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Abstract: This paper aims an off-line output-feedback robust model predictive control
(RMPC) using linear matrix inequalities (LMIs) applied to the angle position control of an
inverted pendulum modeled by Linear Parameters Varying (LPV) affine scheme. The presented
methodology involves the an off-line RMPC-LPV state feedback, which the gains are LPV by
LMIs and stored in the look-up table. Also, it is presented a robust observer design using LMIs
that is ensured the feasibility of the output feedback stability. The control strategies presented
in this study considers the online and off-line state space feedback and off-line feedback control
design along with state observer. The comparative analysis of the numerical results and cost
indices evidence the suitability of the proposed methodology and the advantages of output
feedback RMPC-LPV in comparison with the typical approaches based in the same control
design conditions.

Keywords: Inverted Pendulum Control; Output feedback RMPC-LPV; LPV-SS Control;
Off-line RMPC approach.

1. INTRODUCTION

The inverted pendulum is a nonlinear system very known
in the literature. Its characteristics are useful for control
design of real systems, such as: missile launching, robotic
arms, horizontal movement of a person walking, etc (Lund-
berg and Barton, 2010). The main goal of this control
design is to keep the pendulum rod in the equilibrium point
accord to the movement of its base (Ogata, 2011)

In order to reduce the negative effects originated by
non-linearity disturbances, the Linear Parameter Varying
(LPV) model is a useful contouring solution (Caigny
et al., 2009; Scherer, 2001), because it ensures the linearity
and maintains the nonlinear characteristics of the plant,
becoming easier the control design (Kajiwara et al., 1999;
Koelewijn et al., 2018).

In addition, researches involving the off-line robust model
predictive control (RMPC) via linear matrix inequalities
(LMIs) have increased in the last years (Costa et al., 2017;
Zheng et al., 2018; Moradi et al., 2018; Hu and Ding,
2018). Besides, studies of the RMPC applied to inverted
pendulum could be highlighted in this context (Yue et al.,
2018; Jung and Wen, 2004; Nam et al., 2019; Watson et al.,
2019). Moreover, Park et al. (2011), Bumroongsri (2014),
Longge and Yan (2017), and Ping (2017) presented appli-
cations of RMPC-LPV in their research fields, emphasizing
the efficiency of this method as robust control design.

Initially proposed by Kothare et al. (1996), the RMPC-
LMI consists to solve the robust control stability problem
based on quadratic cost index by LMI optimization for
each sample time. An off-line procedure of this RMPC was
presented by Wan and Kothare (2002), which the systems
with high computational cost could be controlled by a set
of static gains known as look-up table.

Based on this background, this study aims the RMPC-
LPV technique of Wada et al. (2006) using the LMI
procedure of Cuzzola et al. (2002) and applied to an
inverted pendulum modeled by LPV affine. The proposed
control strategies in this study considers the following
approaches:

(1) the online state feedback based on Kothare et al.
(1996);

(2) the off-line state feedback with lookup-table conform
to Wan and Kothare (2003);

(3) the off-line control method with observer design for-
mulation of Wan and Kothare (2003).

Hence, the main contributions proposed in this paper are:

(1) the output feedback RMPC-LPV via LMI approach;
(2) the LMI relaxed procedure for LPV state feedback

law and the observer design;
(3) the using of stability ellipsoids analysis for RMPC

of Wan and Kothare (2003) considering the LPV
emphasis to a lookup-table of state feedback gains;
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(5) the observer design method proposed insures the fea-
sibility of the robust input-output stability consider-
ing the LPV system condition;

(6) the efficiency of presented control method through
the comparative analysis of the response time and
performance indices, IAE, ISE, ITAE and ITSE.

This paper is organized as follows: Section 2 presents
the problem statement of RMPC-LPV and the observer
design. Section 3 explains the algorithm method of the
proposed control strategy. Section 4 elucidates the LPV
affine model of inverted pendulum along with the nu-
merical example and analysis of simulated results. Lastly,
the conclusions discusses the contributions shown in this
study.

Remark: The symbol (*) represents the symmetrical
block in the matrices as follow:[

A BT

B C

]
=

[
A ∗
B C

]
2. PROBLEM STATEMENT

Consider the following state space LPV affine model de-
fined by

x (k + 1) =A (α)x (k) +B (α)u (k)

y (k) =Cx (k) , (1)

where A (α) = A0+
n∑

m=1
αmAm, B (α) = B0+

n∑
m=1

αmBm,

x (k) are the states, u (k) is the control signal, y (k) is the
output signal and C is a static output array. Consider also
the estimated state space model defined by

x̂(k + 1) =A0x̂(k) +B0u(k) + LP (y(k)− Cx̂(k))

y(k) =Cx̂(k), (2)

which the observed state model is linear invariant at dis-
crete time. The sate feedback control law of the RMPC-
LPV is defined by min-max optimization problem of
Kothare et al. (1996), given by

min
u(k)

max
Ω

J∞ (k) (3)

which

J∞(k) =

∞∑
i=0

[
x(k + i|k)TQcx(k + i|k)

+u(k + i|k)TRcu(k + i|k)
]

(4)

where Ω = [A(α) B(α)] is the LPV convex hull of α ∈
[α ᾱ], Qc = QT

c ≥ 0 and Rc = RT
c ≥ 0 are the weighting

matrices defined by designer.

In order to obtain the feedback control law LPV defined
by u (k) = F (α)x (k), where F (α) is the LPV feedback
gain, the solution of the objective function is satisfied by
following LMIs procedures (Cuzzola et al., 2002; Wada
et al., 2006):

G+GT −Qj ∗ ∗ ∗
Γc (α) Qj ∗ ∗
Q1/2

c G 0 γI ∗
R1/2

c Y 0 0 γI

 ⩾ 0, (5)

[
1 ∗

x(k|k) Qj

]
⩾ 0, Qj > 0, (6)

where G ≥ 0, > 0, G non-symmetric and Γc (α) =
A (α)G+B (α)Y (α).

Adopting the procedures proposed by Briat (2015) and
Boyd et al. (1994), the gain F (k) = Y G−1 used by Cuzzola
et al. (2002) and Wada et al. (2006) it can be modeled
using the following LPV structure:

F (α) = Y0G
−1 +

n∑
m=1

αmYmG−1. (7)

Evidencing G−1 in (7) follows:

F (α) =

(
Y0 +

n∑
m=1

αmYm

)
G−1 (8)

So, Y (α) = Y0 +
n∑

m=1
αmYm is the LPV affine formulation

of the feedback control gain, F (α) = Y (α)G−1.

2.1 Input and Output Constraints

According to Cuzzola et al. (2002), the input and output
constraints are sentenced by, respectively:[

X Y (α)
∗ G+GT −Qj

]
⩾ 0,

With Xrr ⩽ u2
r,max, r = 1, 2, 3, . . . , nu

(9)

[
G+GT −Qj ∗

CΓc (α) Z

]
⩾ 0,

With Zrr ⩽ y2r,max, r = 1, 2, 3, . . . , ny

(10)

2.2 The relaxed observer design

Applying the relaxation procedure of Cuzzola et al. (2002)
to state observer design formulated by Wan and Kothare
(2002) become[

ρ2(Go +GT
o −Qj) ∗

GoA0 + YoC Qj

]
⩾ 0 (11)[

Go +GT
o −Qj Apoly,i,jGo

∗ Qj

]
> 0, (12)

where ρ ∈ [0 1] is the decay rate of the estimator design,
and Apoly,i,j is given by:

Apoly,i,j =

[
A (α) B (α)F (α)
LpC A0 +B0Fi − LPC

]
, (13)

which the observer gain is defined by LP = G−1
o Yo, for

i = 1, 2, 3, . . . , N and j = 1, 2, 3, . . . ,L, where L is the
number of vertices and N is the samples used for building
of look-up table.

3. OFF-LINE ALGORITHM

For the off-line robust constrained state feedback MPC,
given an initial condition (XSet) which generates a se-
quence of minimizers, γi, Qi Gi, Yi, Xi and Zi, for i =
1, 2, 3, . . . , N and j = 1, 2, 3, . . . ,L, subjected to (3), (5),



(6), (9), and (10). The sequence of the off-line algorithm
is as follows:

Set i := 1, then follow the steps:

(1) Evaluate the minimizers, γi, Qi, Gi, Yi, Xi and
Zi,with an additional constraint Gi−1 > Gi, Gi > Qj

and store, G−1
i , Fi, Xi and Yi in a look-up table.

(2) If i < N choose a state xi+1 satisfying ||xi+1||2G−1
i

≤
||xi+1||2Q−1

j

≤ 1.

Add i := i+ 1 and return to Step 1.
(3) Calculate F (α) = Y (α)G−1.
(4) Apply the control law u(k) = F (α)x(k).

4. SIMULATION RESULTS AND DISCUSSION

In this section, the proposed RMPC-LPV technique is
applied to the inverted pendulum model in three distinct
approaches: Online feedback control design, Off-line feed-
back control design, and Off-line feedback control design
with state observer.

4.1 Inverted pendulum: State-space LPV modeling

According to Teixeira et al. (2000) and Xiao-Jun Ma et al.
(1998), the non-linear model of an inverted pendulum in a
car illustrated in Fig. 1 can be described as:

ẋ1 = x2

ẋ2 = [ − f1(M +m)x2 −m2l2x2
2(sen x1)cos x1

+ f0ml x4cos x1 + (M +m)mgl(sen x1)

− ml(cos x1)u ]
1

∆
ẋ3 = x4 (14)

ẋ4 = [ f1mlx2cos x1 + (J +ml2)mlx2
2(sen x1)

− f0(J +ml2)x4 −m2gl2(sen x1)cos x1

+ (J +ml2)u ]
1

∆

where ∆ =
[
(M +m)(J +ml2)−m2l2cos2 x1

]
.

Linearizing (14) and using the state-space LPV affine
modeling, follows

x(k + 1) = (A0 + αA1)x (k) +Bu (k)

y(k) =Cx (k) (15)

where m = 1 + α, and

A0 =


0 1 0 0

M + 1

Ml
g 0 0 0

0 0 0 1

− 1

M
g 0 0 0

 , A1 =


0 0 0 0
1

Ml
g 0 0 0

0 0 0 0

− 1

M
g 0 0 0


, which

B =

[
0 − 1

Ml
0

1

M

]T
. (16)

The design parameters used to inverted pendulum control
design are: Rod length (l = 0, 304 m); Car mass (M =
1, 3282 Kg); Pendulum mass (m = 0, 22 Kg), and gravity

Figure 1. Inverted pendulum (Aguirre et al., 2007).

(g = 9, 81 m/s2). The model in (15) is discretized using a
sampling time of T = 0.10 s. Therefore, Ad = (I+TA0)+
αTA1 and Bd = TB. The numerical model of (16) are

A0 =

 1 0.1 0 0
5.6566 1 0 0

0 0 1 0.1
−0.7386 0 0 1

 , (17)

A1 =

 0 0 0 0
2.4296 0 0 0

0 0 0 0
0.7386 0 0 0

 , (18)

B = [0 −0.2477 0 0.0753]
T

(19)

For the numerical implementation of RMPC-LPV applied
to an inverted pendulum model, the input constraint
defined is umax = 100 N , the weighting matrices are
Rc = 1, Qc = I4x4, and XSet = [1 0.5 0.3 0.2 0.15 0.1 0.07
0.05 0.035 0.01], conform values presented by Wan and
Kothare (2002).

The initial state of simulation is given by x(0) =
[0.96 0 0 0]T , where the initial value of x1(0) is equivalent
to 55◦ from the equilibrium point. The LPV parameters
are limited in the range given by α ∈ [0.22 1.10].

4.2 Analysis of results

The observer gain obtained from (11) and (2.2) is given by

LP = [1.9802 16.2231 0.0010 − 0.5053]T

with decay rate of ρ = 0.10. The LPV feedback gains
presented in Table 1 are used for RMPC-LPV off-line and
off-line with observer design.

Figures 2a and 2b show the stability ellipsoids for off-line
algorithm design from matrix G−1, based on the vector
Xset and Table 1, which will stabilize the system for each
random value of α ∈ [α ᾱ], using the methodology of Wan
and Kothare (2002).

The feedback matrix is an ellipsoidal set in the plane
designed by the interaction of optimization process from
the recursive RMPC method, as described by Kothare
et al. (1996), that those matrices are stored in a look-up-
table and the designer can choose the better result, that
usually is the last value obtained by the algorithm.



Table 1: Look-up Table
N α F (α) = F0 + αF1

1 0.822
F0 +[49.617 6.660 0.644 1.690]
F1 −[−9.700 0.038 0.013 0.033]

2 0.708
F0 +[49.497 6.651 0.641 1.682]
F1 −[−9.844 0.023 0.008 0.020]

3 0.225
F0 +[49.175 6.628 0.633 1.662]
F1 +[10.215 0.007 0.002 0.006]

4 0.473
F0 +[49.107 6.623 0.631 1.658]
F1 +[10.291 0.012 0.004 0.010]

5 0.551
F0 +[49.019 6.617 0.629 1.653]
F1 +[10.390 0.019 0.006 0.016]

6 0.348
F0 +[48, 978 6, 616 0.628 1.652]
F1 +[10.425 0.013 0.004 0.011]

7 0.285
F0 +[48.762 6.601 0.623 1.639]
F1 +[10.669 0.029 0.010 0, 025]

8 0.625
F0 +[49.007 6.620 0.630 1.656]
F1 −[−10.368 0.004 0.001 0.003]

9 0.545
F0 +[48.950 6.614 0.629 1.652]
F1 +[10.429 0.008 0.002 0.007]

10 0.946
F0 +[49.208 6.625 0.638 1.671]
F1 −[−09.987 0.028 0.011 0.025]
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(b) Relate pendulum angular speed to car linear speed.

Figure 2. Off-line stability ellipsoids.

Figures 3a and 3b present the average time for the off-
line algorithm. It is observed that the response time

of system keeps inside of ellipsoids of stability region,
conform demonstrated by (Kothare et al., 1996).

Figure 4 illustrates the state behavior of the plant. x1(k)
and x2(k) are position and angular speed of the rod in
relation to its equilibrium point, respectively. x3(k) and
x4(k) are the position and linear speed of the car. There-
fore, both the figures show that the all the approaches of
RMPC are stable at response time. Figure 5 shows the
output and control signal of the system in the response
time.

The results presented in Figure 5 evidence similar per-
formances. Also, note that the design of the designed
observer ensures the stability in comparison with off-line
state feedback.

Furthermore, the RMPC-LPV proposed methodology
shows a feasible response to the pendulum’s mass, ran-
domly varying between the nominal value and fifteen times
this value.
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Figure 3. Optimization process of RMPC LPV off-line.

Considering the RMPC performance indices, it is adopted
the approach of Carmo et al. (2012). Table 2 shows the
respective indices for each implemented RMPC. It is ob-



served that the off-line output feedback RMPC technique
present the best performance in comparison with the other
control designs. Therefore, the results obtained by off-line
output feedback demonstrates that the adding of robust
observer design can enhance the general performance at
response time and the off-line algorithm ensures the feasi-
bility of optimization.

Table 2: Performance indices
On-line Off-line Off-line observer

IAE 0.0462 0.5290 0.0437

ISE 0.0192 0.0212 0.0178

ITAE 0.0063 0.0063 0.0045

ITSE 0.0005 0.0006 0.0004
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Figure 4. Time response for each states, α ∈ [m, 5m].
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Figure 5. Time response of y(k) and u(k) for α ∈ [m, 5m].

5. CONCLUSIONS

In face of the obtained results, the RMPC control tech-
niques presented similar response time. However, the off-
line output feedback RMPC technique showed the best
performance indices in comparison with other approaches
displayed at long of study. Furthermore, the robust ob-
server design for output feedback control ensures a sig-
nificant performance along with the recurrent feasibility

optimization procedure inside of the off-line algorithm.
Therefore, the proposed study showed that the off-line
output feedback control RMPC-LPV is robust, provided
by stability ellipsoids theory, and obtains better results
when compared with other RMPC techniques using the
same design control specifications. This study proposes
as future work the possibility of application the proposed
method in an experimental setup as a next step of this
research.
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