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Abstract: This paper addresses the problem of estimating the tire cornering stiffness coefficient
and the yaw moment of inertia of a scaled car-like vehicle. The method merges measurements
information of the vehicle lateral response along with its nonlinear planar model. Aiming effective
and accurate results, we propose solving an optimization problem based on a representative
dataset obtained experimentally using a persistently exciting input. The validation of the pro-
posed method is shown by comparing the agreement between numerical simulations, evaluated
with the estimated parameters, with experimental data. Three representative maneuvers are
considered for this purpose, including indoor and outdoor experiments.
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1. INTRODUCTION

Tire cornering stiffness and yaw moment of inertia are two
important parameters that strongly influence the vehicle
motions. They are present in the majority of mathematical
models that describe the vehicle lateral dynamics, ranging
from the simplified linearized models to the nonlinear ones
with higher complexity.

The standard approach that deals with parameter iden-
tification follows rigorous testing in a dedicated facility.
These workstations provide a truthful dataset allowing an
accurate identification. It is often an expensive and time-
consuming approach (Matsubara et al., 2019).

Given the importance of these parameters, there are a
number of works in literature intended to estimate those
values based on different theoretical concepts.

In (Yang et al., 2017) and (Han et al., 2018), the cor-
nering stiffness coefficient is estimated considering the lin-
earized single-track vehicle model. The approach is solved
numerically through a least square algorithm. In (Fnadi
et al., 2019), a Kalman Filter that merges information
about steering angle and inertial measurements is used. In
(Zhang et al., 2015) a time-frequency analysis is presented
considering a series of harmonic excitation. In (Denis
et al., 2015), the cornering stiffness estimation is performed
based on a gradient search algorithm.
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The objective of this paper is to experimentally demon-
strate and apply a reliable algorithm for the estimation
of the cornering stiffness coefficient and yaw moment of
inertia. The proposed model-based method relies on mea-
sures obtained with ordinary sensors such as encoders,
global positioning system (GPS), inertial measurement
units (IMU), and encoders. Furthermore, in an attempt
to capture the nonlinearities inherent to the vehicle re-
sponse we propose using the nonlinear model instead of
its linearized version.

The remaining sections of this paper are organized as
follows. In Section 2, the motivations about the vehicle
in the study are presented. Section 3 introduces the ve-
hicle mathematical model. Section 4 shows the parameter
identification method. In Section 5 the validation of the
proposed method is illustrated by comparing the agree-
ment between numerical simulations with experimental
data and, finally, conclusions and directions for future work
are provided in Section 6.

2. MOTIVATIONS

A four-wheeled scaled vehicle is used for the validation
experiment. The platform, shown in Figure 1, has indepen-
dent rear-wheel traction and a steering system that follows
the Ackermann geometry. It is equipped with a collection
of off-the-shelf sensors such as encoders, global positioning
system, IMU, camera, and a Light Detection And Ranging
(LIDAR). Moreover, the platform is large enough to host
powerful onboard computing. See Nogueira et al. (2018) for
a complete and comprehensive analysis of this prototype.

The motivation for using a scaled vehicle is grounded in
the fundamental concept that it considerably simplifies the
experimental validation task while keeping the same level

creacteve_alessandra
Texto digitado
DOI: 10.48011/asba.v2i1.1007



Figure 1. Four-wheeled 1:5-scale platform used in the
experiments.

of sensing capabilities of a full-sized vehicle. Such scaled
vehicles can serve as a testbed for validating experimental
applications.

In literature, scaled vehicles are largely applied in diverse
theoretical fields such as path planning (Pinto et al., 2019),
dynamic response analysis (Koz lowski, 2019), rollover pre-
vention (Treetipsounthorn and Phanomchoeng, 2018), and
parameter identification (Polley et al., 2006).

Due to the need to identify the cornering stiffness and yaw
moment inertia of the vehicle presented in Figure 1, we
propose a scalable identification method using ordinary
and conventional sensors. The main advantage expected
from the proposed approach is that it can be extended to
other projects with minimal efforts. To begin the design,
we first present the vehicle mathematical model.

3. VEHICLE MODELING

To describe the vehicle dynamics, a nonlinear single-track
model, also known as bicycle model (see Figure 2), is
employed. This model assumes a single tire at each axle
with twice the force capability of the individual tires.
Additionally, it considers pure planar motion neglecting
roll and pitch dynamics.
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Figure 2. Diagram of the bicycle model.

The equations of motion are derived by analyzing the
balance between forces and moments. From Figure 2, the
lateral equations of motion are:

m(v̇ + ru) = Fyf cos δ + Fyr − Fxf sin δ,

Iz ṙ = a(Fyf cos δ + Fxf sin δ)− bFyr, (1)

where m and Iz are the vehicle mass and yaw inertia,
respectively. Fyi and Fxi are lateral and longitudinal forces
and subscripts i ∈ {f, r} denotes front and rear wheels.
Constants a and b are the distances from the center of
gravity to front and rear axles. δ is the front tire steer
angle and αi are the slip angles. Finally, v, r, and u
are the vehicle lateral, angular, and longitudinal speeds,
respectively.

Assuming a constant longitudinal velocity u0, a rear-wheel
drive (Fxf ≈ 0), model (1) is simplified to:

m(v̇ + ru0) = Fyf cos δ + Fyr,

Iz ṙ = aFyf cos δ − bFyr. (2)

The main nonlinearities about (2) arise from the behavior
of the forces. Several tire-ground interactions force models
are shown in literature (Singh et al., 2018). In this paper,
due to its simple and clear formulation, we choose the
brush tire model (Pacejka, 2005). The reason for this
choice is that it has few parameters compared to the
traditional Pacejka’s model and has the ability to capture
the nonlinearity of the tire forces.

The bush model is mainly dependent on the slip angle
αi. The slip angle is defined as the angle between the
direction of motion and the wheel heading. From Figure 2
and considering the kinematics motion we have:

αf =
v + ar

u0
− δ,

αr =
v − br
u0

.
(3)

Following (Rajamani, 2011), the brush lateral tire force
model is expressed as:

Fyi =

{ −µiFzisign(αi), if |αi| > αsli ,

−2Cασy
{

1− |θyσy|+
1

3
(θyσy)2

}
, o/w,

(4)

where αsli is slip angle threshold needed to reach the full
sliding condition, defined as:

αsli = tan−1

(
3µiFzi
2Cα

)
, (5)

and with

θy =
2Cα

3µiFzi
,

σy = tanαi,
(6)

where µi are the available friction coefficient, Fzi are the
vertical forces, and Cα the cornering stiffness coefficient.
Note that the factor 2Cα in (4)-(6) accounts for the fact
that we assume a lumped axle with twice the capacity
of a single tire, i.e., the equivalence between the bicycle
and the four-wheel planar model. Moreover, due to vehicle
symmetry, we have equal front and rear cornering stiffness,
therefore, Cαf = Cαr = Cα.

For the vertical forces it is assumed the static load transfer:
Fzf = bmg/(a+ b),

Fzr = amg/(a+ b),
(7)

where g is the gravitational acceleration.

Substituting from (3), (4) and (7) into (2), we assemble
the two complete equations describing the lateral dynamics
with states x = [v, r]T and input u = δ. For a comprehen-



sive analysis of the lateral vehicle model see (Rajamani,
2011, Chapter 2).

4. PARAMETER IDENTIFICATION

As seen in the previous section, the vehicle lateral behavior
is strongly dependent on two fundamental parameters: tire
cornering stiffness Cα and inertia Iz. When a sufficiently
large dataset is considered, composed by measurements
of states v and r, it is possible to estimate the desired
parameters using the analytical model described in Section
3. This methodology can be seen as a problem of fitting
experimental data to a nonlinear analytical function.

The problem consists of finding the decision variables
xp = [Cα, Iz]

T that solve:

x∗p = arg min
xp

(w1ev,rms + w2er,rms + w3Ca + w4Iz) (8)

subject to Ca > 0 and Iz > 0, where x∗p = [Ĉα, Îz]
T is

the optimum value that minimizes the objective function.
Errors ev,rms and er,rms are the states v and r rms errors
between the expected (measured) and simulated values.
The positive constants w1 . . . w4 are the set of weighting
factors that indicate the importance of the residuals.
Problem 8 is optimized using the standard interior-point
algorithm with BFGS hessian update implemented by the
“fmincon” method in Matlab (Nocedal, 2006)

If experimental data were free of error, the parameters Cα
and Iz could be obtained straightforwardly by measuring
the states at two points and solving the nonlinear model.
Since it is not the case, a dataset should be used instead.
Therefore, particular care must be taken in the data
collection stage.

4.1 Data collection

The estimated parameter accuracy in problem (8) is
strongly dependent on the measured data (Xu and Zhai,
2019). To yield meaningful information about the vehicle
lateral response we must gather a data set with a represen-
tative level of excitation. It can be achieved exciting the
system with a swept sine wave input, also known as chirp
signal. It is a persistently exciting signal used to disturb
the system over a specified range of frequencies (Honorio
et al., 2018).

In order to have a comprehensive and representative data
set a number of tests must be performed. The test consists
of applying constant longitudinal speed while employing
the time-varying steer input in the vehicle of Figure 1.
This process must be repeated for several steering angle
amplitudes and different longitudinal speeds.

The dataset used in this work contains signals obtained
varying the sine input amplitude from 10 to 25 degrees and
by setting three constant longitudinal speeds: 0.25, 0.6,
and 1 m/s. A total of 13658 measurements are gathered
with a frequency of 10 Hz.

4.2 Comparative methods

Here we propose comparing the estimation method (8)
with two simpler approaches denoted ‘ay-method’ and
‘ṙ-method’. As discussed in (Sierra et al., 2006), these

methods are intended to eliminate reliance on the measures
of the vehicle states or its derivative. They are expressed
by linearizing the vehicle model around a constant lon-
gitudinal velocity u0 and is written as standard 1-norm
minimization:

arg min
Cα
||Ax− b||21. (9)

ay-method

This method is based on the linearized lateral velocity
dynamics:

Fy = may = Cααf + Cααr. (10)

Substituting (3) into (10), it is written as[v + ar

u0
− δ +

v − br
u0

]
Cα = may (11)

which is in the standard regression form with Cα being
the unknown. The drawbacks of this method are that it
does not incorporate information about the inertia Iz, is
strongly influenced by measurement noises, and requires
persistent excitation.

ṙ-method

The fundamental equation of the ṙ-method is the linear
approximation of (1):

Iz ṙ = aCααf − bCααr, (12)

which can be rewritten as:[
a
(v + ar

u0
− δ
)
− b
(v − br

u0

)]
Cα = Iz ṙ. (13)

Note that it relies on the yaw derivative. During constant
cornering ṙ is zero and (13) will not perform properly.
Additionally, ṙ cannot be measured directly and must be
band-pass filtered.

5. EXPERIMENTAL RESULTS

In this section, the performance of the parameter iden-
tification (8) method is verified using experimental data.
Steering angle δ is measured by encoders, angular velocity
r is measured by the IMU and lateral velocity v is filtered
using the approach presented in (Moore and Stouch, 2014).
The vehicle’s main physical parameters required in this
work are listed in Table 1.

Table 1. Vehicle physical parameters.

Parameter name (Symbol) Value

Vehicle mass (m) 17.11 kg
Dist. from CG to front wheels (a) 0.30 m
Dist. from CG to rear wheels (b) 0.27 m

As discussed in Section 4.1, the dataset is obtained by
applying a swept sine input, also referred to as the chirp
signal. The steering angle follows the chirp signal in an
open-loop command and the experiment is repeated sev-
eral times varying its amplitude and with different longi-
tudinal speeds. A small fraction of this input contained in
the dataset is shown in Figure 3. The wave starts with an
initial frequency of 1 Hz and ends with 6 Hz.



Note that the imperfections of the sine wave are due
to the experimental data nature. The steering angle,
which follows the steering system dynamics, is achieved
by an electric motor with a low-level position controller.
Additionally, the first half-wave period is discarded due
to initial measurement noises observed throughout the
maneuver execution.
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Figure 3. Steering angle following the swept sine signal.
The first half period is discarded due to initial mea-
surement noises.

The optimization problem (8) is solved via Matlab/Simu-
link in an off-board computer using the built-in “fmin-
con” function. Following an empirically trial and error
approach, we chose w1 = 3, w2 = 1, w3 = 1 × 10−7

and w4 = 2 × 10−3. The weighting factors are chosen
with respect to the magnitude and importance of the
corresponding residuals.

Solving (8), the optimum estimated parameters obtained

are Ĉα = 94.75 N and Îz = 1.64 kg/m2. Comparing with
similar scaled vehicles found in literature, these values are
consistent and strongly agrees (Sierra et al., 2006; Polley
et al., 2006; Koz lowski, 2019).

On the other hand, evaluating the ay-method and the ṙ-
method by solving (9) we obtain Cα equal to 36.5407 and
74.53 N, respectively. Accordingly to (Sierra et al., 2006),
the performance of these methods is significantly worse if
compared to optimization (8) and the reason is simple,
both methods rely on a single linearized equation. This
makes the identified parameter extremely sensitive to noise
measurement.

The comparative aforementioned methods are indicated
when the experiment is evaluated at monitored worksta-
tions and test benches, where the noises can be mea-
surable. Interestingly, the estimated values do not differ
considerably from the optimum of (8), which indicates
an appropriate and pertinent estimation. Therefore, our
reference will be the value obtained solving the proposed
problem (8).

To validate the estimated parameters, we propose a com-
parison between the simulated and experimental data.
The simulated data were obtained via Matlab/Simulink
by evaluating the nonlinear lateral model, described in
Section 3, using the estimated parameters Ĉα and Îz.

5.1 Open loop scenario

We first analyze the identified model considering the open-
loop swept sine input of Figure 3. The vehicle is set with
a constant longitudinal velocity of 0.25 m/s. Note that
this scenario is contained in the data set used to estimate
the desired parameters. Therefore, a satisfactory response
should be expected.

The results are shown in Figure 4. It is notable the strong
agreement between the measured and simulated vehicle
states. The major discrepancy, observed in lateral velocity
v, arises when increasing the input sine frequency. Despite
that, the responses are in phase and the response time
between both signals is consistent.
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Figure 4. Estimated and measured vehicle lateral response
for the open-loop sinusoidal input.

In Table 2 we show the states v and r rms errors for
the three discussed methods. The scenario of Figure 4 is
simulated using the estimated parameters of each approach
and the errors are calculated between the expected and
achieved response. In accordance with the former discus-
sion, the performance of the proposed regression is slightly
better. Therefore, the following results are presented with
the parameters obtained by solving (8).

Table 2. Rms error of states v and r for the
three proposed methods.

Method ev,rms er,rms

Regression (8) 0.0112 0.0201
ay-method (11) 0.0133 0.0273
ṙ-method (13) 0.0115 0.0209



5.2 Closed loop scenario

Now we wish to compare the estimated response with two
practical maneuvers. The first is executed in an indoor
environment with a perfectly planar surface. The second is
performed in an outdoor environment, the ground surface
has vertical irregularities and is composed of a mix of
gravel and grass. The details are shown in the following
sections.

Indoor experiment

The experiment was conducted with a constant linear
speed of 0.4 m/s and setting two desired yaw rates of
magnitudes 0.2 and -0.2 rad/s. This results in a maneu-
ver where two circles with constant curvature radius are
achieved with opposite directions.

The performed trajectory and the commanded steering
angle δ are shown in Figures 5 and 6, respectively. The
vehicle starts at the origin and executes the trajectory
with a curvature radius of 2m. More details about this
maneuver and its low-level control loop can be seen in
(Nogueira et al., 2018).
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Figure 5. Performed trajectory of the proposed maneuver:
two circles with constant 2m radius and opposite
directions.
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Figure 6. Commanded steering angle to keep the vehicle
with the desired angular speed.

The lateral and angular velocities are shown in Figure 7.
Note that v cannot be measured directly. As discussed, it
must be filtered and the quality of signal v is associated
with the measurement noises, such as lateral acceleration.
Despite that, one can note a satisfactory agreement be-
tween the achieved and expected velocities obtained via
simulation. This indicates that the optimization problem
(8) is not overfitting the data.
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Figure 7. Actual and simulated vehicle response. On top
and bottom are shown the lateral and angular veloc-
ities, respectively.

Outdoor experiment

The outdoor experiment consists of a closed-loop maneu-
ver where the vehicle follows a desirable path. The vehicle
autonomously travels through the center of an orchard row
with a constant longitudinal speed of 1m/s.

The nature of this experiment is exposed in Figure 8 where
the vehicle is oriented towards the orchard rows with an
intentional initial lateral error.

Observe that, due to the trajectory nature, it is expected
steering angle commands needed for the lateral error
correction. More details about this maneuver and its high-
level controller can be found in (de Lemos et al., 2018).

Figure 8. Platform in autonomous mode traversing the
orchard corridor. The figure on left and right show the
initial vehicle pose and after 10 seconds of execution,
respectively.

The obtained vehicle trajectory and the commanded steer-
ing angle are shown in Figures 9 and 10, respectively.
Note that the vehicle has an initial error of -1.12 m which
leads to a high steering command effort, enforcing the
initial lateral correction. After 10 seconds of execution,



the vehicle reaches the corridor center and the experiment
follows with corrective steering angle commands of small
magnitude.

0 10 20 30 40

−1

−0.5

0

0.5

X (m)

Y
(m

)

Figure 9. Performed trajectory with respect to the corridor
center. The test begins with an intentional initial
lateral error of -1.12 m.
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Figure 10. Commanded steering angle. The efforts at the
initial instants are due to the lateral starting error.

Figure 11 shows the vehicle lateral response. For this
experiment, unfortunately, we do not have access to the
vehicle lateral velocity v. However, we can note a good
agreement between the expected and achieved angular
velocity r. Observe that, due to the outdoor environment
and the associated ground irregularities, the measurement
noise is strongly noticeable.
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Figure 11. Measured and simulated angular velocity re-
sponse for the outdoor experiment.

6. CONCLUSION

In this paper, we experimentally approached the vehicle
parameter estimation. An optimization problem, based on
the nonlinear vehicle lateral dynamic, is proposed. The
main result is proper identification of the vehicle corner-
ing stiffness coefficient and yaw moment of inertia. The
motivation for this study is the capability of estimating
the desired parameters using conventional sensors as an
alternative to expensive workstations and test benches.

The proposed estimation process is a model-based ap-
proach that strongly relies on a set of measurements. Due
to this characteristic, a wide variety of tests are needed
in order to gather a comprehensive data set. The data
collection stage is described and a persistently exciting
signal is chosen to compose the dataset.

The proposed optimization problem was then solved with
the experimental data and the estimated parameters are
used to simulate the vehicle response. The estimation
accuracy is verified by comparing the expected and achieve
response for three representative scenarios. The resulting
signals show an adequate agreement indicating that the
proposed method was able to correctly estimate the desired
parameters. Moreover, the identified values correspond to
those presented in the literature for similar vehicles.

Efforts and future work will be concentrated at perform-
ing the parametric estimation in a real-time application,
removing the off-board processing stage.
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