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Abstract :
This paper presents a novel method to control a quasi-static bipedal walking based on quadratic
programming and differential inequalities using geometric primitives. We allow the center of
mass to move anywhere inside the support polygon during the walking cycle, as opposed to
classic methods, which usually rely on tracking a desired trajectory for the zero moment point.
The constraints keep the robot balance, the pelvis above a minimum height, and prevent the
violation of joint limits during the complete walking cycle. Simulation results using the legs of
the Poppy humanoid robot show that the trajectories of the closed-loop system converge to the
desired center of mass position during the double support phase and the swing foot’s trajectories
converge to the desired pose during the single support phase while all constraints are obeyed.

Resumo :
Este artigo apresenta um novo método para controlar uma caminhada b́ıpede quasi-estática
baseado em programação quadrática e em desigualdades diferenciais usando primitivas geomé-
tricas. Permite-se que o centro de massa se mova para qualquer lugar dentro do poĺıgono de
suporte durante o ciclo de caminhada, diferentemente dos métodos clássicos, que geralmente
dependem do rastreamento de uma trajetória desejada para o ponto de momento zero. As
restrições também mantêm o equiĺıbrio do robô, a pelvis acima de uma altura mı́nima e evitam
a violação dos limites das juntas durante o ciclo completo da caminhada. Os resultados da
simulação, usando as pernas do robô humanoid Poppy, mostram que as trajetórias do sistema
em malha fechada convergem para a posição desejada do centro de massa durante a fase de
suporte duplo e as trajetórias do pé de balanço convergem para a pose desejada durante a fase
de suporte simples, enquanto todas as restrições foram respeitadas.
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1. INTRODUCTION

Humanoid robots have been widely studied in the last
thirty years (Yoshida (2018)). Among their advantages
are their mobility and their great number of degrees of
freedom, since it allows the definition of more complex
tasks. These robots can perform a wider variety of tasks
than the mobile-base terrestrial robots, such as climbing
stairs (Ching-Long Shih (1999)).

The walking advantage comes along with a challenge:
the walking task is successful if and only if the robot’s
swinging foot has reached its desired pose and the whole
mechanism has not fallen on the floor. The human-like
walking, an example of successful biped walking in nature,

1 This work was supported by the Brazilian agencies CAPES, CNPq,
and FAPEMIG.

has been studied over the years, from its biomechanical
system and musculoskeletal structure to the walking and
running trajectory data (Kim et al. (2007)).

To address the biped locomotion stability problem, Vuko-
bratovic and Juricic (1969) propose a gait synthesis us-
ing a preliminary idea of the concept of Zero Moment
Point (ZMP). Vukobratović and Stokć (1975) formalize
the definition of ZMP as the point where all active forces
can be reduced to a single resultant as well as the point
where the horizontal components of the resultant moment
are zero. Many works have based their gait synthesis on
the ZMP because it is an important indicator of the dy-
namic balance of the biped (Vukobratović et al. (2006)).
Basically, the control law must keep the ZMP inside the
support polygon (SP), which is the convex hull of all parts
of the robot in contact with the ground, during the gait.
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For instance, Kajita and Tani (1991) model the biped as
a linear inverted pendulum, control the robot to walk in
rugged terrains, and uses the ZMP information to calculate
feet dimensions to guarantee the robot balance.

Kajita et al. (2003) introduce a walking pattern generation
using a ZMP trajectory generated by preview control to
control the projection of the (CoM) onto the floor. That
work produces an optimized trajectory for the CoM, which
is overly restrictive because, in order to keep the balance,
it suffices to maintain the CoM inside the SP. The SP is
usually much larger than a single trajectory, which means
that even if the CoM projection onto the ground is outside
the ZMP trajectory, the robot is still balanced as long as
that projection is inside the SP. Later, Herdt et al. (2010)
extends the work of Kajita et al. (2003) by modifying
the predictive controller to automatically calculate the
future footsteps and additionally imposes constraints to
guarantee factibility and stability.

1.1 Statement of Contributions

This paper proposes a controller of the quasi-static bipedal
gait using quadratic programming with differential in-
equality constraints (Marinho et al. (2019)). The control
inputs to perform the walking task are generated while
obeying all the robot balance constraints. To accomplish
that, the CoM is always kept inside the SP, which is mod-
eled in the double support phase (DSP) by using delimiting
planes and in the single support phase (SSP) by using
an infinite cylinder. During all walking phases, the pelvis
is also constrained above a minimum height to prevent
the robot from squatting. Also, the joints angle limits are
taken into consideration explicitly inside the control law
to match the actual robot physical specifications, thus en-
suring a feasible control input. The differential inequality
constraints are defined according to the Grönwall’s lemma
(Gronwall (1919)), which bounds the solution to those
differential inequalities to decreasing exponential functions
and guarantees a smooth behavior when approaching the
borders of the constraint. Compared to our previous pre-
liminary work (Urban and Adorno (2019)), which was
presented as a two-page extended abstract, the current
work takes into account the constraints to enforce the joint
limits and the pelvis minimum height; is simulated on V-
REP, which is used for visualization of the robot walking;
and includes all technical details to ensure reproducibility
of our proposed techniques.

2. MATHEMATICAL BACKGROUND

Our method uses largely dual quaternion algebra, which
offers several advantages over other mathematical frame-
works (Adorno (2017)). Since dual quaternions are used
to represent rigid motions and geometrical primitives such
as Plücker lines, planes, and cylinders, we take advantage
of dual quaternion algebra during robot modeling and
control, as well as to impose the constraints related to
the biped walking task since it simplifies the representa-
tion of the primitives and the calculation of the distance
Jacobians between such primitives. As a result, we obtain
a straightforward and compact framework for the quasi-
static biped walking task.

2.1 Quaternions and Dual Quaternions

The set of quaternions is defined as

H ,
{
h1 + h2 ı̂+ h3̂+ h4k̂ : h1, h2, h3, h4 ∈ R

}
,

where ı̂, ̂, and k̂ are imaginary units such that ı̂2 =

̂2 = k̂2 = ı̂̂k̂ = −1. The dual quaternion set is defined
as H ,

{
h+ εh′ : h,h′ ∈ H, ε2 = 0, ε 6= 0

}
, where ε is

the dual unit (Adorno (2017)). Given a dual quaternion

h = h1 + h2 ı̂ + h3̂ + h4k̂ + ε
(
h

′

1 + h
′

2 ı̂+ h
′

3̂+ h
′

4k̂
)

, we

define the real part as Re (h) , h1 + εh′1, the imaginary

part as Im (h) , h2 ı̂ + h3̂ + h4k̂ + ε
(
h

′

2 ı̂+ h
′

3̂+ h
′

4k̂
)

,

and the conjugate as h∗ , Re (h)− Im (h).

Dual quaternions with unit norm, called unit dual quater-
nions, satisfy hh∗ = h∗h = 1 and represent rigid motions
composed of rotation and translation. The position is given
by a pure quaternion, which is defined as a quaternion with

real part equal to zero; for instance, p = p1 ı̂ + p2̂ + p3k̂.
The orientation is represented by a quaternion r with unit
norm and the pose is given by

x = r + ε
1

2
pr. (1)

A sequence of rigid motions is given by a sequence of
dual quaternion multiplications. For instance, consider the
unit dual quaternions x0

1 and x1
2 that represent the rigid

motions (translation plus rotation) from frame F0 to frame
F1 and from F1 to F2, respectively. The rigid motion from
F0 to F2 is given by x0

2 = x0
1x

1
2.

Given two pure quaternions a and b, the inner product
〈a, b〉 , − (ab+ ba) /2 and the cross product a × b ,
(ab− ba) /2 have the same geometrical interpretation of
the inner and cross products of vectors in R3. Also, the

pure quaternion h = h2 ı̂+h3̂+h4k̂ can be mapped to R3

as vec3 h = [h2 h3 h4]
T

and the dual quaternion h can be

mapped to R8 as vec8 h =
[
h1 h2 h3 h4 h

′
1 h
′
2 h
′
3 h
′
4

]T
.

2.2 Differential Kinematics

Consider a serial kinematic chain, whose end-effector pose
is given by the unit dual quaternion in (1). The differential
forward kinematics (DFK) maps the joints velocities to
the end-effector (generalized) velocities, and is given by
vec8 ẋ = J (q) q̇, where J (q) ∈ R8×n is the Jacobian
matrix and q ∈ Rn is the vector of robot configurations.
From the DFK and (1), it is possible to find the Jacobians
that satisfy vec3 ṗ = Jpq̇ and vec4 ṙ = Jrq̇ (Adorno et al.
(2010)).

3. BIPEDAL WALKING MODELING

In the quasi-static bipedal walking, we assume low ve-
locities and small accelerations, which implies from the
equations of Kajita et al. (2003) that the ZMP can be
approximated by the CoM projection onto the ground.

The bipedal walking is divided into two phases: the single
support phase (SSP) and the double support phase (DSP),
which are alternated during the walking cycle and repre-
sent a change in the SP model and in control dynamics.



Fig. 1 shows the complete walking cycle and how the
phases alternate. The walking cycle is divided in four
phases, as shown in Fig. 1. In phase 1, the robot is in DSP
and the CoM projection is moved to the convex hull of the
left foot. In phase 2, the robot is in SSP and the right foot
swings onwards to perform the first footstep. In phase 3,
the robot is again in DSP and the CoM is transferred from
the left to the right foot. In phase 4 , the left foot swings
from the back to the front towards the desired location,
while the CoM is inside the right foot SP. Phases 1 to 4
repeat until the end of the walk.

3.1 Double Support Phase

The DSP is the starting phase, where the robot has both
feet in contact with the floor and the CoM projection is
transferred to the new support foot. Fig 2 shows both feet
area in grey and the convex hull in light green, which are
combined into the SP during the DSP, as shown by the area
delimited by the red line. The SP can be modeled by as
many planes as necessary to represent it more faithfully.
However we simplify it by selecting two planes: the tip
plane πtip and the back plane πback. The two additional
planes in the outer borders that would be needed to com-
plete the rectangle enclosing the feet are not necessary
because the constrained motion controller, described in
Section 4, ensures closed-loop exponential stability. There-
fore, when the CoM projection is transferred from one
foot to the other, it never goes toward the outer border of
the first foot. Moreover, as we enforce a first-order closed-
loop error dynamics, there is no overshoot, hence the CoM
projection does not reach the outer border of the second
foot either.

A plane π is completely represented, within dual quater-
nion algebra, by its normal n and its distance d to a
reference frame such that π = n+ εd (Adorno (2017)).

3.2 Single Support Phase

In the SSP, the robot foot swings from the back to the
front to reach the desired location. The SP is composed
of the sole of the support foot. We model the SP as the
intersection of an infinite vertical cylinder with the ground
plane, as shown in Fig. 3. Although more conservative
than the original SP, which is given by the support foot’s
convex hull, this new SP is very fast to compute within
the constrained control law presented in Section 4. An
infinite cylinder is completely defined by the center line
l and the cylinder radius rCoM. Given a pure quaternion l
that defines the line direction and an arbitrary point p on
the line, l , l + ε (p× l) (Adorno (2017)). Therefore, the
infinite cylinder is defined as the pair (lCoM, rCoM).

3.3 Additional constraints

In addition to the aforementioned constraints, which are
enforced to maintain a stable gait, other constraints also
play an important role to enhance the overall behavior.
For instance, Fig. 2 shows the circular region formed by
the intersection between a vertical cylinder and the ground
plane πground. During the DSP, when the base frame (F0)
is on the left foot, the right foot tip is allowed to slide
inside that circular region, giving more freedom to the

robot gait. Conversely, when the base frame is on the right
foot, a similar region is defined for the left foot. Also, we
enforce the feet to stay on the ground plane at all times
during the DSP. These constraints are necessary because
we control only the CoM, which means the end foot can
rise above the floor and move around to perform the CoM
task. Although the foot could be constrained to a point,
constraining it into the circular region provides a much less
conservative solution. but we wanted to be more flexible
regarding the end foot.

Moreover, a horizontal plane (see Fig. 4) is also used to
keep the pelvis above a minimum height, dpelvis, during
the whole walking cycle.

Last, the angles of the robot joints are constrained during
the complete walking cycle to respect their mechanical
limits, such that the minimum and maximum values for
the joints are qmin, qmax ∈ Rn.

3.4 Bipedal Model

In order to perform a quasi-static gait, in which the
projection of the CoM onto the ground must be always
kept inside the SP, only the kinematic model is necessary.
To that aim, we consider the mechanism composed of the
two legs. First, we define the support foot as the first
link in the kinematic chain, and then attach the first link
of the swing leg to the last link of the support leg in a
process called serialization (Adorno (2011)), as shown on
the left of Fig. 5. For instance, let the left leg be the
support leg and its forward kinematics with respect to
F0 be given by xleft , xleft (qleft), as shown in Fig. 5,
where qleft ∈ Rn is the configuration vector of the left
leg. Analogously, the forward kinematics of the right leg
with respect to F6 is given by xright , xright(qright), with
qright ∈ Rn. The pose of the swing foot with respect to

the support foot is given by xswing,r = x∗leftx
5
6xright and

the corresponding differential forward kinematics of the
whole chain is given by vec8 ẋswing,r = J swing,rq̇, where

qr =
[
qTleft q

T
right

]T ∈ R2n (Adorno (2011)) and thus

J swing,r ∈ R8×2n. Analogously, when the right and left
feet are the support and swing feet, respectively, we obtain
xswing,l = x∗rightx

6
5xleft, with vec8 ẋswing,l = J swing,lq̇l,

where ql =
[
qTright q

T
left

]T
.

3.5 CoM Position and CoM Jacobian

To calculate the CoM, we analyze the relationship between
a link CoM and the joint that moves it, which involves
two relevant transformations, as shown in Fig. 5. The
first is the transformation x0

i (q) from the reference frame
F0 to frame Fi at the end of the ith link. The second
is the constant transformation xici from frame Fi to the
frame Fci at the CoM of the ith link. Therefore, the
transformation between frames Fi and Fci is given by

x0
ci

= x0
ix

i
ci
. (2)

The CoM Jacobian is obtained from the time derivative of
(2) as
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Figure 1. Walking phases: A) initial robot configuration and the first DSP. The red cross shows that the CoM projection
starts outside the left foot convex hull, the green cross is the desired CoM projection at the end of the DSP, and
the blue arrow shows this transference; B) the first SSP, where the right foot swings from the back to the front, as
shown by the pink arrow. The green cross represents the CoM inside the allowable region, the blue arrow shows the
next DSP transference; C) second SSP, where the left foot swings from the back to the front towards the desired
pose as shown by the pink arrow, while the CoM is inside the convex hull of the right foot as shown by the green
cross, the blue arrow shows the next DSP; and in D the cycle starts again.

πtip

πback

F0

rsliding

lsliding

ntip

nback

Figure 2. The DSP original SP is composed of feet area
in grey and the area between feet in light green. The
convex hull area is delimited by the red line, but we
model the SP as two planes touching the tip (πtip)
in pink and the back (πback) of feet in blue. The
cylinder with radius rsliding, constraining the sliding of
the right foot, is on the tip of the right foot. When the
CoM is inside the planes, shown by the green cross,
the robot is statically stable; when outside, as shown
by the red cross, the robot is not statically stable.

vec8 ẋ
0
ci

=
−
H8

(
xici
)

vec8 ẋ
0
i =

−
H8

(
xici
)
J iq̇i

= J̄ci q̇i =
[
J̄ci 08×n−i]︸ ︷︷ ︸

Jci

q̇, (3)

where we used the fact that ẋici = 0, J i ∈ R8×i and

qi ∈ Ri are the Jacobian and the joint velocities vector

up to joint i, and
−
H8 : H → R8×8 is an operator that

satisfies vec8 (h1h2) =
−
H8 (h2) vec8 h1 (Adorno (2017)).

Moreover, the CoM position of the chain composed of the
two legs and the pelvis, which has n degrees of freedom, is
given by the weighted sum (Oliveira and Adorno (2015))

rCoM

lCoM

F0

Figure 3. The SSP convex hull is the area delimited by
the red line, but the SP is simplified to the pink area
determined by the intersection between the infinite
cylinder (lCoM, rCoM) and the ground plane. When
the CoM is inside the SP, shown by the green cross,
the robot is statically stable; when outside, as shown
by the red cross, the robot is not statically stable.

npelvis

Minimum

pelvis

height.
dmin

πpelvis

dpelvis

F0

Figure 4. Pelvis plane πpelvis with normal npelvis and
distance dpelvis from the reference frame.



x0
i

xici
F2

Fi−1

F0

F1

Fi

x0
ci

Fswing,r

F5

F0

F6

x∗leftxright

Figure 5. Biped robot: on the left the robot serializa-
tion, in which the first chain is the reversed left leg
chain (x∗left), followed by the transformation (x5

6) from
frame F5 to frame F6—attached to the bases of the
left and right legs, respectively—, followed by the
right leg chain (xright); on the right, the CoM position
of all links that are used to calculate the CoM of the
whole kinematic chain composed of the two legs.

vec3 pCoM =
1

M

n∑
i=0

mi vec3 pci , (4)

where mi is the mass of the ith link, pci is the translational

part of x0
ci , and M is the total mass of the mechanism. The

CoM of the support foot, pc0 , is also taken into account
because it contributes to the total mass of the mechanism.
Finally, obtaining the translational component Jpci of Jci
that satisfies vec3 ṗci = Jpci q̇, as described in Section 2.2,
we obtain

vec3 ṗCoM =
1

M

n∑
i=0

mi vec3 ṗci =

(
1

M

n∑
i=0

miJpci

)
︸ ︷︷ ︸

JCoM

q̇,

(5)

where JCoM ∈ R3×n is the CoM Jacobian of the complete
chain.

4. CONSTRAINED CONTROLLER

To control the gait while respecting all the constraints, we
use a constrained kinematic controller based on quadratic
programming, where all the nonlinear geometric con-
straints are enforced as linear differential inequalities on
the control inputs, the so-called vector field inequalities
(Marinho et al. (2019)).

The control input u is given by

u ∈ argmin
q̇

‖J task(q)q̇ + ηx̃task‖22 + λ2 ‖q̇‖22

subject to Wq̇ ≤ w
W eqq̇ = weq,

(6)

where x̃task is the task-space error vector, J task(q) is
the task Jacobian matrix, q ∈ Rn is the joint vector,
η ∈ (0,∞) is the controller gain, and λ ∈ (0,∞) is a
damping factor to ensure that the joints velocities are
minimized. Furthermore, the matrix W ∈ Rm×n and the
vector w ∈ Rm define the inequality constraints whereas
W eq ∈ Rl×n and weq ∈ Rl define the equality constraints.

The main idea of the vector field inequalities, which
are used in the inequality constraints, is to define a
differentiable function d : Rn → R that provides the
(signed) distance between two geometric primitives as a
function of the robot joints. Therefore, given a constant
reference distance dref and d̃(q) , d(q) − dref , it is

possible to show that the inequality
˙̃
d(q) ≥ −ηdd̃(q),

where ηd ∈ (0,∞), ensures that, if d̃(q(0)) ≥ 0 then

d̃(q(t)) ≥ e−ηdtd̃(q(0)) for all t ≥ 0. Conversely, when

the inequality is reversed, that is
˙̃
d(q) ≤ −ηdd̃(q), if

d̃(q(0)) ≤ 0 then d̃(q(t)) ≤ e−ηdtd̃(q(0)) for all t ≥ 0
(Marinho et al. (2019)). Taking the time derivative from

the distance function d̃(q), we obtain
˙̃
d(q) = Jdq̇, where

Jd , ∂d̃(q)/∂q, which can be used in (6).

What determines the type of differential inequality to
be used—i.e., positive (≥) or negative distances (≤)—
depends on the relationship between the geometric primi-
tives. Given a point and a plane, a positive distance deter-
mines that the point is on the side of the plane to where its
normal is pointing. For instance, in Fig. 2, both normals
ntip and nback points to the convex hull. Therefore, the dis-
tances between the green CoM projection and the planes
are both positive. On the other hand, the distance of the
red CoM projection to πtip is positive, but the distance
to πback is negative. Analogously, the distance between
a point inside a cylinder and the cylinder boundary is
negative, whereas the distance between a point outside the
cylinder and the cylinder boundary is positive.

On the other hand, an equality constraint such as
˙̃
d =

−ηd̃ determines that the distance between the geometric
primitives will converge exponentially to zero.

Therefore, the main challenge is to define suitable task
variables J task(q) and x̃task and the corresponding con-
straint variablesW ,w,W eq,weq based on the geometrical
primitives and control objectives described in Section 3.

4.1 DSP controller

From Section 3.1, during the DSP, the goal is to transfer
the CoM projection from one foot to the other while it is
between the planes πtip and πback. In addition, both feet
are on the ground plane πground, the tip of the end foot
(i.e., the one to where the CoM projection is being moved)
is confined to the cylinder (lsliding, rsliding), the pelvis is
above the plane πpelvis, and the joint angles are limited
by the joint range [−φsafe,i, φsafe,i] for every ith joint.
Using the signed distance functions and the corresponding
Jacobians proposed by Marinho et al. (2019), namely the
distance between points and cylinders and between points
and planes, we define the following constraints:

˙̃
dsliding = J slidingq̇ ≤ −ηslidingd̃sliding = wsliding, (7)

where d̃sliding is the signed distance between the end-
foot tip and the sliding cylinder (lsliding, rsliding) such that
a negative distance means that the point is inside the
cylinder, the gain ηsliding ∈ (0,∞) determines how fast
the cylinder boundary can be approached from the inside,
and R1×n 3 J sliding = ∂d̃sliding(q)/∂q;

−Jgroundq̇ = ηgroundd̃ground = wground, (8)



where d̃ground is the signed distance between the end-foot
tip and the ground plane πground, the gain ηground ∈ (0,∞)
determines how fast the foot should return to the ground
in case it raises above the ground plane, and R1×n 3
Jground = ∂d̃ground(q)/∂q;

˙̃
dtip ≥ −ηtipd̃tip =⇒ −J tipq̇ ≤ ηtipd̃tip = wtip, (9)

where d̃tip is the signed distance between the CoM projec-
tion and the tip plane πtip, the gain ηtip ∈ R determines
how fast the CoM projection is allowed to approach the tip
plane from its positive side (i.e., the side where the plane

normal points at), and R1×n 3 J tip = ∂d̃tip(q)/∂q;

˙̃
dback ≥ −ηbackd̃back =⇒ −Jbackq̇ ≤ ηbackd̃back = wback,

(10)

where d̃back is the signed distance between the CoM
projection and the back plane πback, the gain ηback ∈ R
determines how fast the CoM projection is allowed to
approach the back plane from its positive side, and R1×n 3
Jback = ∂d̃back(q)/∂q;

˙̃
dpelvis≥−ηpelvisd̃pelvis=⇒−Jpelvisq̇≤ηpelvisd̃pelvis =wpelvis,

(11)

where d̃pelvis is the signed distance between the pelvis
position and the pelvis plane πpelvis, the ηpelvis ∈ R
determines how fast the CoM is allowed to approach the
pelvis plane from above, and R1×n 3 J tip = ∂d̃tip(q)/∂q;
and, finally,

q̇ ≤ −ηφ(q − qmax) = wφmax , (12)

−q̇ ≤ ηφ(q − qmin) = wφmin
, (13)

where qmin, qmax ∈ Rn are the vectors of minimum and
maximum values for the joints.

The goal during DSP is to transfer the CoM projection
between the feet, which means to control only the x and
y coordinates of the CoM. Therefore, in order to generate
the control input (6), we define J task , JCoM(x,y)

, where
JCoM(x,y)

is given by the first and second rows of JCoM in

(5). In addition, x̃task , vec3(pCoM(x,y)
− pCoMd(x,y)

) with

pCoMd(x,y)
being the desired projection of the CoM onto

the ground and pCoM(x,y)
being its current value, which is

obtained from the first and the second rows of vec3 pCoM
in (4). Furthermore, the constraint variables are defined as

W =
[
JTsliding −J

T
tip −J

T
back −J

T
pelvis In −In

]T
,

w =
[
wsliding wtip wback wpelvis w

T
φmax

wT
φmin

]T
,

W eq = −Jground,

weq = wground.

4.2 SSP controller

During the SSP, the goal is to place the end foot to the next
location while the CoM projection is inside the cylinder
(lCoM, rCoM). As in the DSP, in the SSP, the pelvis is
above the plane πpelvis and the ith joint angle is inside the
interval [−φsafe,i, φsafe,i] for every joint. Also, we define the
constraint

˙̃
dCoM = JCoMq̇ ≤ −ηCoMd̃CoM = wCoM, (14)

where d̃CoM is the signed distance between the CoM pro-
jection and the support polygon cylinder (lCoM, rCoM) such
that a negative distance means that the CoM projection
is inside the support polygon, the gain ηCoM ∈ (0,∞)
determines how fast the CoM projection can approach
the SP boundary, and R1×n 3 JCoM = ∂d̃CoM(q)/∂q.
The additional constraints are given by (11) and (12),
respectively. Therefore,

W =
[
JTCoM −J

T
pelvis In −In

]T
and w =

[
wCoM wpelvis w

T
φmax

wT
φmin

]T
.

Since in the SSP the goal is to swing the end foot from
the current position to a forward position, the control
input is generated using (6), where J task , J swing,r is the
Jacobian matrix of the coupled kinematic chain composed
of the left leg followed by the right leg, when the base
frame is on the left foot, and x̃task , vec8

(
xswing,r − xd

)
,

where xswing,r is the right-foot pose and xd is its desired
value. Analogously, when the base frame is on the right
foot, J task , J swing,l and x̃task , vec8

(
xswing,l − xd

)
,

where J swing,l is the Jacobian of the coupled kinematic
chain composed of the right leg followed by the left leg
and xswing,l is the left-foot pose.

5. SIMULATION RESULTS AND DISCUSSIONS

We evaluated, in simulation, the control strategy for the
complete walking cycle on the Poppy 1 humanoid legs us-
ing MATLAB software, the DQ Robotics library (Adorno
and Marques Marinho (2020)), and V-REP (Rohmer et al.
(2013)) for visualization. All robot joints are equal to zero
in the beginning of the first walking cycle. The CoM, end
foot, base foot, and pelvis start inside the allowable regions
to ensure the feasibility of (6). Since the robot is small,
with foot width and length equal to 7 cm and 9.34 cm,
respectively, we defined a small step length during SSP.
More specifically, each step has 5 cm on the horizontal
saggital axis. The controller parameters in (6) are η = 0.05
and λ = 0.1. The constraints were defined as described
in Sections 4.1 and 4.2, with ηsliding = 5, ηground = 5,
ηpelvis = 500, ηtip = 10, ηback = 20, ηφ = 10, and
ηCoM = 5.

During the DSP, the geometrical constraints were defined

as πground = k̂, (lsliding, rsliding) = (k̂+ε(pendtip×k̂), 0.04),

where pendtip is the end-foot tip position, and πpelvis = k̂+
ε0.2. The πtip and πback were defined such that they are
orthogonal to the ground plane and pass through points at
both the feet tips and backs, respectively. During the SSP,
the geometrical constraint related to the SP was defined as

(lCoM, rCoM) = (k̂ + ε(pbasecom × k̂), 0.05), where pbasecom
is the base foot CoM.

The control objective is switched from the DSP to the SSP
when the error stops decreasing and the CoM projection
is within the SSP cylinder (lCoM, rCoM) of the end foot.
Conversely, the control objective is switched from the SSP
to the DSP when the error is below a threshold of 0.001.

In order to update the joints, a first-order numerical inte-
gration (Euler’s method) is performed using an integration
step of 0.005 s.
1 https://www.poppy-project.org/en/robots/poppy-humanoid
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Figure 6. Complete cycle. A) Initial configuration (DSP);
B) End of the DSP; C) the right foot swings towards
the desired location, which is achieved in D; E) the
CoM is transferred from the left SP to the right SP;
F) the left foot swings toward the desired location,
which is achieved in G; H), finally, the cycle starts
again.

5.1 Closed-loop behavior of the complete walking cycle

Fig. 6 shows the first complete walking cycle, in which the
CoM projection was always confined to the SP, ensuring a
stable gait. In the first DSP, the CoM projection started
inside the SP, but outside both feet, and then it was
transferred from the old to the new support foot. Fig. 7A
shows that this first part was completed with a steady-
state error as the CoM projection could not be driven
to the desired value due to the constraints. Nonetheless,
the CoM projection entered into the SP of the next
SSP because the steady-state error was smaller than the
threshold given by the dashed-red line, which represents
the distance between the centerline and the boundary of
the next SSP cylinder.

During the first DSP, the CoM projection was kept inside
the SP, which is approximated by the region between the
tip plane and back plane, as indicated by the positive
distances to each plane, namely dfeet tip and dfeet back in
Figs. 7D and E. The constraint on the end-foot tip was
also obeyed, as the end-foot tip stayed inside the sliding
cylinder, which is shown by the curve below the threshold
in Fig. 7B. The steady-state distance between the end-foot
and the ground plane was approximately 0.01 mm due to
discretization effects.

Following the first DSP, the first SSP starts after the error
in the DSP stops decreasing. Fig. 8A shows that the swing
foot (i.e. the right one) is placed at the desired location
as the pose error norm decreases exponentially to zero.
Moreover, the CoM was kept inside the SP during the
entire SSP (Fig.8B), as well as the pelvis was above the
minimum height (Fig.8B).

For the next DSP, the projection of the CoM was trans-
ferred from the left foot to the right foot and the behavior
was analogous to the first behavior, as shown by the green
curves in Fig. 7. The second DSP is followed by the second
SSP, in which the behavior was also analogous to the first
SSP, as shown by the green curves in Fig. 8.

Finally, Fig. 9 shows that the joints limits were respected
during the complete walking cycle.
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Figure 7. Time-response during the DSP for one complete
cycle (first DSP in blue and second in green). A) the
norm of the CoM projection error and the boundary
of the next SSP in dashed-red line; B) end foot
pose distance from sliding cylinder main axis with
corresponding boundary in dashed-red line; C ) foot
pose distance from the floor plane; D) the distance of
the CoM from the plane formed by feet tip; E) CoM
distance from the plane formed by back tip; F) and
distance of the pelvis to the plane.
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6. CONCLUSION

This paper has proposed a closed-loop constrained con-
troller for the quasi-static bipedal walking based on
quadratic programming and differential inequalities. The
controller takes into account constraints on the joints,
CoM, swing foot, and pelvis. The SP is modeled by us-
ing geometric primitives and the constraints are defined
by using the differential inequalities associated to those
primitives. This enables the control of the CoM, during



the DSP, and the swing foot, during the SSP, without ex-
plicitly specifying the trajectory for the CoM. In addition,
differently from classic approaches in which the CoM must
follow a trajectory, our technique is less conservative as
the CoM is bounded by the SP, but it does not follow
any predefined trajectory. As a result, we do not need
to calculate a CoM trajectory and the implementation
is much simpler than the one proposed by Kajita et al.
(2003).

All constraints were respected during the entire walking
cycle, although the discretization played a relatively neg-
ligible role in the floor plane constraint. More specifically,
during the DSP, both feet were supposed to stay flat on
the ground, but disturbances from the discretization of the
control signal would make the base foot raise up to 0.1 mm.

One disadvantage of our method is that closed-loop asymp-
totic stability is not guaranteed due to the constraints.
Therefore, if the steps are too large, it may be the case that
the closed-loop system reaches a local minimum and the
step is not concluded. Nonetheless, the robot would not fall
in those cases because the constraints ensure that the CoM
projection is always inside the SP, thus enforcing static
balance. The quasi-static walking is also a disadvantage of
our approach since it is slower than the other state-of-the-
art works, which are based on dynamic walking. Besides,
we did not study the system behavior in the presence
of disturbances, as done in the work of Maximo et al.
(2016). Therefore, we do not guarantee the robot balance
under such circumstances. Further works will focus on
implementing the controller on the Poppy humanoid robot
available at the Mechatronics, Control, and Robotics group
at UFMG and the extension of our technique to dynamic
gait.
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