
Robust Model-Based Fault Detection and

Isolation of a Six Degree of Freedom

Helicopter ?

Lázaro F. Sansón ∗ Victor A. de Campos ∗∗ Alain S. Potts ∗∗∗

∗ Engineering, Modeling and Applied Social Sciences Center, Federal
University of ABC, Santo André, São Paulo, Brazil, (e-mail:
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Abstract: Helicopters are high cost and safety systems with a strong control system designed
to maintain the helicopter performance, stability, and flight qualities. However, there exist faults
that negatively affect the helicopter desirable behaviour; therefore, fault detection and isolation
must be done to early detect, isolate and eliminate these faults. Because of helicopters are
strongly nonlinear systems, and are affected by uncertainties and by external disturbances as
wind bursts, robust residuals generation is required to correctly detect and isolate faults in the
helicopter actuators and sensors. This paper leads with the robust fault detection and isolation of
a six-degree of freedom helicopter benchmark using the disturbance decoupling method and the
unknown input observer robust residuals generator. A generalized observer scheme is employed
for fault isolation purposes.

Keywords: fault detection and isolation, robust residual generation, disturbance decoupling,
unknown input observer, eigenstructure assignment.

1. INTRODUCTION

In the last decades the Fault Detection and Isolation (FDI)
methods have increased the interest of researchers in the
academic and industry. This is due to the fact that more
efficiency, safety, availability and autonomy are required
in processes. Frequently, control systems cannot detect
behaviours that could lead the process to malfunctions and
failures (Isermann, 2006). FDI, as a part of the monitoring
and supervision process, allows an early detection and
isolation of faults. FDI also helps in the decision making
and predictive maintenance (Isermann, 2011), representing
an economical saving, and guaranteeing the safety of the
process and the environment protection.

A fault is an unpermitted deviation in at least one charac-
teristic, property or parameter of the system from the stan-
dard or normal behaviour, as shown in Isermann and Balle
(1997). This condition could lead the system to a mal-
function or failure. Therefore, faults should be detected,
isolated, treated, and eventually eliminated to maintain
the system in the normal state of performance. In gen-
eral, three approaches have been adopted for FDI: Model-
based FDI, Knowledge-Based FDI and Data-Driven FDI
(Isermann, 2006; Venkatasubramanian et al., 2003c,b,a).
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Model-based approach has been developed over the last
years. The main issue in this approach is the need of a good
model of the system. However, obtaining a good model of
the system is not easy. Thus, system identification methods
are often used to build an adequate model of the system
(Ljung, 1999; Aguirre, 2015).

The major research problem in FDI is the robust resid-
ual generation. Residuals are affected by nonlinearities,
uncertainty, modelling errors, noise, disturbances, etc. A
lot of work in this research field is available. Freddi et al.
(2009); Tahraoui et al. (2014); Negash et al. (2016); Chaves
et al. (2018); Zhang et al. (2018) are examples of results
on robust FDI.

Among the robust FDI methods, Unknown Input Observer
(UIO) have been useful in the robust residual generation.
There are evidence of UIO applications in many processes
such as chemical processes, electrical systems, aircraft and
helicopters (Chen and Patton, 1999; Termehchy et al.,
2013; Zhang et al., 2016; MA et al., 2018).

Helicopters are aircrafts with a complex dynamics and
behaviour. These aircrafts are considered very unstable
and relevant research about its modelling and control may
be found in Luo et al. (2003); Padfield (2008); Cook (2012);
Ren et al. (2012). In order to achieve desirable flight
qualities and system stability, helicopters are equipped
with sensors and actuators from which a lot of information
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is obtained, processed and monitored. That information
is useful in designing and applying FDI schemes. Fault
detection and isolation of helicopter sensors and actuators
have a tremendous impact in economy and safety. The
faults occurrence in sensors and actuators can lead to a
non-desirable and dangerous situation compromising the
helicopter flight qualities and stability, and, in the worst
case, a system break-down can arise.

This paper addresses the robust FDI of a six Degree of
Freedom (DoF) helicopter using simple Unknown Inputs
Observers as robust residuals generators. A Generalized
Observer Scheme (GOS) is adopted to implement sensor
and actuator faults isolation schemes based on UIOs. A
linear model of the helicopter in the state of hover is
employed for the FDI system design.

2. HELICOPTER MODEL

Helicopters are high order systems with a strong non-
linear dynamics and complex behaviour. The helicopter
dynamics in flight can be modelled as the combination of
a large number of interacting subsystems. The equations
governing this dynamical interaction are obtained from the
application of physical laws to the individual components
of the helicopter and generally have the form of nonlinear
differential equations as (1).

dx

dt
= f(x,uc,t)) (1)

where, x(t) is the state vector, uc(t) is the control vector
and, f(x, uc, t) is a nonlinear function of the aircraft
motion (Padfield, 2008).

This research only considers the special case of a six DoF
of the rigid body approximation. The six DoF are the three
translational movements and the movements of pitching,
yawing and rolling. This case is a suitable one and very
employed in helicopter control systems. The state vector
comprises the six DoF is:

x = [u,w, q, θ, v, p, φ, r, ψ]T (2)

where, u, v and w are the translational velocity compo-
nents, p, q, r the rotational velocity components and, φ,
θ, ψ the Euler angles.

The nonlinear equations of motion are divided into force
(3), moment (4), and attitude (5) equations (Padfield,
2008).

u̇(t) = −(wq − vr) +
X

Ma
− g sin θ

v̇(t) = −(ur − wp) +
Y

Ma
− g cos θ sinψ

ẇ(t) = −(vp− uq) +
Z

Ma
− g cos θ sinψ

(3)

Ixxṗ(t) = (Iyy − Izz)qr + Ixz(ṙ + pq) + L

Iyy q̇(t) = (Izz − Ixx)qr + Ixz(r
2 − p2) +M

Izz ṙ(t) = (Ixx − Iyy)qr + Ixz(ṗ+ qr) +N

(4)

φ̇(t) = p+ (q sinφ+ r cosφ) tan θ

θ̇(t) = q cosφ− r sinφ

ψ̇(t) =
q sinφ+ r cosφ

cos θ

(5)

where, Ma is the mass of the fuselage, X, Y , Z are the
external forces, L, M , N N are analytic functions of the
disturbed motion variables and their derivatives, and Ixx,
Iyy, Izz, Ixz, are the fuselage moments of inertia about the
reference axes,

A nonlinear model is hard to manipulate and difficult
to employ in fault detection and diagnosis, since the
state-space observer-based methods for robust FDI are
generally based on linear models of the system; a linear
model of the helicopter system in equations (3), (4), (5)
is given. The helicopter here studied is the DRA research
Westland Lynx Mk7 and the process of linearization is
exposed in Padfield (2008) and Luo et al. (2003). This is a
known benchmark aircraft and is widely used in research
to calibrate agility standards of future helicopter types.
Equation (6) presents the state-space representation of the
helicopter linear model.

ẋ(t) = Ax(t) +Buc(t)
y(t) = Cx(t)

(6)

where, x =
[
u w q θ v p φ r

]T
and uc =

[
θ0 θ1s θ1c θ0T

]T
, θ0

is the main rotor collective pitch control, (θ1s, θ1c) are the
cyclic collective pitch controls, and θ0T is the tail rotor
collective pitch control. The output vector is selected as

y(t) = [ q θ φ r ]
T

.

3. ROBUST MODEL-BASED FAULT DETECTION
AND ISOLATION SYSTEM

Nonlinearities, modelling errors, signal noise, disturbances
and uncertainty, negatively impact the performance and
the reliability of a diagnosis system. Model-based FDI
methods require a good mathematical model of the plant in
order to make steady-state output error tends to zero. The
accuracy of the model is compromised by disturbances and
unknown inputs which decrease the sensitivity of residuals
to faults and increase the number of false alarms and wrong
classifications.

A system can be modelled in the state-space as in equation
(7), where x(t) ∈ Rn, u(t) ∈ Rr and y(t) ∈ Rm. The
vector d(t) ∈ Rq is an unknown input term which is an
additive disturbance vector, matrix E is the disturbance
distribution matrix.

ẋ(t) = Ax(t) +Buc(t) + Ed(t)
y(t) = Cx(t)

(7)



Disturbance decoupling approach is widely used for robust
residual generation (Chen and Patton, 1999; Patton et al.,
2013; Simani et al., 2003). The objective of the disturbance
decoupling methods is to decouple faults from disturbances
and increase the sensitivity of the residuals to faults. In this
research, a method from disturbance decoupling approach
is employed to achieve robust fault detection and isolation.

3.1 Unknown Input Observers

Unknown input observers are a special kind of observers
in which all disturbance signals are considered as unknown
inputs to the model of the plant. A formal definition of UIO
is shown below.

Definition 1. An unknown input observer is an observer
in which the state estimation error vector e(t) approaches
zero asymptotically, regardless of the presence of the
unknown inputs or disturbances on the system (Chen and
Patton, 1999).

A full order observer structure is shown in equation (8),
where z(t) ∈ Rn is the full order observer state vector
and ẋ(t) ∈ Rn is the estimated state vector. If matrices F,
T, K and H are selected correctly, the full order observer
in equation (8) is converted in an UIO and disturbance
decoupling is achieved.

ż(t) = Fz(t) + TBuc(t) +Ky(t)
x̂(t) = z(t) +Hy(t)

(8)

When the observer in equation (8) is applied to the system
in equation (7), the state estimation error is governed by
equation (9).

ė(t) = ẋ(t)− ˙̂x(t) = (A−HCA−K1C)e(t)
+[F − (A−HCA−K1C)]z(t)
+[K2 − (A−HCA−K1C)H]y(t)
+[T − (I −HC)]Bu(t) + (HC − I)Ed(t)

(9)

In order to make:

ė(t) = Fe(t) (10)

the conditions in equation (11) must be reached.

(HC − I)E = 0
T = I −HC
F = A−HCA−K1C
K2 = FH
K = K1 +K2

(11)

Matrix F must be a stable matrix, i.e. the eigenvalues
of F lie in the open left complex half-plane. Therefore,
e(t) will approach asymptotically to zero, so the full order
observer in equation (8) is an unknown input observer
of the system in equation (7). Now, the necessary and
sufficient conditions for the existence of the unknown input
observer is given by Theorem 1

Theorem 1. Necessary and sufficient conditions for
the existence of unknown input observer:

(1) rank(CE) = rank(E)

(2) (C,A1) is a detectable pair, where
A1 = A− E[(CE)TCE]−1(CE)TCA

The proof of this theorem will be omitted but it is shown in
Chen and Patton (1999). If the first condition of theorem
1 is achieved, then a solution for conditions in equation
(11) is given in equation (12).

H = E[(CE)TCE]−1CET (12)

3.2 Robust fault detection and isolation schemes based on
UIOs

The fault isolation procedure is the determination of the
sensor or the actuator in which a fault has occurred. The
strategy here is to design a structured residual set which
is sensitive to a group of faults and insensitive to others.
The ideal situation is to make each residual sensitive to a
particular fault. This ideal situation is hard to achieve;
even when it is possible. Usually, the design freedom
available will be exhausted and no other improvements will
be performed including robustness. An accepted criterion
is to design residuals to be sensitive to all faults except to
faults in one sensor or actuator.

The system in equation (7) with faults in actuators and
sensors could be modelled in state space as in equation
(13). Vectors fa(t) ∈ Rr and fs(t) ∈ Rm are the actuator
and sensor faults respectively and matrices L1 = B and
L2 = Im are the fault distribution matrices.

ẋ(t) = Ax(t) +Buc(t) + Ed(t) + L1fa(t)
y(t) = Cx(t) + L2fs(t)

(13)

If the UIO in equation (8) is applied to the system in
equation (13) the estimation error (ė(t) = Fe(t)) and the
residual will be:

ė(t) = ẋ(t)− ˙̂x(t) = (A1 −K1C)e(t)

+TBfa(t)−K1fs(t)−Hḟs(t)
r(t) = Ce(t) + fs(t)

(14)

From equation (14) a fault in the ith actuator will affect
the residual if and only if Tbith 6= 0, bith is the ith column
of matrix B. In the same way, if a fault occurs in the ith
sensor, the residual must be sensitive to this fault to detect
it. However, fs(t) has a direct effect on the residual and
this condition is normally satisfied.

The fault isolation schemes based on UIOs generalized
observer schemes are well explained in Chen and Patton
(1999). The implementation is summarized below.

3.3 Robust actuator faults isolation scheme

For actuator fault isolation scheme it is assumed that there
is no faults in sensors. Then system in equation (13) can
be described as:

ẋ(t) = Ax(t) +Biuic(t) +Bif ia(t) + Eidi(t)
y(t) = Cx(t)

(15)

where, Bi ∈ Rn×(r−1) is the matrix B by deleting the ith
column, ui ∈ Rr−1 is the input vector by deleting the ith



input, f ia is the fault vector by deleting the fault in the ith

actuator fai, E
i = [E bith ] and di(t) =

[ di(t)
uci

(t)+fai

]
, where

ui(t) is the ith system input, for i = 1, 2, ..., r

The rth UIO residual generator is constructed as in equa-
tion (16). The residuals generated from the ith UIO are
sensitive to all faults except the ith actuator fault.

żi(t) = F izi(t) + T iBiuic(t) +Kiy(t)
ri(t) = (I − CHi)y(t)− Czi(t),
i = 1, 2, ..., r

(16)

3.4 Robust sensor faults isolation scheme

In the case of sensor faults isolation scheme, it is assumed
that no faults occur in actuators. The system in equation
(13) is described as:

ẋ(t) = Ax(t) +Buc(t) + Ed(t)
yj(t) = Cjx(t) + f js (t)yj(t) = cjx(t) + fsj(t),
j = 1, 2, ...m

(17)

where cj ∈ R(1×n) is the jth row of matrix C, Cj ∈
R(m−1×n) is obtained from the matrix C by deleting cj ,

yj is the jth component of y ,and yj ∈ R(m−1) is obtained
from y by deleting yj .

The mth UIO residual generator are constructed as in
equation (18). The residuals generated from the jth UIO
are sensitive to all faults except the jth sensor fault.

żj(t) = F jzj(t) + T jBuc(t) +Kjyj(t)
rj(t) = (I − CjHj)yj(t)− Cjzj(t),
j = 1, 2, ...,m

(18)

4. RESULTS

The linear model of the helicopter presented in equation
(6) is used in the design of a FDI system based on
UIOs following the theoretical basis established in the
last sections. The helicopter hover operating point is
considered, i.e. flight at 0m/s. Matrices A and B are
obtained from the first-order partial derivatives of function
f(x, u, t) with respect to the state vector and the input
vector respectively as shown in Padfield (2008). Matrices
A, B, and C are presented in equations (19), (20), and
(21) respectively.

A =



−0.0199 0.0215 0.6674 −9.7837
0.0237 −0.3108 0.0134 −0.7215
0.0468 0.0055 −1.8954 0

0 0 0.9985 0
0.0207 0.0002 −0.1609 0.0380
0.3397 0.0236 −2.6449 0

0 0 −0.0039 0
0.0609 0.0089 −0.4766 0

−0.0205 −0.1600 0 0
−0.0028 −0.0054 0.5208 0
0.0588 0.4562 0 0

0 0 0 0.0532
−0.0351 −0.6840 9.7697 0.0995
−0.2715 −10.9759 0 −0.0203

0 1.0000 0 0.0737
−0.0137 −1.9367 0 −0.274



(19)

B =



6.9417 −9.2860 2.0164 0
−93.9179 −0.0020 −0.0003 0

0.9554 26.4011 −5.7326 0
0 0 0 0

−0.3563 −2.0164 −9.2862 3.6770
7.0476 −33.2120 −152.9537 −0.7358

0 0 0 0
17.3054 −5.9909 −27.5911 −9.9111


(20)

C =

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 (21)

Uncertainty in helicopter hover operating point is simu-
lated as a random input variable, representing the uncer-
tainties in the flapping blades. It is considered a random
variable with zero mean and a relatively high covariance
of 5% to represent the aerodynamic and atmospheric pa-
rameters. The unknown input uncertainty signal is shown
in figure 1.
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Figure 1. Helicopter hover state flapping blades uncer-
tainty simulation.

Two Unknown Input Observers banks are designed. Each
bank has four UIOs and consequently, four sets of robust
residuals are available. One bank of observers is dedicated
to detect and isolate faults in the helicopter actuators.
The other bank is dedicated to detect and isolate faults
in the helicopter sensors. It is assumed that two faults do
not exist at the same time, that is a realistic assumption
because the probability of the occurrence of two faults at
the same instance of time is almost zero.

A fault in the main rotor collective pitch actuator is
simulated as a step signal of magnitude 0.5. A simple
Luenberger observer-based residual generator is designed.
The residuals obtained are sensitive to both the fault and
the uncertainty as shown in figure 2.

On the other hand, robust residuals are obtained by
applying the proposed methodology. They are shown in
figures 3, 4, 5, and 6. In this case, residuals are sensitive
to the fault in the main rotor collective actuator and
insensitive to the uncertainty. Due to the isolation scheme
applied, it is possible to determine that the fault has
occurred in this actuator by analyzing the residuals. The
residuals generated by the UIO corresponding to the main
rotor collective actuator, are insensitive to the fault as
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Figure 2. Non robust residuals for a fault in the main rotor
collective pitch actuator.

shown in figure 3. Nevertheless, the other residuals are
sensitive to the fault.
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Figure 3. Robust residuals generated from the first UIO of
the input bank of observers, which excludes the main
rotor collective control input.

For the detection and isolation of faults in sensors, a fault
in the rotational velocity respect to axis -z (r) sensor
is simulated. The fault is considered a step signal of
magnitude 2.0. Following the same methodology employed
in the main rotor collective pitch fault situation, a simple
Luenberger observer is designed and non-robust residuals
are obtained see figure 7.

When a fault occurs in the rotational velocity sensor,
the resultant residuals obtained from the second bank
of observers are robust to the system uncertainty and
sensitive to the sensor fault. Figures 8, 9, 10, and 11
present the robust residuals when this kind of fault occurs.
As a result of the isolation scheme applied, the residuals
generated by the UIO correspondent to the rotational
velocity sensor, are insensitive to that fault, see figure 11.
The other residuals are all sensitive. Then, it is possible to
isolate the fault and determine in which sensor the fault
has occurred.
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Figure 4. Robust residuals generated from the second UIO
of the input bank of observers, which excludes the
lateral cyclic control input.
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Figure 5. Robust residuals generated from the third UIO
of the input bank of observers, which excludes the
longitudinal cyclic control input
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Figure 6. Robust residuals generated from the fourth UIO
of the input bank of observers, which excludes the tail
rotor collective control input
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Figure 7. Non robust residuals for a fault in the rotational
velocity sensor respect to axis -z.
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Figure 8. Robust residuals generated from the first UIO
of the output bank of observers, which excludes the
rotational velocity in axis -y sensor output.
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Figure 9. Robust residuals generated from the second UIO
of the output bank of observers, which excludes the θ
angle sensor output.

5. CONCLUSIONS

Unknown input observers method allows decoupling dis-
turbances from fault residuals increasing the sensitivity of
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Figure 10. Robust residuals generated from the third UIO
of the output bank of observers, which excludes the φ
angle sensor output.
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Figure 11. Robust residuals generated from the first UIO
of the output bank of observers, which excludes the
rotational velocity in axis -z sensor output.

the residuals to faults and reducing the effect of unknown
inputs on them. This method could be employed to detect
faults in actuators such as in sensors. Applying isolation
schemes based on UIOs, faults can be isolated and located.
This method could be applied to systems where a good
mathematical model is provided.

Despite linearization error, uncertainty, noise and distur-
bances affecting the helicopter behaviour, the UIO method
applied to the aircraft system decouples this unknown
signals and robust residuals are generated. From this
residuals, fault detection and isolation can be performed
leading to condition maintenance and predictive mainte-
nance which have a tremendous impact in economic saving,
safety, quality, autonomy and availability.

Fault tolerant control system can be implemented by using
this FDI system for online reconfiguration of the control
law. Hence the helicopter flight qualities will be guaranteed
and the helicopter performance will be maintained despite
of the faults. The interaction between robust model-based
FDI and Fault tolerant control is under research.
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