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Abstract— This work focuses on the Fault Detection (FD) problem in the Markovian Jump Linear System
framework for the discrete-time domain, under the assumption that the Markov chain mode is not directly
accessible. This assumption poses new challenges, since the filter responsible for the residue generation no longer
depends on the Markov chain mode. For modeling this type of situation, a Hidden Markov chain (θ(k), θ̂(k)) is

considered, with θ(k) corresponding to the hidden part and θ̂(k), to the observable part. The main result is the

design of an H2 Fault Detection Filter (FDF) that depends only on the estimated mode θ̂(k), obtained through
a formulation based on Linear Matrix Inequalities (LMIs). In order to illustrate the usability of the proposed
approach, we consider as an illustrative example a plant with coupled tanks subject to two distinct faults.
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1 Introduction

Over the last decades, industrial processes have
become more complex and the demands for pre-
cise, reliable, and secure procedures followed the
same path. In order to fulfill those demands, dif-
ferent approaches have been proposed in the liter-
ature and, in particular, one of them is the so-
called Fault Detection and Isolation (FDI) ap-
proach, which primarily detects faults and re-
arranges the system to minimize the possible
losses and/or chances of accidents, see for exam-
ple (Wang et al., 2019), (Zhou et al., 2017), and
(Atitallah et al., 2018). The FDI framework is
widely applied to different fields in engineering
as presented in the review (Venkatasubramanian
et al., 2003).

The FDI scheme is composed of three main
structures: the plant itself, a filter and a pre-set
threshold. The FDI framework works as follows:
the measurements obtained by sensors are trans-
mitted via a network to the filter; the filter gener-
ates a residual signal; this residual signal is com-
pared with the pre-set threshold. If the residue
surpasses the threshold value, a fault is consid-
ered to have occurred, otherwise the system is
considered to be operating in the nominal state,
see (Patton et al., 2013). From the above, we can
draw some hypotheses about the desirable traits
the residual filter should have: i) the plant receives
three distinct signals: a noise, a known input, and
the fault. For increasing the performance of the
fault detection approach, the filter must be sen-
sitive to the fault signal and, at the same time,
as resilient as possible to the other two signals; ii)
the communication between the sensor and the fil-
ter must be a full-reliable communication channel
since the loss of information has a great impact

on the filter performance.

Providing a full-reliable communication chan-
nel is possible using different approaches in the
communication protocol layers as in (Akyildiz
et al., 2002). However, depending on the situa-
tion, this task may be inconvenient or, in some
cases, even impossible to achieve. Thus, another
way to tackle this problem is to consider the
Markovian Jump Linear System (MJLS) formu-
lation, since it offers the possibility to associate a
specific behavior with a Markov chain mode of op-
eration, making it possible to model the network
state.

In the literature there are a number of works
on handling both subjects (MJLS and FDI), for
example, (Zhong et al., 2005), which designs an
H∞ norm residual filter for discrete-time MJLS
and (Wang and Yin, 2017) that considers the
synthesis of H∞ residual filters for continuous-
time MJLS. In the former references, the Markov
chain modes are assumed to be accessible and,
in the latter, the operation modes of the fil-
ter are assumed to be unmatched with respect
to the system being observed. (Li et al., 2018)
presents a Fault Detection Filter (FDF) for a non-
linear MJLS with missing measurements in the
discrete-time domain. An FDI for continuous-
time MJLS using a geometric approach is pre-
sented in (Meskin and Khorasani, 2010). A mode-
dependent FDF for discrete-time MJLS for a par-
tially known transition probabilities is provided
in (Zhang et al., 2010). Yet, the aforemen-
tioned works are based on the traditional premise
of complete knowledge of transition probability.
Even more importantly, the FDF obtained based
on those works also considers that the Markov
chain mode is instantly accessible, disregarding
the eventual occurrence of mismatches between
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the actual Markov chain and the implemented
Markov chain, which motivated us for this study.

The hypothesis that the Markov parameter
is accessible, in some cases may be seen as an
unrealistic assumption. A possible approach for
the non-observable case of the Markov parame-
ter would be to design a mode-independent fil-
ter. However, depending on the number of Markov
chain modes and the system dynamics, the conser-
vadorism added in the optimization problem may
lead to unfeasibility.

Another way to solve the FDI problem when
the network state is not accessible is to estimate
the modes employing a Hidden Markov Model
(HMM). In this case, the variable θ(k) is con-
sidered to be the network mode and the variable
θ̂(k), the estimated network mode. The main rea-
son to use the estimated network mode instead
of the network mode is based on the difficulty
to acquire such information with the necessary
speed and precision, as discussed in (Ben-Akiva
et al., 2001). Considering that network informa-
tion is not precise, there is a chance of occurring a
mismatch between the actual network mode and
the used network mode. Therefore, it is necessary
to consider a possible mismatch between the net-
work mode and the estimated one during a FDF
design process.

Bearing this in mind, we consider here that
the Markov chain mode is not accessible. Using
the HMM framework, it is possible to design a
filter that does not depend on the network state,
as in (de Oliveira and Costa, 2017b), but instead,
the filter depends on the estimated mode denoted
by θ̂(k), which is provided by a detector.

This work aims to provide conditions for an
FDF H2 design that works under the assumption
that the network state (Markov chain mode) is not
accessible. Motivated by the results presented in
(de Oliveira and Costa, 2017b), new Linear Ma-
trix Inequalities (LMI) design conditions are pre-
sented. The FDF designed via the LMI formula-
tion provided in our work depends only on detec-
tor parameters θ̂(k), which is the main novelty of
this paper.

1.1 Organization

This paper is organized as follows: Section 2
presents the necessary theoretical background to
understand the problem tackled in this work. Sec-
tion 3 introduces the Fault Detection Filter prob-
lem formulation. Section 4 presents the main the-
oretical results, Section 5 illustrates the results
with an example, and Section 6 concludes the pa-
per with some final comments. In Appendix A,
the proof for Theorem 1 is presented.

1.2 Notation

The notation used in this manuscript is standard.
The transpose of a matrix or vector is denoted
by the operator (·)′. The operator Tr(·) repre-
sents the trace of a square matrix, A−1 denotes
the inverse of a matrix . A symmetric block in
a symmetric matrix is represented by the symbol
(•). The symmetric sum is represented by the op-
erator Her(·), as in Her(A) = A+A′. The capital
letter I denotes the identity matrix. A complete
stochastic basis carrying a filtration Fk ⊂ F for
k ∈ {0, 1, 2, . . . } is denoted by (Ω,F ,Fk,P). The
set K = {1, 2, . . . , N} represents the Markov chain
states. The mathematical expectation is denoted
by the symbol E(·), and the conditional mathe-
matical expectation is represented by E(·|·). The
convex combination of matrices and weights ρij is
written as

Ei(X) =
∑N
j=1 ρijXj , for i ∈ K,

and
∑N
j=1 ρij = 1, ∀ i.

The norm of a stochastic signal z(k) is defined
as ‖z‖22 =

∑∞
k=0 E(z(k)′z(k)). The set of signals

z(k) ∈ Rp, such that z(k) is Fk measurable and
‖z‖2 <∞ is indicated by L2.

2 Preliminary

In Section 2 the MJLS, Hidden Markov Modes,
Mean Square Stability, and H2 norm are de-
scribed.

2.1 MJLS

A general MJLS formulation is

G :


x(k + 1) = Aθ(k)x(k) +Bθ(k)w(k),

z(k) = Cθ(k)x(k) +Dθ(k)w(k),

x(0) = x0, θ(0) = θ0,

(1)

where x(k) ∈ Rn is the state vector, w(k) ∈ Rp
is the exogenous input vector, and z(k) ∈ Rr rep-
resents the output vector. We also consider that
w(k) ∈ L2. We define the transition probability
matrix by P = [ρij ], where ρij = Pr[θ(k + 1) =

j|θ(k) = i] and
∑N
j=1 ρij = 1 for all i ∈ K.

We also define Fk as the σ-field generated by
{x(t), θ(t); t = 0, . . . , k}.

2.2 Mean Square Stability

The definition of system (1) being Mean Square
Stable (MSS), is given as follows (see (Costa and
Marques, 1998)):

Definition: System (1) is said to be MSS if,
for any initial condition x(0) = x0 ∈ Rn, initial
distribution θ(0) = θ0 ∈ K, and w̄(k) ≡ 0, we
have that limk→∞ E{x̄(k)′x̄(k)} = 0.



2.3 H2 Norm

Assuming that (1) is MSS, the H2 norm is calcu-
lated via

‖G‖22 =
∑p
s=1

∑N
i=1 µi‖zs,i‖22, (2)

where µi is the initial Markov chain state and
zs,i represents the output z(0), z(1), . . . obtained
when i) x(0) = 0 and the input is given by
w(k) = esδ(k), where es ∈ Rp is the s-th col-
umn of the identity matrix p× p and δ is the uni-
tary impulse, (Costa et al., 1997); ii) θ0 = i ∈ K
with probability µi = P (θ0 = i ∈ K). In (Costa
et al., 2006), it was shown that if the Markov
Chain is stationary, meaning that µi = ρi, where
ρi is the stationary distribution of the Markov
chain, the norm defined in (2) can also be defined
as ‖G‖22 = limk→∞ E(z′(k)z(k)), where z(k) is the
system output and w(k) represents a white noise
in the broad sense, and also is independent from
θ(k) and x(0) = x0.

3 Problem Formulation

In this section, the problem formulation and the
description for each component in the FDI scheme
used in the paper is presented. The MJLS formu-
lation for the FDI problem is

G :



x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k)

+Bdθ(k)d(k) +Bfθ(k)f(k),

y(k) = Cθ(k)x(k) +Ddθ(k)d(k)

+Dfθ(k)f(k),

x(0) = x0, θ(0) = θ0,

(3)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rq
is the measured output vector, u(k) ∈ Rm is the
known input vector, d(k) ∈ Rp is the exogenous
input vector and f(k) ∈ Rt is the fault vector,
which is considered as an unknown function of
time. We also consider that f(k), and d(k) ∈ L2.
Observe that system (3) depends on the index
θ(k), which is the Markov chain mode.

The goal in the present paper is to design
an FDF, which is responsible for generating the
residue signal r(k). The FDF is defined as

F :



η(k + 1) = Aηθ̂(k)η(k) +Mηθ̂(k)u(k)

+Bηθ̂(k)y(k),

r(k) = Cηθ̂(k)η(k) +Dηθ̂(k)y(k),

η(0) = η0,

(4)

whereby η(k) ∈ Rη represents the filter states, and
r(k) ∈ Rt is the filter residual vector. We point
out that this filter structure depends exclusively
on the detector mode θ̂(k).

Assumption 1. We consider that the in-
dex θ̂ is the switching variable, which is obtained

using a Hidden Markov Chain, θ̂ ∈ M, as in
(Ross, 2014). Consider that F̂k is the σ-field

generated by {x̄(0), θ(0), θ̂(0), . . . , x̄(k), θ(k)}. We

have that θ̂(k) ∈ {1, . . . ,M} is linked to θ(k) in

the following way: P (θ̂(k) = l|F̂k) = P (θ̂(k) =

l|θ(k)) = αθ(k)l, l ∈ M, whereby
∑M
l=1 αil = 1 for

each i ∈ N. Therefore, αil represents the probabil-
ity of the detector to emit signal l ∈Mi given that
θ(k) = i where the sets Mi can be characterized

as Mi = {l ∈M;αil > 0},
⋃N
i=1 Mi = M.

A possible way to improve the FDF per-
formance is to consider a weight matrix during
the design process, as used in (Chen and Pat-
ton, 2000; Zhong et al., 2005; Zhong et al., 2003).
As described in (Chen and Patton, 2000), the
weight matrix improves the FDF performance for
a specific frequency range. Herein, the weight ma-
trix W is denoted by

W :


xf (k + 1) = Awxf (k) +Bwf(k),

f̂(k) = Cwxf (k) +Dwf(k),

xf (0) = 0,

(5)

where xf (k) ∈ Rt is the weight matrix state, f(k)

is the same signal as in (3), and f̂(k) ∈ Rt is the
weighted fault signal.

Remark: It is important to point out that W
works as a tuning tool, consequentlyW is not im-
plemented, nor the signal f(k) is accessible. It is
possible to ignore the presence of W by setting
the matrices that composeW as Aw = I, Bw = 0,
Cw = 0, and Dw = I.

Considering the description of all component
in the FDI approach, and re(k) = r(k) − f̂(k),
the equivalent system can be written in the aug-
mented form as

Gaug :

x̄(k + 1) = Ãθ(k),θ̂(k)x̄(k) + B̃θ(k),θ̂(k)w̄(k),

re(k) = C̃θ(k),θ̂(k)x̄(k) + D̃θ(k),θ̂(k)w̄(k),

(6)

where the augmented state is x̄(k) = [x(k)′ η(k)′

xf (k)T ]′, and w̄(k) = [u(k)′ d(k)′ f(k)′]′. To sim-

plify the notation hereafter θ(k) = i, θ̂(k) = l.

Ãi,l =

 Ai 0 0
BηlCi Aηl 0

0 0 Awf

 ,
B̃i,l =

 Bi Bdi Bfi
Mηl BηlDdi BηlDfi

0 0 Bwf

 ,
C̃i,l =

[
DηlCi Cηl −Cwf

]
,

D̃i,l =
[
0 DηlDdi DηlDfi −Dwf

]
.

The main goal here is to obtain matrices Aηl, Bηl,
Cηl, Dηl, Mηl such that the residual generator (4)
is MSS when u(0) = 0, d(0) = 0 and f(0) = 0



and minimizes the H2 upper bound to be defined
next.

The goal to consider the H2 norm is to de-
sign a FDF that generates a residual signal which
is sensible to fault signals with impulsive behav-
ior. This assumption that the H2 norm increases
the FDF sensibility against the fault signal is mo-
tivated by the physical interpretation of the H2

norm, which is the sum of the energy dissipated
by the impulsive exogenous input.

Assuming that (6) is MSS, the H2 norm is
calculated via

‖Gaug‖22 =
∑p
s=1

∑N
i=1 µi‖rs,ie ‖22 < γ (7)

Minimizing the energy dissipated in re(k) =

r(k) − f̂(k) means that the signal r must have
a similar energy dissipation behavior when com-
pared to the weighted fault signal f̂(k). To cal-
culate the upper bound γ for the norm H2 for
partially known mode can be carried out by the
LMI constraints presented in (Costa et al., 2015).

As mentioned previously the FDI scheme is
divided into two stages, the first one is the resid-
ual generation, and the latter is the residue signal
evaluation. In order to perform the evaluation of
the residue signal, an evaluation function that de-
pends on the residue signal is defined as J(k), and
the threshold is obtained by using the evaluation
function. Both were used in (Zhong et al., 2005).
We consider L the evaluation time step. The eval-
uation functions are set as

J(k) ,
√∑k0+L

k=k0
rT (k)r(k), (8)

Jth , sup0 6=w(k)∈L2, 06=u(k)∈L2, f=0 J(k), (9)

whereby k0 denotes the initial evaluation instant.
Considering both equations, the fault occurrence
may be detected as follows J(k) < Jth represents
the nominal condition, and J(k) ≥ Jth represents
the fault occurrence.

4 Main Results

In this section the main results are presented,
which are the LMI constraints for the H2 norm to
design an FDF that considers the Markov chain
mode θ(k) not accessible and depends only on the

estimated state θ̂(k), as presented in (4).

Theorem 1 There exists a filter in the form of
(4) such that ‖Gaug‖2 < γ if there exist symmetric
matrices Zi, Xi, Mil, Wil, Ei, and matrices ∆l,
Ol, Fl, Gl, Rl with compatible dimensions that
satisfy the LMI constraints (10)-(13).∑N

i=1

∑
l∈Mi

µiαilTr(Wil) < γ,

(10)

Zi • •
Zi Xi •
0 0 Ei

 > ∑
l∈Mi

αil
[
Mil

]
,

(11)
[
Wil

]
Ei(Z)Bi Ei(Z)Bdi Ei(Z)Bfi
RlBi +Hl RlBdi + ∆lDdi RlBfi + ∆lDfi

0 0 Ei(E)Bw
0 GlDdi GlDfi −Dw

• • • •
Ei(Z) • • •

0 νil • •
0 0 Ei(E) •
0 0 0 I

 > 0,

(12)
[
Mil

]
Ei(Z)Ai Ei(Z)Ai 0

RlAi + ∆lCi +Ol RlAi + ∆lCi 0
0 0 Ei(E)Aw

GlCi + Fl GlCi −Cw
• • • •

Ei(Z) • • •
0 νil • •
0 0 Ei(E) •
0 0 0 I

 > 0,

(13)

where νil = Her(Rl)+Ei(Z)−Ei(X). If a feasible
solution is obtained, the matrices that compose the
filter are Aηl = −R−1l Ol, Bηl = −R−1l ∆l, Mηl =
−R−1l Hl, Cηl = Fl, Dηl = Gl.

Proof: The proof is presented in the Appendix
A.

Remark : The situation where the detector
matrix has equal rows αil = αl ∀ i ∈ N, rep-
resents the worst case scenario, since the detec-
tor cannot properly distinguish the modes of op-
eration, see, for instance, the works (de Oliveira
and Costa, 2017b) and (de Oliveira and Costa,
2018). In this situation the filter, as similarly pre-
sented in (de Oliveira and Costa, 2017b), is mode-
independent.

5 Numerical Example

In this section we present a numerical example
based on a system of coupled tanks taken from
(Feedback Instruments Ltd., 2013), in which we
want to estimate the flow. The coupled tanks sys-
tem, (Patton et al., 2013), is a multiple variable
plant, used to illustrate numerical fault detection
problems. The parameters for the simulated cou-
pled tanks system were obtained from the Cou-
pled Multi-Tanks System model number 33-041,
(Feedback Instruments Ltd., 2013). The state-
space matrices (3) in the discrete-time domain,
obtained by using a Zero-Order-Hold discretiza-
tion process with sample time of 0.5s, are given
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Figure 1: Evaluation function J(k).

by

A =

[
−0.0239 −0.0127
0.0127 −0.0285

]
, B =

[
0.71

0

]
,

Bd =

[
0.001
0.001

]
, C1 =

[
1 0
0 1

]
, C2 =

[
0 0
0 0

]
,

Dd =

[
0.05
0.05

]
, Bf =

[
0.5
0

]
,

Df =

[
0.5
0

]
,
Aw = 0.5, Bw = 0.25,
Cw = 0.6, Dw = 0.75.

The Communication Failure model: To model
the communication failure, the strategy Zero-
Input, (Schenato, 2009), is implemented. The
matrix that denotes the communication failure is
Ci, whereby C1 represents the nominal network
communication and C2 denotes the communica-
tion loss state.

Fault Signal model: The fault signal is a step
signal with magnitude equal to 1, and starting at
k = 100.

Here we present the results obtained in a
Monte Carlo simulation using FDF obtained by
Theorem 1. Additionally, a comparison between
the FDF proposed and the mode-dependent FDF
from (Zhong et al., 2005) and a static FDF is
made. For the next test, the transition ma-
trices and detector matrices are given by P =
[0.8 0.2; 0.4 0.6], and Ψ = [0.6 0.4; 0.75 0.25].
For Theorem 1 the matrices obtained are

Aη1 =

[
−0.00 0.01
−0.00 0.00

]
, Aη2 =

[
0.08 −0.18
0.03 −0.08

]
,

Bη1 =

[
0.003 −0.008
0.001 −0.003

]
, Bη2 =

[
−0.44 1.00
−0.20 0.44

]
,

Mη1 =

[
0.00
0.05

]
, Mη2 =

[
−0.01
0.03

]
,

Cη1 =
[
−0.15 0.35

]
, Cη2 =

[
−0.47 1.07

]
,

Dη1 =
[
1.13 −2.53

]
, Dη2 =

[
1.83 −4.11

]
.

Observing the curves related to the mode-
dependent FDF and the static FDF in Fig.1, allow
us to state that neglecting the network behavior
during the design process indeed impacts in the

FDF performance. But, even when the network
behavior is accounted (mode-dependent), the pos-
sible mismatch also has an impact on the perfor-
mance. Recall that the main premise of this paper
is the consideration of the partial observation of
the Markov chain to model the network mode mis-
match. Hence, this example illustrates that under
this premise, the proposed design technique for
the FDF provides a good alternative for the fault
detection problem.

6 Conclusion

We studied the fault detection problem associated
with the Markovian jump linear system in the
discrete-time domain considering the partial ac-
cess of the Markov chain mode. The main results
are the design of H2 MJLS filters. Notice that
this filter is responsible for generating the residual
signal in the FDI problem. As illustrated in the
numerical results, all the approaches provided are
viable solutions to the FDF problem. The next
step along this line of research is to change the
problem formulation, and use the concept of H−
index to maybe improve the filter performance.
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A Appendix

Proof Theorem 1: Fixing the following structure
for the matrices

P̃i =

Xi • •
U ′i X̂i •
0 0 P 33

i

 , P̃−1i =

Yi • •
V ′i Ŷi •
0 0 P 33 −1

i

 ,
(14)

Ei(P̃ )−1 =

T̂1i • •
T̂T2i T̂3i •
0 0 T̂4i

 ,
(15)



and the linearization matrices

τi =

 I I 0
V ′i Y

−1
i 0 0

0 0 I

 , (16)

ιi =

T̂−11i Ei(X) 0
0 Ei(U)′ 0
0 0 Ei(P 33)

 , (17)

we get that

τ ′i P̃iτi =

Y −1i Y −1i 0
Y −1i Xi 0

0 0 P 33
i

 ,
ι′iEi(P̃ )−1ιi =

T̂−11i • •
T̂−11i Ei(X) •

0 0 Ei(P 33)

 . (18)

The matrix Ei(P̃ )−1, as explained in (Gonçalves
et al., 2010), depends nonlinearly on Ei(P̃ ). The
matrix ι′iEi(P̃ )−1ιi is linearized by considering

Ui = −X̂i and observing that (14) provides Ui =
−X̂i = Y −1i −Xi = Zi −Xi, which enables us to
rewrite ιTi Ei(P̃ )−1ιi as

ι′iEi(P̃ )−1ιi =

Ei(Z) • •
Ei(Z) Ei(X) •

0 0 Ei(P 33)

 . (19)

Considering the constraintw (12), (11) and (13),
and Ui = Zi − Xi, X̂i = −Ui, V ′i Y

−1
i = I and

from (11) we are able to say that Ei(X) − Ei(Z)
is invertible due the Xi > Zi. This observation
also allows us to write Rl(Ei(X)− Ei(Z))−1R′l ≥
Her(Rl) +Ei(Z)−Ei(X), (see (de Oliveira et al.,
1999)), such that

[
Wil

]
Ei(Z)Bi Ei(Z)Bdi Ei(Z)Bfi
RlBi +Hl RlBdi + ∆lDdi RlBfi + ∆lDfi

0 0 Ei(E)Bwf
0 GlDdi GlDfi −Dwf

• • • •
Ei(Z) • • •

0 Πil • •
0 0 Ei(E) •
0 0 0 I

 > 0

(20)
[
Mil

]
Ei(Z)Ai Ei(Z)Ai 0

RlAi + ∆lCi +Ol RlAi + ∆lCi 0
0 0 Ei(E)Awf

GlCi + Fl GlCi −Cwf
• • • •

Ei(Z) • • •
0 Πil • •
0 0 Ei(E) •
0 0 0 I

 > 0,

(21)

where Πil = Rl(Ei(Z) − Ei(X))−1RTl . Recalling
that Ol = −RlAηl, ∆l = −RlBηl, Hl = −RlMηl,
Fl = Cηl, Gl = Dηl. As in (de Oliveira and Costa,

2017b), T̂−11i = Ei(X) − Ei(U)Ei(X̂)−1Ei(U)T ,

and since Ei(U) = −Ei(X̂) we get that T̂−11i =
Ei(Z) = Ei(X)+Ei(U). Define the matrix Qil as,

Qil =

In In 0
0 (R−1l )′(Ei(X)− Ei(Z)) 0
0 0 I

 . (22)

Applying congruence transformations
diag(I,Qil, I) and diag(I, I, I,Qil, I), respec-
tively, in (20) and (21) we obtain the constraints
below (similarly as presented in (Gonçalves
et al., 2010))

[
Wil

]
Ei(Z)Bi Ei(Z)Bdi

Ei(U)Bi + Ei(U)Mηl Ei(U)Bdi + Ei(U)BηlDdi

0 0
0 GlDdi

• • • •
Ei(Z)Bfi Ei(Z) • • •
Sil Ei(Z) Ei(X) • •

Ei(E)Bwf 0 0 Ei(E) •
GlDfi −Dwf 0 0 0 I

 > 0

(23)
[
Mil

]
Ei(Z)Ai Ei(Z)Ai
Qil Ei(U)Ai + Ei(U)BηlCi
0 0

GlCi + Fl GlCi

• • • •
0 Ei(Z) • • •
0 Ei(Z) Ei(X) • •

Ei(E)Awf 0 0 Ei(E) •
−Cwf 0 0 0 I

 > 0.

(24)

where Sil = Ei(U)Bfi + Ei(U)BηlDfi and Qil =
Ei(U)Ai+Ei(U)BηlCi+Ei(U)Aηl. The constraint
(11), (23) and (24) can also be described as

τTi P̃iτi >
∑
l∈Mi

αilτ
T
i R̃ilτi, (25)

 Wil • •
ιTi B̃ilτi ιTi Ei(P̃ )−1ιi •
D̃il 0 I

 > 0, (26)

τTi R̃ilτi • •
ιTi Ãilτi ιTi Ei(P̃ )−1ιi •
C̃il 0 I

 > 0. (27)

Applying the congruence transformations τ−1i ,
diag(I, ι−1i ) and diag(τ−1i , ι−1i , I) in (25) (26), and
(27), respectively, we end up with the similar LMIs
constraints as in (de Oliveira and Costa, 2017a),
concluding the proof.




