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Abstract: This work proposes a characterization procedure for modeling and identification
of a workbench 4-DOF manipulator. The robot is a three link planar manipulator with
joints connected through 4 servomotors. A decentralized approach is employed leading to four
second order discrete-time linear transfer functions. Identification procedure applies amplitude
modulated pseudo binary random signal (APRBS) as excitation input due to the nonlinear
behavior of the system. Sensing for dynamic variables are gyroscope and accelerometers
connected through an I2C protocol to a launchpad MSP432 from Texas Instruments, assembled
with an ARM M4F processor. The embedded system allows sensor fusion and input signal
generation such that a gray box identification may be performed. The procedure is validated
through experimental data which shows the root mean square error (RMSE) with magnitude of
10−5 and the adjusted determination coefficient R2

aj greater than 0.92 for each system. These
are findings that show the effectiveness of the presented procedure herein.

Keywords: Planar manipulator, sensor fusion, embedded system, APRBS, grey box
identification.

1. INTRODUCTION

Four degrees of freedom (4-DOF) robotic arm manipu-
lators are widely used in several industrial applications
due its capability of programming and handling different
types of problems. Regarding its construction, lighter ma-
terials are chosen, with less filled shape, which increases
its adaptability and decreases its cost. Manipulators also
have higher degree of adaptability and lower price than
traditional CNC machines. (Klimchik et al., 2015). The
alternatives of robust control are widely used in this type
of structure (Aziz and Iqbal, 2016).

Nonlinearities and coupling between links make the iden-
tification procedure of a robot manipulator a challeng-
ing task. Modeling is commonly taken from the Euler-
Lagrange leading to nonlinear models (Akhtaruzzaman
et al., 2009), and apply nonlinear control (Aziz and Iqbal,
2016).

On the other hand for constrained workspace and small
variations in torque, one may consider the “virtual joints”
approach (Klimchik et al., 2015) which leads to a linear
model based on mass spring and stiffness, comprising a
trade of between precision and computer resources. Such
strategy may be expanded through gravity compensation
(Klimchik et al., 2014), passive and active rigid iden-
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tification (Alici and Shirinzadeh, 2005), MSA (Matrix
Structural Analysis), FEA (Finite Element Analysis) and
parametrizing methods for industrial environments (Klim-
chik et al., 2015).

Identification procedures are highly dependent on the
choice of the input signal as the excitation of the system.
From a linear perspective many methods are available
such frequency response, reactive curve and the well-
established least mean squares (Ljung, 1999; Aguirre,
2007). The former considers to apply a wide band input
signal such as white noise or a pseudo random binary
signal (PRBS). Such excitation signal is suitable for linear
modeling but inadequate for nonlinear ones, for which one
might consider the amplitude modulated PRBS (APRBS),
as describes Nelles (2001).

Position tracking, which gives angle joints position, veloc-
ity and acceleration, may also become challenging. Spe-
cially if a choice for cheaper sensors is made. In addition,
there are issues regarding to the adaptability of the robot’s
structure. Therefore, in order to perform the aforemen-
tioned matters as well as to fit sensors in the arm structure,
this work applies gyroscope and accelerometers. These
sensor units communicate through an I2C protocol with
a main programming board. The I2C protocol is widely
used which along with gyroscope and accelerometers is
capable of sensing of the geometry and location of each
link, reducing the accumulation of uncertainty along the
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robot (Klimchik et al., 2015). With the addition of a two
sensor module alongside odometry, all of these elements
may be combined through the kalman filter raising a sensor
fusion approach which reduces uncertainties and increases
the measurement accuracy (Sasiadek and Hartana, 2000).

Then, from the above discussion, this work presents a
characterization procedure for modeling and identification
of a test bench 4-DOF manipulator. The rest of the paper
is divided as follows. Section 2 describes the manipulator
workbench, section 3, presents the modeling aspects re-
lated to the identification procedure described in section
4. Section 5 exhibits the experimental results which shows
the effectiveness of the identification approach, where 6
brings the conclusions.

2. MANIPULATOR BENCH DESCRIPTION

In order to evaluate the angles associated with each joint,
a common DIY manipulator arm is used. The robot is
assembled in the test bench showed in Fig. 1.

Figure 1. Test bench 4-DOF manipulator.

Design of Experiment (DoE) plays a crucial role for the
robot arm model identification. The input signal might
drive all of the joints and links in order to assure that the
whole desired workspace is reachable.

The manipulator is constituted by links which are com-
posed by aluminum branch legs and joints actuated by
MG996R servo motors. The arm base has a revolution
joint in the vertical axis with angular displacement ρ and
three revolution joints in pitch angle with according to the
angles θ1, θ2 and θ3.

2.1 Servo motors drive

The servo motor is fed by a voltage ranged between 4,8
to 7,2 V and a PWM signal. Using the frequency of
50 Hz the duty cycle must varies between 2,5% e 12%
corresponding 0◦ e 180◦, respectively. The interface with
the microcontroller is made by a circuit, shown in Figure
2, with optocouplers and a bandpass filter to avoid voltage
oscillations and switching interferences.
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Figure 2. Servo motors drive circuit for one joint.

2.2 Measurement of signals

To measure the angles, each joint is attached to a
MPU6050 module which is composed by an accelerometer
and a gyroscope. This transducers send signals regarding
variations on the x, y, z, xy, yz and xz axis in order to
compute the angular displacement of each joint.

To obtain a more reliable measurement, it is necessary
to decrease the measurement noise of the accelerometer
and remove the bias from the gyroscope, that is, the
multiplicative noise generated by the integration of the
angular velocity. In this way, a sensory fusion is carried
out between these sensors by means of a Kalman filter.

The measurement discrete system at time n is given by

x(n) =Adx(n− 1) +Bdu(n) + w(n) (1)

y(n) =Cdx(n) + v(n) (2)

where

Ad =

[
1 −T
0 1

]
, Bd =

[
T
0

]
, Cd = [1 0] ,

and T is the sample time.

The state vector x(n) is calculated as

x(n) =

[
θ(n)

θ̇b(n)

]
(3)

where θ(n) stands to the angle measured by the accelerom-

eter and θ̇b(n) is the gyroscope bias, which is as much that
the gyroscope deflected. The true angle rate may be com-
puted by subtracting the bias from the gyro measurement.

The input u(n) is the angle rate θb(n) in degrees per second
(◦/s), which is given by the gyroscope measurements. The
variables w(n) and v(n) are the process and measurement
noises, respectively.

Thus, it is possible to estimate the state by design a
Kalman filter calculated as

x̂(n) = Adx̂(n− 1) +Bdu(n) (4)

P (n) = AdP (n− 1)ATd +Qd (5)

K(n) = P (n)CTd [CdP (n)CTd +Rd]
−1 (6)

x̂(n+ 1) = x̂(n) +K(n)[y(n)− Cdx̂(n)] (7)



P (n+ 1) = [I −K(n)Cd]P (n) (8)

where K(n) is the Kalman gain and the parameters Qd
and Rd are the process and measurement covariances,
respectively.

However, due to constructive characteristics, the ac-
celerometer is unable to provide displacement measure-
ments made in the xy plane, because of this, to measure
the ρ angle (Euler’s z angle), a sensory fusion between the
gyroscope and odometry is used, raised through the base
servo motor identification.

2.3 Microcontroller circuit

All the signals are sent to a NXP/Freescale KL25Z Kinetis
KL2 MCU microcontroller which collects the tranducers
data, and actuates the drives for the servo motors and
interfaces with the data acquisition system. A diagram
ofthe aforementioned connections is shown in 3.
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Figure 3. Diagram connection between the microcontroller
servo motors and transducers circuits.

Communication between the Freescale board and posi-
tion sensors (accelerometers and gyroscope) are performed
through I2C protocol. In this case the microcontroller acts
as the master unit whilst the sensors are slaves.

Servo motors in each joint are actuated from a driver which
is controlled by a PWM input signal. So that, four PWM
outputs from the Freescale board are set for such purpose.
All of those PWM signals exhibit the same frequency but
different duty-cycles, as the latter contains the control
signal information.

3. MODELING OF THE MANIPULATOR

The modeling of a robot manipulator is an important
step for the identification and control, whose model fol-
lows the rigid-body dynamics from the Newton-Euler or
Lagrangian method

τ = M(q)q̈ + C(q, q̇) +G(q) + τf , (9)

where τf is the friction torque, τ is the torque of the actu-
ators, q is the position of each joint, with its correspondent
velocities q̇ and accelerations q̈. Parameters M(q), C(q, q̇)
and G(q) are the inertia, Coriolis plus centripetal and

gravitational matrices, respectively, which are nonlinear
terms.

However, a simplified model may be devised by the
barycentric parameters or Newton-Euler parameters which
lead to a linear in the paramters model (Swevers et al.,
2007)

τ = Φ(q, q̇, q̈)γ

where θ contains the barycentric parameters of each link
or the barycentric of the link chains, e. g., mass or any
other related properties.

Within this context, a classical approach considers the
modeling based on mass, damping and stiffness parame-
ters, leading to an equivalent second order, which can be
related with equation (10) (Schappler et al., 2015; Siciliano
and Khatib, 2016).

mq̈(t) + bq̇(t) + kq(t) = f(t), (10)

Nevertheless it delivers a simple second order model, such
approach is valid only for a limited workspace area which
constraints the end-effector reachable area. Thus, each link
and joint of the manipulator must be modeled with its
equivalent second order model. However, by considering
revolute moves, displacements are joint angles q = θ and
forces are torques τ , leading to the model

mq̈(t) + bq̇(t) + kq(t) = τ(t), (11)

Modeling from Eq. (11) regards similarities with that in
Eq. (9), although it comprises a much simpler one. Such
similarities come from considering the mass m of the link
chain instead of M(q), while τf turns into bq̇(t) and G(q)
is partially incorporated by kq(t), whereas C(q, q̇) finds
no counterpart and then, is neglected. Obviously so many
simplifications result in a model mismatch.

By considering such simple model which is linear in the pa-
rameters it becomes easier to perform any well-established
identification method, such as least-squares. Moreover, it
also allows one to consider a simpler feedback control
design. Nevertheless, such simplification may require any
sort of additional control branches in order to counteract
all of the neglected terms and variables.

So that, the aforementioned considerations make the iden-
tification method herein suitable for robot manipulators
with small dimensions and masses. In addition, a light
and workbench manipulator for educational purposes may
benefit from the identification procedure herein as it lead
to an equivalent well known mass-spring-damper system
model.

All the parameter estimation of the system is made by
software, therefore the continuous-time model from (10)
must be discretized in difference equations in order to allow
numerical calculations. This work takes the forward Euler
discretization, following equation (12).

dq(t)

dt
≈ q[nT ]− q[(n− 1)T ]

T
. (12)



So, the discrete-time representation of the joint systems is
given by

q(n) =
1

1 +
kT 2

m
+
bT

m

[(
bT

m
+ 2

)
q(n− 1)

−q(n− 2) +
σT 2

m
u(n)

]
(13)

where n = 1, 2, . . . , N with N is the number of data
samples and T is the sample time interval.

4. MODEL IDENTIFICATION PROCEDURE

As any identification procedure, a model structure is previ-
ously defined, so parameters of it may be identified from an
input-output relationship. In a case where the system is a
robot arm as herein, previous section has discussed about
an equivalent mass-spring-damper as a proper model to
describe the plant within a defined workspace.

So that, by taking such a model, one seek for an equiva-
lent second order input-output relationship, whose general
discrete-time equation is set as

G(z−1) =
Kz−1

1 + a1z−1 + a2z−2
. (14)

Therefore, identification procedure is about obtaining pa-
rameters K, a1 and a2 in equation (14) which best describe
the behavior of the plant.

For such purpose, the wider the band one excites the plant
the more accurate the model is (Aguirre, 2007). Then, it
turns mandatory to constraint the workspace of the bench
robot arm within proper boundaries for which an input-
output relationship as the one in equation (14) is valid. So
that a pseudo random signal able to lead the robot arm to
be driven inside the desired workspace may be devised, as
normally done for any system (Ljung, 1999). Within this
context, this section is splitted in two subsections where
one of those describe the analog pseudo random binary
signal (APRBS) followed by a structure model parameter
estimation section.

4.1 Input APRBS signal generation

The proper choice of the excitation signal is probably the
most important aspect regarding to the DoE, specially if
it is intended to be applied for a nonlinear plant. So that,
it is a challenging issue to assure that the input signal
comprises both a wide band of frequencies and lead the
system to capture essential output information.

The well known pseudo binary random signal (PRBS) is
one of the most commonly considered input signals for the
most of the DoE for linear system identification. It does
lead to an accurate linear model if the transfer function
parameters regard a linear relationship with the observed
dynamics. This type of input signal makes the input of the
system to randomly vary between two different levels, with
holding time Th for each level.

In a case of a nonlinear system that exhibits weak inter-
action between nonlinear terms the application of a PRBS
signal may be enough as it makes the system to vary within
a small range of operation. In a wider range of operation,
switching the input signal between two different levels may
not be enough to get all the information needed from the
output, even for small nonlinear interaction. For such cases
one may consider to apply a multilevel signal limited to a
minimum umin and a maximum umax, producing the so
called amplitude modulated pseudo binary random signal
(APRBS), as described in (Deflorian and Zaglauer, 2011;
Nelles, 2001)

The set of chosen input signals herein is a typical APRBS
signal as described in Eq. (15).

U =

N∑
s=0

us(ds, Th) (15)

where ds ∈ [umin, umax] is the modulated amplitude
which remains applied to the plant during Th dwell time
(Deflorian and Zaglauer, 2011). The number of levels N for
us are randomly chosen following the procedure described
in (Nelles, 2001, p.p. 570)

4.2 Embedded system description

Data is acquired by serial communication between the
microcontroller board and the desktop computer. Time
sample is T = 10 ms when angles (plant output) and
reference signal are all updated. Data is stored in order
to have separate files, one for identification purposes and
another one for validation, which primarily specifies the
test duration.

Identification setup depends on the desired workspace for
the robot manipulator as its constraints ultimately give
maximum and minimum limits for the each angle of each
joint. Test is performed separately for each link while all
the other links remain still with its motors keeping them in
a fixed position. The angles of the links in each joints that
are not under test are chosen such as the arm configuration
matches the one it will perform in the workspace.

For the basis, joint angle is chosen to vary in the range
−1.26 rad < ρ < 1.20 rad. For link 1 0.562 rad < θ1 <
1.972 rad, for link 2 0.9617 rad < θ2 < 3.142 rad and
for link 3 0.5108 rad < θ3 < 4.5 rad. These limits are
graphically represented in Fig. 4.

4.3 Structure model

In order to reduce the effort of the parameter estimation
algorithm, average level for input and output signals of
each joint are removed, leading one to get the estimation
signal to be as

qf = qm −
1

N

N∑
i=1

qmi
(16)

where qf and qm are the filtered and measured signals,
respectively for either input or output.
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Figure 4. Manipulator angles for (a) joint 1, (b) joint 2, (c) joint 3 and (d) joint 4.

Based on the discrete-time model from equation (13) it
is possible to determine a predictor for formulating the
parameter estimation problem (Ljung, 1999). However,
to achieve this purpose the discrete-time model must be
rewritten as

q̂(n|θi) = ϕT (n)θi. (17)

Taking into account the experimental data ZNE
i collected

for the estimation, one can define a cost function expressed
by

V (θi, Z
NE
i ) =

1

NE

NE∑
n=1

[qi(n)− q̂(n|θi)]2 (18)

where NE represents the number of data points selected
in the parameter estimation, n = 1, 2, . . . , NE , i stands for
the number of joints, yi is the measured angle and ŷi is
the estimated angle for each joint. Finally, the parameter
estimate for each joint is found with a numerical algorithm
designed to solve (Ljung, 1999)

θ̂i = argmin
θi

V (θi, Z
NE
i ). (19)

Model validation It is important to determine the quality
of the estimated model and for this the experimental ZNV

data of validation collected are used. The criteria chose
to compute the accuracy of the model is the root mean
square error (RMSE) given by

Ω(θ̂i, Z
NV
i ) =

√√√√ 1

NV

NV∑
n=1

[qi(n)− q̂(n|θi)]2 (20)

and the adjusted determination coefficient R2
aj , which

should fit 0 ≤ R2
aj ≤ 1 where values close to 1 represent a

better adjusted model. It can be computed as

R2
aj(θ̂i, Z

NV
i ) = 1

−
(
NV − p
NV − 1

) ∑NV

n=1 [qi(n)− q̂(n|θi)]2∑NV

n=1 [qi(n)− q̄(n|θi)]2
(21)

where NV = N − NE and p is the number of parameters
of the model.

Gray box identification algorithm Whereas that the
mass parameter m can be more easily measured using
precision scales, this feature may be incorporated into the
identification algorithm. A suitable way to accomplish this
can be promoted as described in Algorithm 1.

Algorithm 1 Pseudocode for joints identification

T ← sample time
m← mass of the joint
Initialize σ, b and k
procedure Estimation

for i = 1→ NE do
Calculate ϕ(n)
Calculate θ(n) using the chosen estimation algo-

rithm incorporating the coefficients of the equation (13)
Update the parameters σ, b and k based on θ(n)

and the coefficients of the equation (13)
end for
for i = 1→ NE do

Calculate the estimated q̂E(n) using equa-
tion (13)

end for
Calculate the residue

∑NE

n=1((qi − q̂Vi
)2)

Calculate V (θi, Z
NE
i )

end procedure
procedure Validation

for i = 1→ NV do
Calculate the estimated q̂V (n) using equa-

tion (13)
end for
Calculate Ω(θ̂i, Z

NV
i )

Calculate R2
aj(θ̂i, Z

NV
i )

end procedure

5. RESULTS

The experimental data, as mentioned before, was split
into two parts for each joint. The first eighty percent of
data were used for parameter estimation, whilst the other
twenty percent were used for model validation.

In order to estimate the discrete-time models parameters,
the extended recursive least squares (ERLS) algorithm
(Astrom and Wittenmark, 1994; Chen, 2004) was used.
Thus, the models are considered as stochastic systems,
which means that each differential equation is rewritten
as a autoregressive-moving average with exogenous terms
(ARMAX) process (Ljung, 1999), expressed by

A(z)y(n) = B(z)u(n) + C(z)e(n), (22)



where y(n), u(n) and e(n) are the model output, input and
the system noise, respectively.

Considering that it is not possible to know the noise a
priori, the ARMAX model has the drawback that it is not
possible to convert it directly into a regression model. In
order to overcome this problem, the noise is approximated
by the residual vector, according to equation (23)

ε(n) = q(n)− ϕT (n)θ̂(n), (23)

where the parameter vector is given by

θ = [a1 ... ana b1 ... bnb
c1 ... cnc ]T (24)

and the regression vector is

ϕT (n) = [−y(n− 1) ... − y(n − N) u(n− 1) ...

u(n−N) ε(n− 1) ... ε(n−N)]. (25)

For the discrete-time model of the manipulator the pa-
rameters vectors were defined with T = 0.01 seconds in
the ARMAX structure and computed as

θi(n) =
1

1 +
ki(n)T 2

mi
+
bi(n)T

mi[(
−bi(n)T

mi
− 2

)
1
σi(n)T 2

mi
ci

]T
(26)

where i indicates the number of joint.

The parameters update in Algorithm 1 with the measured
mass m incorporated can be calculated as

bi(n+ 1) =
(1− θi[2](n))θi[1](n) + (θi[1](n) + 2)θi[2](n)

(θi[1](n)T − qi(n))θi[2](n)
,

(27)

ki(n+ 1) = − mi

θi[1](n)T 2
(θ[1](n) + 2 + bi(n)qi(n)) (28)

and

σi(n+ 1) =
miθi[3](n)

T 2

(
1 + ki(n)T 2

mi
+
bi(n)T

mi

)
. (29)

After the parameter estimation step, the cost functions

V (θ̂)i were calculated, followed by the validation step.

Finally, the performances criteria Ω(θ̂i) and R2
aj(θ̂i) were

computed. The results are presented in Table 1.

The models determined by the parameters calculated are
suitable considering that they present small values for

V (θ̂)i and Ω(θ̂i) as well as produce values of R2
aj(θ̂i) close

to 1.

The comparison between the measured and the identified
models signals, that is, both the estimation and validation
data are shown in Figure 5.

Table 1. Manipulator parameters and perfor-
mances criteria for mass-sprig models

Joints

Parameter
estimated

1 2 3 4

m
(kg)

0.294 0.239 0.144 0.072

b
(Nm/(rad/s))

19.1138 2.4919 6.5824 2.3477

k
(Nm/rad)

1778.9 114.0636 113.2759 41.9973

σ
(N/rad)

1801.6 106.5490 118.6264 33.7255

Performance
criteria

V(θ̂) 0.0086 0.0175 0.0146 0.0052

Ω(θ̂) 1.35×10−5 3.68×10−5 4.68×10−5 2.12×10−5

R2
aj(θ̂) 0.9970 0.9263 0.9863 0.9931

6. CONCLUSIONS

This work has shown a grey box identification procedure
for a three link planar manipulator. The nonlinear nature
of the plant led to the APRBS as input excitation sig-
nal. Measurements of position, velocity and acceleration
are performed through sensor fusion leading to accurate
values. Results show that the second order model based
on barycentric approach is suitable to properly describe
the behavior of the planar arm for constrained workspace,
though. However, the second order model allows one to
consider it for the design of the linear feedback control,
which is part of a robot arm controller.
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Figure 5. Angles curves from (a) joint 1, (b) joint 2, (c) joint 3 and (d) joint 4, considering the measured signal and the
identified model response for both estimation and validation.
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