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Abstract: This article presents a methodology for including wind power generation in the
medium-term planning ofhydrothermal systems, where Stochastic Dual Dynamic Programming
(SDDP) is widely applied in the literature to solve this class of problem. To assess the impact of
the intermittent generation, wind power scenarios were generated through Weibull Distribution,
which were applied to reduce the load, generating several demand scenarios. Thus, the aim
of this paper is to improve the computational effort of the conventional SDDP with demand
scenarios, where the main contribution of the work consists of applying the Immediate Cost
Function (ICF) to accelerate the SDDP convergence process. The proposed methodology was
analyzed using part of the Brazilian system, considering a wind farm.

Keywords: Hydrothermal Systems; Power System Operation; Renewable Energy; Stochastic
Dual Dynamic Programming; Wind Generation.

1. INTRODUCTION

Renewable energy sources such as wind and solar have
grown remarkably fast in the last ten years due to their
diverse benefits, such as, e.g., being low cost and being
clean energy sources, in addition to diverse the energy
matrix Patel (2005). In Brazil, wind represents 8.5% of
generation capacity, with the possibility of reaching 12.7%
in 2024 (Lucena and Lucena, 2019).

The main advantage of wind energy is that it is a renewable
source of energy, i.e., its resources are inexhaustible. Be-
sides, wind energy has several environmental advantages,
since it reduces the emission of greenhouse gases, also,
can offer a reduction in operating costs to attend the
demand in energy planning analyzes. The main challenges
related to wind generation are related to the intermittent
and stochastic characteristics of the wind, requiring the
application of methodologies that can guarantee a reliable
analysis of the insertion of this renewable generation (Mo-
htasham, 2015).

There are several papers in the literature that address the
wind energy and wind energy and its challenges. In Han
et al. (2019) an optimization model that takes into account
not only water inflow uncertainty, but, also, wind speed

and solar irradiation uncertainty is implemented. Also,
Mummey (2017) evaluates a stochastic representation for
wind power generation through historical wind speed data
of 16 coordinates from the Northeast and South of Brazil
and Witzler (2015) develop a methodology for reconstruc-
tion historical series of wind generation enabling studies of
complementarity between energy sources in the Brazilian
energy system.

There are also articles in the literature carrying out studies
relating wind energy to the energy planning of hydrother-
mal systems. In Morillo et al. (2020), it is proposed a
methodology for the management of hydro dominated
power systems coupled with wind energy storage apply-
ing a Risk-averse Stochastic Dual Dynamic Programming
(SDDP). Besides that, in Papavasiliou et al. (2017) the
SDDP is applied to solve the problem of a multistage
stochastic formulation of a transmission-constrained eco-
nomic dispatch subject to multi-area renewable production
uncertainty.

Therefore, based on the previous arguments, this work
presents a way to insert efficiently, the wind generation
in the medium term energy planning. To consider the
intermittency of wind generation, several scenarios of wind
power were generated through the Weibull Distribution
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(Stevens and Smulders, 1979), which is known in the
literature for applications related to wind speed. The wind
power scenarios will be applied as load reduction, thus,
several demand scenarios will be generated for the system
planning horizon.

Thus, for the solution of the mid-term hydrothermal dis-
patch problem, the Dual Stochastic Dynamic Program-
ming with Demand Scenarios (SDDP-DS), which is al-
ready known in the literature, will be applied. However, the
conventional methodology presents a considerable compu-
tational effort to determine medium term planning in the
presence of several demand scenarios, therefore, this arti-
cle presents a modification in the SDDP-DS through the
Immediate Cost Function (ICF), where it will be possible
to accelerate the convergence process without loss in the
results quality.

After this background, the main contributions of this
paper are:

• Insertion of wind generation in medium-term energy
planning;
• Improve SDDP-DS computational time through ICF,

making it possible to calculate the dispatch of the
plants in the system.

2. CLASSICAL FORMULATION

The mathematical formulation proposed for planning the
operation of hydrothermal systems in the medium term
with individualized plants, considering the various demand
scenarios, is presented in the Linear Problem (LP) (1 -
6), obtained from simplifications and adaptations of the
models expressed in Metello (2016) and da Silva Fernandes
et al. (2019). The LP is solved internally using the SDDP-
DS algorithm. Each stage of the problem represents a
month of operation, given by the sub-indices t. The sub-
indices i refer to hydroelectric plants and j represent
thermoelectric plants. The p sub-indices are related to
the different wind generation scenarios, and consequently,
demand scenarios. The variables are in bold spelling to
differentiate from the known constants and parameters.

Min αt = Ep

∑
j

cj · gt,j,p + cd · dt,p

+αt+1 (1)

Subject to:

vt+1,i = vt,i + C · (at,i+∑
m∈Θm

(qt,m + st,m)− qt,i − st,i) ∀i ∈ I

(2)

et,p +
∑
j

gt,j,p + dt,p = δt − wgp ∀p ∈ P

(3)∑
p

µp · et,p =
∑
i

ρi · qt,i (4)

αt+1 >
∑
i

(πkt+1,i · vt+1,i) + εkt+1 ∀k ∈ K

(5)

xmin 6 x 6 xmax (6)

Where:

gt,j,p Generated energy by the thermoelectric j at the
stage t related to the p wind generation scenario;

I Set of the hydroplants of the system;
P Set of the generated wind scenarios;
dt,p Energy deficit in the stage t related to the p wind

generation scenario;
I Set of the Future Cost Function (FCF) cuts;
αt+1 Future cost associated with the stage t;
vt+1,i Stored volume by the hydro plant i at the end of

the stage t;
qt,i Turbined flow by hydro plant i at t stage;
st,i Spilled flow by hydro plant i in t stage;
et,p Generated energy by all hydroelectric plants in

the stage t, related to the p wind generation
scenario;

x Represents all variables of the problem;
αt Total Cost in the t stage;
cj Generation cost of the j thermoelectric plant;
cd Cost associated with the energy deficit;
vt,i Stored volume by the i plant at the beginning of

the t stage;
C Constant used for converting units from m3/s to

hm3 (2.592);
at,i Inflow of the i plant in the t stage;
Θm Set of hydro plants immediately upstream of i

plant;
δt Demand at t stage;
wgp Wind generation in the p scenario;
µp Probability of occurrence of the p scenario;
ρi Production coefficient of hydro plant i;
πkt+1,i Coefficient of FCF cut k for hydro plant i’s

storage, vt+1,i

εkt+1 Constant term of FCF;

xmin Minimum value of x;
xmax Maximum value of x;
Ep Weighted average operator.

The equation (1) represents the objective function of
the problem to be minimized, given by the sum of the
immediate cost, due to the thermoelectric generation and
possible deficits, with the future cost, which is associated
with the level of water storage in the reservoirs of the
plants. In (2) is presented the water balance equation
in each hydroelectric plant. Besides the system’s demand
equation for each scenario is represented in (3), where the
sum of hydroelectric energy with thermoelectric energy
and the deficit is equal to the net demand (δt,p), which
is given by the demand in the t stage subtracted by the
wind generation in the p scenario, as (7).

δt,p = δt − wgp (7)

It can be stated through (7), that the P wind generation
scenarios are considered in the planning as a reduction
in the system demand, thus, P demand scenarios will be
generated to be used in the simulations.

The equation (4) shows that the weighted average of the
hydroelectric energy generated in each demand scenario
is equal to the sum of the energy generated by each
hydroelectric plant, with each portion being given by the
product between the production coefficient and the flow



turbined by each plant. The inequality (5) brings the
cuts in the future cost function (FCF), also called the
Benders cut. Finally, the operating limits of the variables
are defined in (6).

Through the LP (1 - 6), it is possible to observe a large
number of variables in the demand attendance equations,
due to the fact that several wind generation scenarios
are considered. Thus, solving the hydrothermal dispatch
problem in the conventional way can become computa-
tionally inefficient, especially when using a large number
of scenarios.

3. PROPOSED METHODOLOGY

As previously discussed, the classic formulation of SDDP-
DS, considering several scenarios of wind generation, will
require a large computational time to solve the hydrother-
mal dispatch problem, due to the large number of equa-
tions. Thus, to reduce the computational effort, this article
presents a modification in the formulation presented in (1
- 6) through the Immediate Cost Function (ICF), which
will be presented in details in the following subsections.

3.1 Analytical Representation of ICF

The ICF refers to the cost of thermal plants operation
associated with a hydroelectric power dispatch decision,
which is represented for each month of planning. In sum-
mary, ICF is a piecewise linear function that associates
each hydroelectric generation decision (et) with a ther-
mal operating cost (βt). Therefore, the modification in
ICF proposed in this paper was adapted from the work
presented in Metello (2016). The main goal of application
of the ICF is to reduce the problem dimensions, making
it possible to solve the hydrothermal dispatch problem
considering a large number of wind scenarios.

The ICF can be obtained by the resolution of LP (8 - 13)
for different values of hydroelectric energy (et). In other
words, for each (et) the solution of LP (8 - 13) provides
the thermal operating cost (βt), therefore, it results in a
piecewise linear function between the hydroelectric gen-
eration decision (et) and the thermal operating cost (βt).
However, the optimization problem (8 - 13) would demand
more computational effort than the conventional Benders
cut.

Min β(e) = Ep

[∑
j

cj · gj,p + cd · dp

]
(8)

Subject to:

ep +
∑
j

gj,p + dp = δt,p ∀p ∈ P (9)∑
p

µp · ep = e (10)

0 6 ep 6 emax ∀p ∈ P (11)

0 6 gj,p 6 gmax
j ∀j ∈ J, p ∈ P (12)

dp > 0 ∀p ∈ P (13)

To overcome these difficulties, this article applies a step-
by-step process to reduce the number of times that the LP

(8 - 13) should be performed, presented in da Silva Fernan-
des et al. (2019). Another possibility to calculate the ICF
is presented in the Fig. 1, where the LP (8 - 13) requires
to be solved for specific values of (et), as follows:

Figure 1. Relation between immediate cost (βt) and hy-
dropower generation (et)(Metello, 2016)

From Fig. 1, note that thermoelectric plants are ordered in
relation to generation cost: c1 < c2 < ... < cJ−1 < cJ <
cd.

• The value of e0 is the hydropower required to attend
the demand considering that the all thermal power
generation is off. In this case, it should be observed
the possibility of energy deficit;

• The value of e1 is the hydropower required to at-
tend the demand considering the use of the total
thermal generation capacity of thermoelectric 1. In
this case, the remaining thermal generations are off.
As well as e2 is the hydropower required to attend
the demand considering the use of the total thermal
generation capacity of thermoelectrics 1 and 2. Again,
the remaining thermal generations are off. Similar
procedures are adopted for the remaining (et).

3.2 Obtaining the ICF

The step-by-step algorithm of the ICF is presented in
detail below. The subscript t, representing the stage, is
suppressed in the variables in order to not overload the
notation. In addition, it is important to emphasize that
the proposed algorithm should be applied in each stage t,
considering all respective p scenarios.

STEP-1: Ordering the thermoelectric plants in ascending
generation cost: c1 < c2 < ... < cJ−1 < cJ < cd.

STEP-2: Calculate the vectors of hydroelectric genera-
tion:

• The points of maximum generation of hydroelectric
energy are given in the condition of minimum use of
thermoelectric energy:

e0
p = min{δp, emax} ∀p ∈ P (14)

• Minimal hydroelectric generation:

eJ+1
p = 0 ∀p ∈ P (15)



where J is the number of thermoelectric power plants in
the system.

• The other values of hydroelectric energy are deter-
mined by the sequential insertion of each thermoelec-
tric to the system:

ζ = max{δt,p −
∑
j

gmaxj , 0}

ejp = min{ζ, emax} ∀p ∈ P, j ∈ J (16)

STEP-3: In the previous step, (J+2) vectors were gener-
ated with P values of hydroelectric energy. The previous
determination of these vectors allows a reduction of the
LP (8 - 13), with the transformation of the hydroelectric
generation variable e into known constants and that should
be solved for each m = 0, 1, ..., J + 1.

Min βm = Ep

[∑
j

cj · gj,p + cd · dp

]
(17)

Subject to:∑
j

gj,p + dp = δt,p − emp ∀p ∈ P (18)

0 6 gj,p 6 gmax
j ∀j ∈ J, p ∈ P (19)

dp > 0 ∀p ∈ P (20)

The resolution of the LP for the (J+1) hydropower gener-
ation vectors generates the immediate costs βm. Thus, the
set of points (em, βm) is used in the next step to determine

the cuts of the ICF being em =
∑
p

µp · emp .

STEP-4: The coefficients of each line (cut) are obtained
from the equations (21) and (22).

λl =
βl+1 − βl

el+1 − el
l = 0, 1, ..., J (21)

Ωl = βl − λl × el l = 0, 1, ..., J (22)

Therefore, the ICF can be obtained from the set of
inequalities expressed in (23):

β > λl × e+ Ωl l = 0, 1, ..., J (23)

It must be emphasized that, during execution of STEP 3
- intended to obtain the set (em, βm),m = 0, 1, ..., J + 1
- equal points may be generated. Therefore, in order to
obtain the coefficients of the lines, repeated points must
be excluded, the, it is not generated incompatibility in
the resolution of the equation (21). Thus, it is important
to mention that the number of ICF cuts generated by the
algorithm is at most equal to the number of thermoelectric
power plants in the system plus one, i.e. that lmax = J+1.
The time required to survey the FCI’s at each stage is
negligible compared to the time spent in the simulations.

3.3 SDDP-DS-ICF

The previous section is used to determine the ICF cuts to
be inserted in the LP (1 - 6). Thus, the proposed SDDP-
DS-FCI can be written as follows:

Min αt = βt +αt+1 (24)

Subject to:

vt+1,i = vt,i + C · (at,i+∑
m∈Θm

(qt,m + st,m)− qt,i − st,i) ∀i ∈ I (25)

et =
∑
i

ρi · qt,i (26)

βt > λl · et + Ωl ∀l ∈ L (27)

αt+1 >
∑
i

(πkt+1,i · vt+1,i) + εkt+1 ∀k ∈ k (28)

xmin 6 x 6 xmax ∀i ∈ I (29)

It is important to emphasize that the maximum hydroelec-
tric generation used in the new LP (24 - 29) is given by
the maximum energy value obtained in the ICF algorithm,

that is, it refers to the value e0 =
∑
τ

e0
τ of Fig. 1.

Although the LP (1 - 6) e LP (24 - 29) problems are
very similar, we can observe that the demand attendance
equations have been replaced by ICF cuts. Considering
that were used P scenarios for each month of study, then
the problem consisted of P demand attendance equations
for each month. Therefore, with the application of ICF,
there is a considerable reduction in the dimensions of the
problem, especially when the number of wind scenarios are
large. Thus, reducing the number of constraints and the
variables, the computational time to solve the problem is
improved.

4. WIND SCENARIOS REPRESENTATION

The power generated by a given wind turbine (wgp) can
be calculated using the power curve provided by the
manufacturer, performing a linear interpolation with the
wind speed. Therefore, its generated power was calculated
for each hour in the history, however, as the objective of
this work is to analyse medium-term planning, the hourly
powers of each month are added, thus obtaining a monthly
history of power generated by the wind farm. The values of
the power curve of the 1MW wind turbine used are shown
in Fig 2.

Figure 2. Wind Turbine Power Curve.

In this work, the wind speed is modeled using the Weibull
distribution Stevens and Smulders (1979), which is a func-



tion of two parameters, being known in the literature for
representing efficiently the probability density distribution
of the wind speed. Thus, the Weibull function provides
an adequate modeling of the wind, allowing to obtain the
power generated by a wind farm inserted in the network,
obtaining simulations with reliable results. The Weibull
distribution in this work was used to generate scenarios of
power from the wind turbine. The generic formulation of
Weibull distribution is shown in (30).

fw(wg) =
k

c

(wg
c

)k−1

· exp
[
−
(wg
c

)k]
(30)

Where:

wg Random Wind Power (MW );
k Shape Factor;
c Scale Factor.

Weibull parameters are calculated from historical wind
power series, as shown below.

k =

(
σ

w̄g

)−1,086

(31)

c =
w̄g

Γ

(
1 +

1

k

) (32)

Where:

w̄g Historical average;
σ Standard deviation from history;
Γ Gamma Distribution Function.

In order to generate wind scenarios in a more realistic way,
the Weibull distribution was applied for each month of the
speed history, thus, each month, from January to Decem-
ber, has its respective Form and Scale Factors. Thus, when
generating the desired scenarios, it is possible to maintain
them with the characteristic seasonality present in the
history to be used. A monthly boxplot for the scenarios
is shown in Fig. 3 and were generated using hourly data
from the Chúı wind farm in Southern Region of Brazil,
available at INMET (2020). The selection of data was
made according to the availability of history, however the
methodology extends to other data.
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Figure 3. Wind Power Scenarios - Boxplot

5. OPERATION AND POLICY SIMULATION

The operation of hydrothermal systems in the medium/long
term is carried out in two stages, as shown in Fig. 4.
First, the Operation Policy (OP) stage is performed, where
the Future Cost Function (FCF) cuts for each stage of
the problem are obtained, which are adjusted in order
to obtain the minimum operating cost in the analyzed
period. The OP stage can be performed by SDDP-DS or
by the proposed SDDP-DS-FCI methodology, as described
above. Then, after the FCF adjustments, the Operation
Simulation step is performed, where the optimal dispatch
of the system is determined for each combination of the n
inflow scenarios and the p demand scenario, according to
Algorithm in Fig. 5.

Figure 4. Steps of OP and OS. Source: Author’s elabora-
tion

Figure 5. Operation Simulation Algorithm



6. RESULTS

The codes used in this work were implemented and ex-
ecuted in Matlab, version R2019a, on a computer with
the following configuration: Intel R© CoreTM i5-6300HQ
Processor with 2.30 GHz and 16 GB of RAM, Windows 10.
For the execution of the SDDP, 100 forwards series were
sampled, from an inflow tree with 2 openings obtained
by random values form the flow history (Pereira, 1989)
(Pereira et al., 2015). A 18-month planning horizon was
also considered and the wind plant have 10 wind turbines
presented in Fig. 2. The system data is presented in Ap-
pendix A.

As previously mentioned, the SDDP algorithm is applied
in the methodologies. After the SDDP convergence, the
algorithm provides the total operation cost in each forward
series (affluence scenario) considered. Thus, Table 1 briefly
presents the data obtained in the simulations considering
10, 100, 500 and 1000 wind generation scenarios, contain-
ing the average operation cost and the computational time
for the Operation Policy step, in order to evaluate the com-
putational efficiency of the SDDP-DS-FCI, in comparison
with the SDDP-DS.

Table 1. Comparison Between Methodologies.

Wind
Scenarios

Methodologies
Average Cost

(R$)
Time (s)

10
SDDP-DS 949204 601.85

SDDP-DS-ICF 948291 514.46

100
SDDP-DS 1035695 1132.30

SDDP-DS-ICF 1045837 581.81

500
SDDP-DS 940823 2714.81

SDDP-DS-ICF 940636 660.26

1000
SDDP-DS 875269 7715.56

SDDP-DS-ICF 875256 721.27

Note that the computational efficiency of SDDP-DS-FCI
increases in relation to that of SDDP-DS the greater the
number of demand scenarios used in the modeling, due
to the decrease in the dimensions of the problem, in
terms of the number of variables and restrictions. The
Fig. 6 presents a comparison of the speed-up between the
methodologies. The proposed approach proves to be better
to solve the problem. as the number of wind scenarios
increases.

Figure 6. Speed-Up Between Methodologies.

Due to the stochasticity of wind generation, the assembly
of the FCF cuts is made more realistically as the number
of scenarios increases, as more possibilities for wind gen-
eration are considered in the Operation Policy. Thus, as
shown in Fig. 6, the proposed methodology proves to be
superior for efficiently inserting wind generation scenarios,
since with a large number of scenarios the computational
gain is much higher than the conventional methodology.

The Fig. 7 presents the cost per affluence scenario deter-
mined in the SDDP-DS and SDDP-DS-FCI methodologies,
considering 1000 wind generation scenarios.

Figure 7. Total Operating Cost by Inflow Scenario.

The average percentage difference in operating costs be-
tween both methodologies was 0.26%. Thus, it can be
said that the ICF is well modeled and its insertion in the
proposed methodologie achieved satisfactory results.

After defining the operation policy, having calculated all
the cuts in the future cost function, it is possible to perform
the Operation Simulation step, according to Fig. 4. Table 2
presents the results of the simulation using the calculated
cuts, considering the average of the all inflow scenarios
and the occurrence of a especific generated wind scenario,
among all the 1000 generated wind scenarios.

Table 2. Costs (in million R$).

Methodologie
No of the Simulated

Wind Scenario
1 250 500 1000

SDDP-DS 0.9857 1.1272 0.8459 0.9617
SDDP-DS-ICF 0.9857 1.1269 0.8459 0.9514

Through the Table 2, the effectiveness of the proposed
SSDP-DS-FCI methodology is highlighted. Specific wind
scenarios were used in the Operation Simulation and the
operating costs presented by SDDP-DS and SDDP-DS-FC
were close, however the proposed methodology presents
the Operation Policy solution with less computational
effort, showing that its application is effective.

7. CONCLUSION

The present work brought a proposal for insertion of
wind generation in SDDP, for planning the operation of



hydrothermal systems in the medium term. The wind
generation scenarios were modeled through the Weibull
distribution were used to reduce load, consequently, several
demand scenarios were generated, thus requiring the use
of SDDP with Demand Scenarios.

However, the computational inefficiency of the SDDP-DS
was verified as the number of wind generation scenarios
increased. Thus, the Immediate Cost Function (ICF) was
used to accelerate the convergence process. The models
were then tested in simplified real systems in order to verify
their performance.

The main contribution of the article is the incorporation
of several scenarios of wind generation in the energy plan-
ning model, providing reliability to the system operator.
Another contribution is the significant reduction in the
computational time of the SDDP-DS-FCI compared to the
SDDP-DS, due to the reduction of the dimensions of the
problem without impairing the reliability of the results,
since the error in the analytical representation of the
FCI’s were small. Therefore, the SDDP-DS-FCI presents
the necessary robustness to be applied in larger and more
complex systems.
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Appendix A. HYDRO AND THERMAL PLANTS
DATA

The configuration and data of the 7 hydroelectric and 7
thermoelectric plants, shown in Tables A.1 and A.2 used in
the simulations are based on the December 2019 Monthly
Operation Program (PMO) price deck (CCEE, 2019).

Table A.1. Hydroelectric Plants Data

Name
vmin

(hm3)
vmax

(hm3)

qmax

(m3

s
)

smax

(m3

s
)

ρ

(MWmed
m3/s

)

Furnas 5733 22950 1692 5076 0.7811
Caconde 51 555 94 282 0.8316

Marimbondo 890 6150 2944 8832 0.5020
Camargos 120 792 220 660 0.1995

A. Vermelha 5856 11025 2958 8874 0.4763
E. Da Cunha 14 14 148 444 0.7630

Jaguara 450 450 1076 3228 0.4097

Table A.2. Thermoelectric Plants Data

Name
Cost

(R$/MWmed)
Capacity

(MWmed)

Baixada Flu 88.08 530
Cuiaba G CC 511.77 529
F. Gasparin 399.02 572
Norteflu - 1 50.93 400

St. Cruz Nova 127.40 500
Termomacae 504.65 929
Termorio L1 216.31 770




