend to be isolated and their contagion
capacity is greatly reduced.

In addition, a critical issue is the number of infected people
who need hospitalization, because the public policies must
try to keep this number lower than the capacity of the
health care system in order to avoid its collapse. Thus we
define an extra group:

• Hospitalized (H). The infected population who
need hospitalization.

In the group H we do not differentiate between people
hospitalized in mild condition and those in intensive care
units (ICUs), despite the fact that the number of people in
the last subgroup is a critical problem due to an even more
limited capacity in ICUs. The progression of this epidemic
can be modeled by the rate processes described in Fig. 1.

The proposed SEIHRD model for the spread of the Covid-
19 disease in an uniform population is given by the
following deterministic equations, which are presented
normalized with respect to the total population N .

Ṡ = −(1− u) (αSE + βSI)− νS
Ė = (1− u) (αSE + βSI)− (γp1 + ζ(1− p1))E

İ = γp1E − (δp2 + η(1− p2))I

Ḣ = δp2I − (εp3 + µ(1− p3))H

Ṙ = νS + ζ(1− p1)E + η(1− p2)I + µ(1− p3)H

Ḋ = εp3H

(1)

The groups S, E, I, R, H and D are the state variables of
the dynamical system (1). They are always nonnegative.

The time derivatives Ṙ and Ḋ are also nonnegative,

because the number of recovered and dead people cannot
decrease, whereas Ṡ is always nonpositive, because we
consider that recovered people cannot be reinfected. The
model (1) is a nonlinear system normalized with respect
the population N , considered as a constant. Hence S +
E + I + H + R + D = 1 and Ṡ + Ė + İ + Ḣ + Ṙ +
Ḋ = 0. The system (1) presents an equilibrium point
in [S E I H RD]∗ = [S̄ 0 0 0 R̄ D̄], where R̄ and D̄ are
positive values and S̄ is a nonnegative value such that
S̄ + R̄+ D̄ = 1.

The rate processes are modeled as follows.

• αSE and βSI are the transmission rates of the virus
between the susceptible and the exposed population
(respectively, infected population). α and β are the
probability of disease transmission in a single con-
tact with exposed (infected) people times the aver-
age daily number of contacts per person and have
units of 1/day. Typically, α is grater than β, assum-
ing that people tend to avoid contact with subjects
showing symptoms or diagnosed as positive. Contacts
between susceptible people and hospitalized people
are neglected, excepting for healthcare workers. The
probability of contagion from dead people is also
neglected, despite the fact that some cases were re-
cently reported. Recovered people are no longer able
to transmit the virus.

• u ∈ [0, 1] is the intensity of nonpharmaceutical in-
terventions (NPIs). u = 0 means no intervention and
the epidemic grows completely free, whereas u = 1
implies total elimination of the disease spread.

• ν is the vaccination rate, at which susceptible people
became unable to be infected. Unfortunately, in the
Covid-19 case ν = 0 yet.

• p1 is the probability that exposed people develop
symptoms, γ−1 is the average period to develop
symptoms, and ζ−1 is the average time to overcome
the disease staying asymptomatic.

• p2 is the probability that infected people with symp-
toms require hospitalization, δ−1 is the average time
between infection and the need for hospitalization,
and η−1 is the average time in that infected people
recover without hospitalization.

• p3 is the probability of hospitalized people die, ε−1 is
the average time between the hospitalization and the
death, and µ−1 is the average time to recover after
hospitalization.

The parameters used in (1) are not very precisely deter-
mined and even differ greatly in the literature consulted
(see Ferguson et al. (2020); Liu et al. (2020a); Kantor
(2020); Lin et al. (2020); Giordano et al. (2020); Jones
(2019); WHO (2020); Liu et al. (2020b) among many other
references). Most of the model adopted in the references
adjust these parameters to match real data from different
countries.

The parameters α and β are related with the basic repro-
duction number R0, defined as the expected number of
secondary cases produced by a single (typical) infection in
a completely susceptible population (Jones, 2019). R0 is
not a fixed number, depending as it does on such factors
as the density of a community or the general health of its
populace (Stewart et al., 2020). This is the most important



parameter to understand the spread of an epidemic. If
R0 > 1, the epidemic grows and the number of infected
people increases. If R0 < 1, the epidemic decreases and
after a certain time disappears, when a large enough num-
ber of people acquire antibodies and the so-called herd
immunity occurs.
In the actual Covid-19 disease, R0 was determined to be
2.6 in Wuhan, China (Stewart et al., 2020) (between 2.2
and 2.7 according to Sanche et al. (2020)), ranging from
2.76 to 3.25 in Italy (Stewart et al., 2020) and even close
to 3.28 (Liu et al., 2020a). An important remark is that
many works consider R0 depending on the NPIs, admitting
that these actions tend to reduce this number because the
contact rates between people decrease. Note that NPIs
always occur even in countries where no government action
has been taken, because people spontaneously tend to
stay at home and to avoid contact with others. This fact
explains the disparity of this number in different countries
and reported in the references (see Liu et al. (2020a)).
Here, we consider R0 as a constant reproduction number
in the absence of any external action, i.e., as if the dis-
ease could spread completely free, which, of course, is an
unrealistic scenario. Specifically, the relation between the
rates α and β and R0, can be calculated in model (1) as
in Jones (2019), resulting

R0 =
α

(ζ + γ p1 − p1 ζ)
+

β γ p1
(η + δ p2 − η p2)(ζ + γ p1 − p1 ζ)

(2)

The intensity of the NPIs is considered in the variable
u, which determines the rate at which susceptible people
become exposed.

Several works (Lin et al., 2020; Tang et al., 2020; Gutierrez
and Varona, 2020; Savi et al., 2020) consider these pa-
rameters as time dependent, because incorporate in these
parameters the impact of the applied NPIs.
The incubation period is estimated as γ−1 = 5.1 days
(Kantor, 2020; Ferguson et al., 2020; Tsang et al., 2020).
The probability of developing symptoms p1 will be roughly
estimated as 50% (Mizumoto et al., 2020; Ferguson et al.,
2020) 3 .
The period to overcome the disease without presenting
symptoms is ζ−1 = 14.7 days (deduced from Giordano
et al. (2020)).
The infectious period with no need of hospitalization is
widely accepted as 14 days, so η = 1/14.
The probability to need hospitalization after the infection
is p2 = 19% (Lowth, 2020; Lin et al., 2020; Savi et al.,
2020), and the time from symptom onset to hospitalization
is δ−1 = 5.5 days (Sanche et al., 2020).
The probability to die after hospitalization is p3 = 15%
according to Worldometers (2020) and Ferguson et al.
(2020), and the average time to die is ε−1 = 11.2 days
(Sanche et al., 2020).
The average time to recovery after hospitalization is µ−1 =
16 days (Ferguson et al., 2020).
Finally, there is no vaccine against this disease, so ν = 0.

Remark 2.1. Of course, most of these parameters are
subject to large inaccuracies, and they differ greatly in

3 This probability is the most difficult to determine. According to
Lowth (2020) up to 80% of the cases could be asymptomatic.

the literature consulted. However, as we will show below,
the proposed control method is robust for such uncertain-
ties as well as for measurements errors characterized as
unreported or undiagnosed cases.

3. THE CONTROL STRATEGY

We propose the use of control theory to determine public
nonpharmaceuticals interventions (NPIs) in order to con-
trol the evolution of the epidemic and to avoid the collapse
of health care systems while minimizing harmful effects on
the population and on the economy.
As noted in Stewart et al. (2020), “a properly designed
feedback-based policy that takes into account both dy-
namics and uncertainty can deliver a stable result while
keeping the hospitalization rate within a desired approx-
imate range. Furthermore, keeping the rate within such
a range for a prolonged period allows a society to slowly
and safely increase the percentage of people who have some
sort of antibodies to the disease because they have either
suffered it or they have been vaccinated, preferably the
latter”.

The action law is given by the control variable u in (1).
No intervention from the public health agencies means
u = 0, and the disease evolves naturally without control.
At the other hand u = 1 means the total impossibility
of transmitting the virus, which is also an unrealistic
scenario.
There are several possible choices of the reference signal or
set point of the control system. One of them may be a small
enough number of hospitalized people to not affect the
capacity of the health care system. This reference signal
maybe nonconstant, it can go up due to an increment in
the health system capacity. By other hand, we must bear
in mind that the quantities of each group described in
(1) are subject to large inaccuracies, due to unreported
or undiagnosed cases, except for the number of people
diagnosed as positive (I), which is quite well known, the
number of hospitalized people (H) and the number of
deaths (D). Hence, the output variable to be fed back
only can be the infected population I or the hospitalized
population H.
The goal of the control action is to keep the number of
hospitalized people lower than the set point minimizing
the external intervention which produces social discomfort
and clearly harm the economy.
Therefore, the control action should aim to solve the
following constrained optimization problem:

min

∫
T

u(τ)∂τ

s.t. H < SP

where T is a considered period and SP is the reference
signal.

As a reference, the World Health Organization recom-
mends a number of 80 hospital beds per 10000 population,
which means an index of 0.008, or 0.8%. This number will
be used as the SP of the closed loop control system.

We must also bear in mind that NPIs impact on physi-
cal contacts between susceptible and infected or exposed
people. If an individual is already infected, hospitalization
will be required after δ−1 = 5.5 days or after δ−1 +
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Fig. 2. Block diagram of the closed loop control system.

γ−1 = 10.6 days on average if the infection was recent.
Hence, there exists a delay between the adoption of NPIs
and their consequences on hospitalization of people. If
the control action if calculated based only on the number
of hospitalized people, the following 10.6 days too many
people may require hospitalization, exceeding the capacity
for medical care. In control jargon, it means that there are
almost two weeks with the system operating in an open
loop. Therefore, the control action needs to be calculated
as a function of the number of infected people I (the
number of exposed people E is quite unknown) in order to
avoid future hospitalization requirements in the next 10.6
days at most. This strategy emulates a kind of predictive
control.

Fig. 2 shows the closed loop control system. The variables
process are the infected population I and the hospitalized
population H and the control signal is the intensity of the
NPI scalar signal u.

Of course, in practical situations it is necessary to de-
termine which actions and at what level correspond to
a certain intensity of NPIs, but this issue is outside the
scope of this paper.

Next, we show the results of different strategies of NPIs
applied on the SEIHRD model.

3.1 An open loop control system

In this first series of experiments, we apply a constant
control action u, that is, the system shown in Fig. 2 is an
open loop control one.

We consider as initial conditions I = E = 0.001, H = R =
D = 0, so S = 0.998, that is, 0.1% of the population
is diagnosed as positive the first day and 0.1% of the
population is asymptomatic infected.
During the first days of the epidemic, it was logical to
consider that both exposed and infected people could
spread the virus at the same ratio because the contagion
between humans was not known. Then, this disease could
spread in a completely free scenario, in which no action
is taken. This scenario has been called “naif ” by several
authors (Savi et al., 2020; Lin et al., 2020).

Using the expression (2) with R0=2.8 as in Savi et al.
(2020); Lin et al. (2020), and assuming that no actions are
taken during the epidemic, then α=β=0.1786. The evolu-
tion of exposed, infected, hospitalized and dead people in
this case is shown in the Fig. 3.

In this “naif ” scenario, and using as initial condition 1
infected and 1 exposed person for different population
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Table 1. Main results of several constants NPI on the
SEIHRD model after 250 days.

u = 0 u = 0.4 u = 0.4
step(t− 28)

final rate of deaths 0.0457 0.01425 0.022

maximum rate of hospitalized 0.0496 0.00801 0.0120

area under the curve u vs. t 0 100 88.8

values (N > 1, 000), the maximum are always 17.75%
for the exposed and 15.75% for the infected, and the
times when these maximums are reached depend on the
population value N as is shown in the Fig. 4. The period
between both maximums is a constant value of 9 days.
Additionally, the number of dead people forecasted by this
model is about 5.17% of the total population.

Clearly, this “naif ” scenario seemed to be unrealistic
since people tend to avoid contact with subjects showing
symptoms or diagnosed as positive due to the severity of
the Covid-19 disease. In consequence, as we stated before,
in a more realistic scenario α is greater than β. In the rest
of this paper we consider β = α/2 to take into account
this assumption.

Fig. 5 shows the evolution of the Hospitalized with differ-
ent constant NPIs intensity u and the proposed SP.

Table 1 reports some results extracted from these simula-
tions.

The results presented in Table 1 show that, if no mitigation
policy is adopted approximately 81% of the population
will be infected and 4.57% will die. On the other hand,
a relatively little aggressive NPI, only 40% of intensity,
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is efficient in reducing the final number of deaths as well
as the maximum number of hospitalized people, which is
a crucial issue in order not to collapse the health system
(the maximum value of H reaches the SP ). Moreover, a
late application of this strategy, after 4 weeks since the
first case arose, also significantly reduces these numbers.

3.2 A proportional controller

In this section, we simulate the behavior of the trajectories
described by the normalized system (1) subject to a
proportional control action. The objective of the control
action is that the number of hospitalized people does
not exceed the number of available beds. Of course, this
number is highly variable in different countries, and can
be increased during the duration of the epidemic with the
construction of field hospitals, among other resources.

On the other hand, as noted in Sec. 3, to adopt as feedback
variable the number of hospitalized people may lead to an
overload of the health system in the following 10.6 days,
for which a kind of predictive control must be used that
consider the number of infected people I. Not all infected
people need hospitalization. Most of the symptomatic
cases (1− p2 = 81%) are mild and remain mild in severity
(Lowth, 2020; Sanche et al., 2020). So we consider that
p2 = 19% of infected people will need hospitalization in the
following δ−1 = 5.5 days. This number plus the number
of people already hospitalized H must remain lower than
the set point. Of course, we neglect the number of beds
occupied by patients hospitalized for other diseases.

Hence, the proportional control variable is chosen as

u = kp

(
1− SP −H − p2 I

SP −H

)
∈ [0, 1] (3)

where kp is the proportional scalar gain with values be-
tween [0, 1]. Note that if I = 0, u = 0, and there is no
need of a public intervention because no one is going to
require hospitalization on the following 5.5 days, and with
kp = 1, if a percentage of 19% of the infected people is
equal to the number of available beds SP−H, u = 1 which
means that the public intervention must completely avoid
the transmission of the virus because all these people will
require hospitalization after δ−1 = 5.5 days on average.
Another point of view is to consider that this is a tracking
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trajectory problem, with a time dependent reference signal
r(t) = SP −H(t).

We consider the same initial condition than in the former
series of experiments, I = E = 0.001.
Fig. 6 shows the trajectories of the variables vs. time with
a gain kp = 1. Note that the number of people hospitalized
is always smaller than the set point.

Fig. 7 shows the control signal vs. time.

The control signal presents a maximum value of 0.8227,
and the area under the curve of the control signal vs. time
is 98.8829. Of course, the smaller this action, the less the
damage to the population and to the economy.

Table 2 shows the main results of the application of NPIs
calculated using a proportional controller with different
values of the scalar gain kp.



Table 2. Main results of several proportional NPI on
the SEIHRD model after 250 days, SP = 0.008.

kp = 1 kp = 0.7 kp = 0.5

final rate of deaths 0.0127 0.0144 0.0157

maximum rate of hospitalized 0.0054 0.0064 0.0074

area under the curve u vs. t 98.8829 94.8331 91.2401

Table 3. Main results of several proportional NPI on
the SEIHRD model after 250 days considering 20% of

noncompliance of the NPI on average, SP = 0.008.

kp = 1 kp = 0.7 kp = 0.5

final rate of deaths 0.0225 0.0248 0.0735

maximum rate of hospitalized 0.0067 0.0076 0.0508

area under the curve u vs. t 73.7867 70.8435 77.4710

3.3 Simulations with uncertain parameters and considering
some noncompliance of the nonpharmaceutical interventions

In this section we consider the more realistic situation in
which the parameters are partially unknown.
In this series of experiments, the parameter α is randomly
chosen between 0.15 and 0.6. The parameter β is also
randomly chosen between 0.008 and 0.04. The incubation
time γ−1 between 2 and 6 days.The probability to present
symptoms p1 between 40% and 80%. The time of recov-
ering between 14 and 16 days, for both symptomatic or
asymptomatic people. The probability to be hospitalized
p2 is considered as a Gaussian distribution function of
mean 0.19 and standard deviation of 0.1. The time to be
hospitalized δ−1 is randomly chosen between 3 and 7 days.
The probability to die p3 between 10% and 16%. The time
to die ε−1 between 3 and 12 days. Finally, the time of
recovering from hospitalization µ−1 is randomly chosen
between 10 and 20 days.

In addition, we also consider that there exists some
noncompliance of the nonpharmaceutical interventions.
Hence, we apply to the system (1) a control signal with
Gaussian distribution of mean 80% of that calculated in
(3) with standard deviation of 10%, that is, we assume
that there is 20% on average of noncompliance with the
public measures adopted.

The initial conditions are also I = E = 0.001 and the gain
is kp = 1. Fig. 8 shows the trajectories of the states of
the model (1) during 250 days since the first symptomatic
case arose.

Fig. 9 shows the control signal vs. time.

Table 3 reports some results extracted from this series of
simulations.

The similarity of the results reported in Tables 2 and 3,
as well as the trajectories shown in Figs. 6 and 8, show
that the proportional controller is robust to parameter
uncertainties and to some noncomplaince of the NPIs,
which always occurs in practice.

4. CONCLUSIONS

The proportional controller proposed to guide the adop-
tion of NPIs showed its efficiency to keep the number of
hospitalized people below a set point given by the health
system capacity. This very simple strategy is robust to pa-
rameters uncertainties and to some level of noncompliance
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Fig. 8. Evolution of every group over time with a proportional
control action with gain kp = 1 (top) and considering 20%
of noncompliance of the NPIs policies on average. The picture
at the bottom is a zoom of that at the top. Set point equal to
0.008.
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Fig. 9. Control signal over time using a proportional controller
and considering 20% of noncompliance of the NPIs policies on
average. The blue curve is that calculated in (3), the red curve
is the control signal considering the randomic noncompliance.

of the public measures.
The control signal calculated by this method aims to guide
the adoption of NPIs in order of minimizing the social
impact and the economical damages.

As an example, in the second week of June the Argentine
government relaxed some restrictions adopted in the quar-
antine period, allowing more economic and recreational
activities in some cities. The only criterion used to adopt
this measure was the number of days in which the number
of infected people doubled (the so-called doubling time).
Even thought this decision also can be considered as a
closed loop control action, the criterion adopted is a little
improvised.



An open question is how to translate the rate of intensity of
the NPI calculated by the controller into concrete actions.
Moreover, the control signal should be considered as a
discrete signal in amplitude as well as along the time,
keeping in mind that these decisions must remain valid
for at least few days.

APPENDIX: ANALYSIS OF THE SEIHRD MODEL

The model (1) is a normalized nonlinear system. Note
that the equilibrium point [S E I H RD]∗ = [S̄ 0 0 0 R̄ D̄]
is stable, because once E = I = H = 0, the virus is no
longer circulating among the population, and hence the
states S, R and D remain constant.

In order to better understand the system behavior, we
divide (1) into the following three subsystems

Ṡ = −ū (4a)

ẋ = Ax + bū (4b)

ẏ = C2x (4c)

where
ū = S(1− u)C1x, C1 = [α β 0]
x = [E I H]T

y = [RD]T, C2 =

[
ζ(1− p1) η(1− p2) µ(1− p3)

0 0 εp3

]
In the subsystem (4b), the matrix A and the vector b are
defined as

A =

[
−(γp1 + ζ(1 − p1)) 0 0

γp1 −(δp2 + η(1 − p2)) 0
0 δp2 −(εp3 + µ(1 − p3))

]

b = [1 0 0]T

Of course, [S xT yT] = [S E I H RD]T ∈ R6.
Note that the subsystem (4a) is nonlinear, because the
product Sx, the other ones are linear systems. In the
system (4b) A is a lower triangular matrix. Its eigenvalues
are given by the entries in its main diagonal, which are real
and strictly negative, whatever the values of the constants
used, even though they can be considered as time variant.
Therefore, the subsystem (4b) is stable. In addition, the
Kalman condition

rank [b Ab A2b] = 3

is satisfied, so system (4b) is controllable (Chen, 1999, c.
6). Controllability means that for any initial state x(0) =
x0 ∈ R3 and any final state x1 ∈ R3, there exists an input
ū that leads x0 to x1 in a finite time t1 > 0.

This input signal is given by

ū = −bTeA
T(t1−t)W−1

c (t1)[eAt1x0 − x1] (5)

where the matrix Wc is defined as

Wc(t) :=

∫ t

0

eAτbbeA
Tτ∂τ

Once the signal ū is calculated as (5) the control signal u
yields

u = 1− ū

SC1x

However, according to the analysis presented in Sec. 3, the
challenge is not to lead the state x to its equilibrium point

x∗ = 0, but keep these states below a critical set point for
all time during the transient.
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