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Abstract: The focus of this paper is to present an algorithm that allows robotic teams to
make decisions between a finite set of choices. The approach used was based on models that
represent the way groups of humans evolve their opinions through time. Numerous works have
explored models that consider the opinion as continuous values, while the literature less frequently
considers groups trying to reach an agreement when only a finite set of possible opinions is given.
The main contribution of this paper is to present a consensus algorithm that can be applied in
those scenarios. For this purpose, it is briefly reviewed some crucial concepts for the definition of
the proposed algorithm, which is based on asynchronous gossip. Due to the stochasticity of this
approach, it is not possible to precisely predict the behavior of the network. However, the results
from both computational and laboratory experiments indicate the eigenvector centrality score as
a valuable metric to predict the probability of an initial opinion to become the prevailing one for
the group when they reach consensus. Also, the asynchrony of the proposed algorithm made it
possible to reach consensus in scenarios where synchronous approaches could not.

Keywords: Multi-Robot Systems, Agent-Based Systems, Cooperating Robots, Consensus,
Opinion Dynamics.

1. INTRODUCTION

There are many situations in robotics where a team
needs to decide over a finite set of options. For example,
for a distributed group decision making on resource
allocation under conditions of uncertainty that disallow
formal optimization (Friedkin et al., 2019); an effective
scheme to address influence maximization, which aims
to select most influential nodes and obtains the maximal
propagation of the most ideal information (He et al.,
2019); a distributed sensor selection architecture for a class
of networked systems, dependent on the quality of the
measurements to select the most suitable sensors (Tedesco
et al., 2018); distributed strategy selection based on the
individual opinions and the relative credibility of each agent
(Ekenberg et al., 1994); and in many situations, like multi-
robot formation, it is necessary to choose a leader.

As an example scenario, it is possible to think of a group
of aerial robots that covers a specific region attempting to
identify forest fires. Consider that the agents find several
spots with high temperatures but their ability to extinguish
the fires depends on the group acting together. In this case,
the first step for the robotic team will be to decide which
of the detected fires they will fight. Since the consensus
algorithms considered in the literature are like convex

? This work was supported by CAPES and CNPq, Brazil.

combinations of the available options, they do not apply
to situations such as this example.

When analyzing humans interacting in the process of social
influence, uncountable situations rise where that kind of
decision must be taken. As examples, it can be mentioned
political elections, where it is not possible to elect some
weighted average of the candidates; Another scenario to
illustrate that is the popular juries, in which case consensus
is needed among all participants over a binary value (i.e.,
guilty or not).

The growing interest in social network analysis, especially
in processes of opinion dynamics (Ŝırbu et al., 2017),
(Chamley et al., 2013), (Proskurnikov and Tempo, 2017),
(Proskurnikov and Tempo, 2018), brought to sight a
question over the applicability of consensus models for
representing groups of agents that evolve their opinions
through time. As mentioned previously, there are scenarios
where the robotic teams will also have to come to a
consensus between a finite set of options instead of
computing intermediaries values, which is the case on the
models exploited on the literature.

These situations, in which just a finite set of possible choices
are available to the agents to choose, will be referenced
in this paper as consensus with discrete opinions. The
proposed algorithm was derived from the asynchronous
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gossip consensus (Boyd et al., 2006). The modifications
were made to achieve the feature of reaching consensus over
a finite set of possible opinions.

A large number of computational simulations were carried
out to test if the proposed algorithm is capable to reach
consensus in the same scenarios that others found in the
literature are. These simulations also explored situations
where other algorithms are not able to succeed. The
simulation is over when the group reaches consensus in
one of the initial opinions, we call consensus opinion the
one that prevailed at the end of the simulation. The results
corroborate the hypothesis proposed by the authors that
the eigenvector centrality (Bonacich, 1972) of the network
indicates the probabilities of each initial opinion become
the consensus opinion for the group.

In order to analyze if the algorithm works under real-world
adversities and limitations, experiments were done using a
group of five robots acting as communication nodes. It was
chosen a topology with one node that have its centrality
score hugely discrepant to help in identifying a tendency,
even over a small number of iterations.

The rest of the paper is organized as follows. Section II
features some necessary information such as the DeGroot
model, the eigenvector centrality, and the gossip consensus
algorithm; then, an asynchronous asymmetric gossip-based
algorithm that aims to reach consensus over a finite set
of opinions is presented. Section III is organized in three
subsections in which the overall scenarios proposed and
the computational simulations are presented; then some
exceptional cases in comparison with the classical consensus
algorithms are highlighted; at last, the analysis and
results for the twelve scenarios performed with numerical
simulations are presented. After all, in section IV a
laboratory experiment with low-cost robots, known as
kilobots, is presented. Finally, section V contains our
conclusions and future works.

2. ALGORITHM FORMULATION

This section presents an algorithm for handling consensus
over a finite set of opinions. For this purpose, it is necessary
to first present some backgrounds, such as the DeGroot
model, the eigenvector centrality, and the gossip consensus
algorithm. These matters grounded the proposal presented
here.

2.1 The DeGroot Model

The available empirical evidence is consistent with the
assumption that individuals update their opinions as convex
combinations of their own and the displayed opinions
by others. These updates are based on weights that are
automatically generated by individuals in their responses
to the displayed opinions of others (Jia et al., 2015).

The DeGroot model (DeGroot, 1974) is an early approach
for describing the evolution of the opinions in a group of
individuals trying to reach a consensus. A common way of
representing the connections between agents comes from
graph theory.

Graphs are abstractions for information flow between
agents in a network, without concerning what kind of

protocol used, which exchanged information, and the
process implemented on it (Mesbahi and Egerstedt, 2010).
In algebraic form, a graph is usually represented as an
adjacency matrix A = [aij ] ∈ Rn×n, where aij > 0 if there
is a connection from j to i, otherwise aij = 0.

Further, the DeGroot model is defined as follows, consider
a group of n agents with real-valued opinions, x(k) ∈ Rn,
where k is the iteration step. The social influence network
formed by them can be described as a weight matrix
W = [wij ] ∈ Rn×n satisfying wij ∈ [0, 1] for all i and
j and

∑n
j=1 wij = 1 for all i (that is, W is row-stochastic).

Hence, the DeGroot model states that the opinion dynamics
for this group will be given by

x(k + 1) = Wx(k), k = 1, 2, . . . (1)

Each edge of this network, j
wij−−→ i, represents the weight

that individual i accords to the opinion from individual
j, i.e., the influence of j over i. This also applies for self-

loops, i
wii−−→ i, what could be interpreted as a measure of

self-confidence. Also, a trivial way to generate matrix W is
considering that all agents assign the same weight to each
of its neighbors.

In this model, the condition to ensure that consensus is
reached is given by the eigenvalues of W . Most precisely, it
is dependent on the algebraic multiplicity of its largest
eigenvalue. Let λ = [λ1 . . . λn]> ∈ Cn be a vector
containing the ascending ordered eigenvalues of W . Then,
Equation (1) converges if and only if λn = 1 is unique in
modulus, i.e., the following inequality holds

|λ1| ≤ |λ2| ≤ . . . ≤ |λn−1| < λn = 1.

2.2 Eigenvector Centrality

Eigenvector centrality score is a metric that quantifies the
influence of a node over the network, in other words, it
measures how many connections a node has and how much
its neighbors appreciate its opinion. This measurement was
first proposed by Bonacich (1972), and since then, it is
widely adopted to define the relative importance of an
individual in a social network.

There are many centrality measures such as Katz centrality
(Katz, 1953), and the Page Rank centrality (Gleich, 2015),
to say some. This work is mainly interested in the eigen-
vector centrality because of its relation with some network
algebraic properties, which will be shown in simulations
and experiments.

For a matrix W ∈ Rn×n, a left eigenvector corresponding
to the eigenvalue λi is a vector vi ∈ Cn satisfying v>i W =
λiv
>
i .

The eigenvector centrality scores are calculated as

σ = vmax/‖vmax‖1 (2)

where vmax ∈ Rn is the dominant left eigenvector, i.e.,
associated with the maximum eigenvalue (for a row-
stochastic matrix, |λn| = 1). The i-th element of σ =
[σ1 . . . σn]> is called the centrality score of agent i.



2.3 Gossip-based Consensus

The gossip-based consensus assumes that two randomly
selected agents interact at each time step, in which one
(asymmetric) or both (symmetric) of their opinions can
be changed. In this paper, we assume an asymmetric and
asynchronous gossip algorithm, since it is unreal to consider
that groups of agents will act synchronously when arguing
about a given issue (Proskurnikov and Tempo, 2018).

The gossip model adopted is grounded at the formulation
presented at (Proskurnikov and Tempo, 2018). This model
assumes, at each step k, one agent i = i(k) is randomly
activated; the sequence i(k) is independent and identically
distributed and uniformly distributed in 1, . . . , n. It is
assumed that agent i interacts with agent j with probability
pij . These probabilities are arranged in the matrix P =
[pij ] ∈ Rn×n. Hence, whenever an interaction occurs, the
opinion of agent i is updated as follows

yi(k + 1) = (1− τi)yi(k) + τiyj(k) (3)

where τi ∈ (0, 1) is a constant, describing the “trust” of
agent i in its neighbors. The opinions of the other agents
(including j) remains unchanged

yl(k + 1) = yl(k) ∀l 6= i(k) (4)

2.4 The Proposed Algorithm

The model shown in (3) is not suitable to deal with discrete
opinions, considering it calculates a weighted average
between the opinions of agents i and j. Hence, the proposed
model considers τi = 1, ∀i. This way, for allowing agent i to
keep its opinion between iterations the probability pii must
be non-zero. That said, it is possible to rewrite equation
(3) as

yi(k + 1) = yj(k) (5)

This modification guarantees that the final consensus
opinion will belong to the set of initial opinions, being
that finite set the only possibles opinion states that the
agents can assume.

Therefore, to connect the proposed model of consensus
over discrete opinions with the applications in social and
influence networks the matrix of interactions probabilities,
P = [pij ] ∈ Rn×n, from the gossip-based consensus it is
equal to the matrix of influence weights, W , from the
DeGroot model, i.e.,

P ,W (6)

By this definition and the agents trust in its neighbors
(τi = 1, ∀i), it is possible to state that the proposed
algorithm have its final consensus opinion influenced by
the connections between agents and not by the content of
the opinions.

Also, we define a matrix, R = [rij ] ∈ Rn×n, containing
the interaction ranges of each agent. These ranges are
useful in the computational simulations to randomly select
the interactions obeying the distribution defined by P . It

is used for the specific way in which the algorithm were
designed. Hence, each element of R is computed as

rij =

j∑
q=1

piq, i, j = 1, . . . , n (7)

3. COMPUTATIONAL SIMULATIONS

In this section, the results of numerical simulations to
support our observations presented previously are shown.
The simulations are executed on different networks to
evaluate the effect of the topology on opinion diffusion,
and how it influences the eigenvector centrality and
the spreading probability for each opinion. Algorithm 1
represents the pseudo-code to carry out the simulations.

Algorithm 1 Steps of the computational experiment

Set the parameters of the experiment:
define number of agents n and number of simulations ns.

create the row-stochastic matrix W = [wij ] from
an arbitrary unweighted adjacency matrix A. The
computation of each element ofW is done by normalizing
each row of A.

compute the interaction ranges matrix R = [rij ] as in
(7)

Simulation iterations:
for s = 1, . . . , ns do

Consensus iterations:
k = 1
while ∃(i, j) : yi(k) 6= yj(k) do

randomly select the active agent i(k) ∈ [1, . . . , n]
following an uniform distribution
i = i(k)
generate a single uniformly distributed random
number, ρ, in the interval (0, 1) for picking the
agent j for interacting with i in the following loop
for j = 2, . . . , n do

if ρ > ri(j−1) and ρ < rij then
yi(k + 1) = yj(k)
break

else if ρ < ri1 then
yi(k + 1) = y1(k)
break

end if
end for
k = k + 1

end while
Store the occurrence of each consensus opinion in
vector e ∈ Nn

end for

compute the eigenvector centrality scores, σ ∈ Rn, for
matrix W and compare to the occurrence ratios, e/ns.

3.1 Reaching Consensus

Twelve different topologies were chosen for testing the
algorithm. In each scenario, 100,000 simulations were run



to get some statistic knowledge about the algorithm. The
initial opinions were the same in all simulations using the
same topology. Each agent started with a unique letter
from the alphabet as its opinion. The algorithm led the
group to a consensus in every simulation run.

The scenarios used can be observed in Figure 1, where the
nodes are presented, with their initial opinion, and the
connections between them. The appraisal that the agents
have to its neighbors, in other words, the values of each
connection respect the restriction of the row-stochastic
matrix. The components of this weighted adjacency matrix
are the probabilities of interaction between the agents. This
means each agent assigns equal weights for the opinion of
every neighbor, including their own.

3.2 Special cases

Some of the topologies presented in the previous topic can
be highlighted here, as some of them have different behavior
when it is considered the classic gossip algorithms or even
the DeGroot model. As can be verified, topologies (b), (e)
and (l) are unable to achieve consensus using these models.

This occurs because the weighted adjacency matrix has
its largest eigenvalue with algebraic multiplicity greater
than one. The behaviour observed in these scenarios are
the interchange of two remaining opinions in the network
in an oscillatory way. It is relevant to say that this happens
even when the algorithms are averaging over real-valued
opinions.

The algorithm presented here, as stated before, is able
to reach consensus in those cases. This happens due to
asynchrony, a feature usually undesired but that enables
the network to break out of those oscillatory states.

3.3 Probability of the Consensus Opinion

As claimed previously, it is desired to test if the centrality
of a given agent can be a way of predicting the probability
of its initial opinion becoming the consensus opinion for
the group. In the carried simulations it was also computed
an occurrence ratio, that is, how many times each letter
was chosen as the consensus opinion over the total number
of simulations.

It is possible to observe in Figure 2 that the occurrence
ratio is very close to the eigenvector centrality scores. The
error between these two values goes to zero as the number
of simulations increases. This is an important result for the
proposed algorithm, giving some sense of predictability in
its behavior. Following, it will be presented a more detailed
analysis of the simulations results.

First, consider the linear topology (Figure 1 (a)) in which
all nodes have the same number of neighbors with the
exception of the both ends. The nodes with two neighbors
have centrality score σi = 0.1125 and the nodes with just
one neighbor have σi = 0.05. As expected the percentage
of occurrences were very close to their respective centrality
scores.

The topologies showed at Figure 1 (b), (d), (e), (h), (i),
(j), (k) have the same centrality scores for all nodes in
their topology [0.100, 0.100, 0.100, 0.200, 0.166, 0.125, 0.090],

respectively. Thus, for these systems all nodes have the
same amount of importance in the network, this way the
σ = 1n/n, where n is the number of nodes in the network.
Again all percentage of occurrences were near the expected
value.

The topology (c) is the one with more variability in the
centrality scores, in which nodes H and J have the greatest
influence and the nodes A and G are the least influential.
One more time the probabilities approached the centrality
scores.

The topologies (f) and (g) have a source and a sink
respectively. The sink have σi = 0 and it is not possible to
reach consensus in this opinion. Also, the neighbors of the
sink node will have lower influence than the others, since
the sink node has no influence in the network. And the case
with a source node is quite the opposite with the source
node with σi = 1 and all the others with σi = 0, indicating
that the consensus will always converge for the opinion of
the source node.

Finally the topology (l) is the example in which one node
has much more influence than all the others, as the central
node communicates with everybody and all the others
communicates only with the central node. Thus in this case
the σi for the most influential node is equal to 0.5 and for
all the others is equal to 0.1. As expected the probabilities
were nearly the centrality scores.

Therefore, the simulations corroborated with the hypothesis
that the eigenvector centrality scores can be interpreted as
the probability of a certain opinion to occur in the end of
the consensus process.

4. LABORATORY EXPERIMENTS

In this section, we perform experiments intending to val-
idate our numerical observations in a practical scenario,
where there are communication issues and other physical
limitations that may interfere in the information diffusion.
The experiments were performed with Kilobots, a low-cost
robot platform designed originally by researchers at Har-
vard University to make the test of algorithms for collective
robots accessible to researchers worldwide (Rubenstein
et al., 2012).

4.1 Scenario Description

The Kilobots used in the experiments are a personalized
version, developed by professors and students from the
Department of Automation and Systems at the Federal
University of Santa Catarina 1 . The experiments involved
five robots arranged in a star topology with self-loops, as
described by Figure 3. All border robots can communicate
only with the central node, which can reach everyone else.

The robots are all static in a fixed position (they do
not move) which allows them to have the communica-
tion topology as described by Figure 3(b). Under this
configuration, the eigenvector centrality becomes σ =
[0.385 0.154 0.154 0.154 0.154], indicating node 1 as the
more influential over the network and the other nodes as
equally influential.

1 http://kilobots.paginas.ufsc.br/
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Figure 1. Topologies: (a) Linear graph (b) Circular graph with even number of nodes (c) Arbitrary graph (d) Full
connected graph (e) Circular digraph with clockwise direction (f) Circular digraph with source (g) Circular digraph
with sink (h) Five nodes, each with two connections (i) Six nodes, each with three connections (j) Eight nodes, each
with two connections (k) Circular digraph with odd number of nodes (l) Star graph
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Figure 2. Comparison between the occurrence ratio of each initial opinion and the centrality score (red crosses) of the
agents in the respective topologies from Figure 1

The communication issues change the consensus probability
for each initial opinion, which differs from the eigenvector
centrality score, since, in our case, the transition matrix
does not take into account those issues. However, the

expected communication issues are limited and relatively
small: according to Rubenstein et al. (2012), in an exper-
iment with 25 robots, the communication channel could
support on average 32% of usage for five-byte packages
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Figure 3. Adopted topology: (a) top view of the robots,
(b) underlying topology graph. Dashed circles repre-
sent an estimation of Kilobots communication range,
continuous lines are logical connections between them,
and the edge weights represent the importance each
robot attributes to its neighbors.

without packet loss due to collision. In our case, there are
only five robots, and their communication packages have 9
bytes. Despite the influence of communication issues, we
expect that the results will not deviate significantly from
those obtained in the simulations.

Each robot has its opinion at the beginning of the
experiment set as y0 = [A B C D E], i.e., all robots have
distinct opinions. Such opinions are represented through
five different colors that are displayed by the robots through
a led: A is purple, B is red, C is green, D is blue, and E is
black (light off).

4.2 Results

To verify our hypothesis, we perform three tests 2 composed
by sets of observations looking for the prevailing opinion
after the consensus be reached. Each test has exactly 50
executions of the asynchronous gossip algorithm under
the same initial conditions. By the law of large numbers,
we expect that as the number of execution increases, the
error between the expected probability of consensus over a
particular opinion and the fraction of occurrence of each
opinion decreases satisfactorily.

Table 1 contains the occurrence of each opinion at the
consensus and the expected values given by the eigenvector
centrality. As one can see, consensus in opinion A had a
greater occurrence ratio than the other opinions for all
tests.

Table 1. Results from the experiments with
kilobots

Opinion Predicted Test 1 Test 2 Test 3

A (purple) 38.46% 38% 34% 48%

B (red) 15.38% 22% 22% 20%

C (green) 15.38% 14% 12% 10%

D (blue) 15.38% 18% 18% 10%

E (black) 15.38% 8% 14% 12%

By the prediction of eigenvector centrality, opinions B, C,
D, and E should have the same probability of occurrence,
since the robots that start with these states have the same

2 Videos available at http://bit.ly/CBAutomatica2020

importance to robot 1 (the center of the star). There is
an error between the prediction and occurrence for each
opinion: the most significant errors happen at opinion E
(7.38%) in Test 1, opinion C (3.38%) in Test 2, and opinions
C and D (5.38%) in Test 3. Note that, the increase in
the prevalence of opinion B may indicate that link from
robot 1 to robot 2 was weaker (due to packet loss or other
physical factors) than other links in the network. The same
interpretation can be used to explain why in Test 3, opinion
A was more frequent than what it is supposed to be, which
is probably the result of communication issues.

There may be some variations from one test to another, e.g.,
lower battery levels. However, the three tests are essentially
sessions of the same experiment, allowing us to analyze their
outcomes together. Hence, considering the 150 executions
of the asynchronous gossip algorithm, we get an aggregate
occurrence ratio for each information. In Figure 4, we can
see the absolute errors of these outcomes in relation to the
values predicted by the eigenvector centrality.

A B C D E
0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 4. Absolute errors between the eigenvector centrality
scores and the aggregate outcomes from all three tests.

Although these errors, the prediction is pretty accurate,
given the number of simulations. If it were possible to
increase substantially such value, and include in the
probability transition matrix the fault probability for each
link, it would be expected lower errors in the observations
and a more precise validation of our hypothesis.

After all, the simulations and the experiments with Kilo-
bots confirm the hypothesis that eigenvector centrality
is indicative of the occurrence probability of each node’s
initial opinion when the group reaches consensus. For the
best of our knowledge, it is the very first time such relation
is pointed out in the literature.

5. FINAL REMARKS

We show, through experiments, evidences the proposed
algorithm can achieve consensus over the same conditions
that previous works did. Also, it can handle discrete opin-
ions and reach consensus in scenarios where synchronous
approaches present oscillatory responses. At last, it was
confirmed that there is a relation between the eigenvector



centrality scores and the probability of reaching consensus
on a particular opinion.

For future works, we intend to achieve formal mathematical
proofs for the convergence of the algorithm and the
relationship between algebraic graph theory properties and
the probabilities to reach consensus on a certain opinion.

Also, as mentioned in the paper, the presented algorithm
has the weights of the connections as the only impacting
factor in the final consensus opinion for the network. Hence,
there is room for investigation in ways of considering the
content of the opinions and not only the influence that
agents have in each other. For applications in robotics,
factors like the precision of sensors from each robot may
be embedded in the weighted adjacency matrix.
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