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Abstract: Environmental awareness and energy policies led to decarbonization targets, fostering the 

adoption of distributed energy resource in the distribution network. Particularly, photovoltaic systems have 

been gaining momentum due to cost-competitive option and financial benefits. However, traditional 

distribution networks were not designed for intermittency in power generation. This poses technical issues 

such as reverse power flow, overvoltage, and thermal overloading. Furthermore, the growth in 

intermittency and variability of distributed energy resources increases the uncertainty, hence, it brings 

challenges for the operation, planning, and investment decisions. In this context, probabilistic methods to 

cater for these uncertainties are essential to address this issue. This paper presents a probabilistic power 

flow method based on point estimate method combined Edgeworth expansion for high penetration of 

photovoltaic generation in distribution networks. Normal distribution and Beta distribution are considered 

for load and solar irradiation modelling, respectively. The method is assessed for different cases using the 

IEEE 33-bus distribution test system with photovoltaic systems installation. The point estimate method 

combined Edgeworth expansion provided satisfactory results with lower computational effort and high 

fitting accuracy of statistical information compared to Monte Carlo simulation.  

Resumo: Políticas ambientais e de energia têm como meta a redução de gases de efeito estufa, incentivando 

a adoção de recursos energéticos distribuídos. Em particular, sistemas de geração fotovoltaica tem 

aumentado sua presença nas redes elétricas de distribuição devido a preços competitivos e benefícios 

financeiros. Entretanto, essas redes não foram projetadas para uma alta injeção de geração intermitente, 

causando desafios técnicos como fluxo reverso, sobretensões e sobrecarga. Além disso, o crescimento da 

intermitência e variabilidade dos recursos energéticos distribuídos aumenta as incertezas, portanto, traz 

desafios na operação, planejamento e a decisão de investimento. Nesse contexto, os métodos 

probabilísticos que atendem as incertezas são essenciais para abordar esse assunto. Este artigo apresenta o 

fluxo probabilístico de potência baseado no método de estimação por pontos junto a expansão Edgeworth 

para um sistema com alta geração fotovoltaica. A modelagem estocástica da carga e a irradiação solar 

seguem a distribuição normal e Beta, respectivamente. O método foi avaliado para diferentes casos usando 

o sistema teste IEEE-33 barras com instalação de sistemas fotovoltaicos. Foi verificado que o método de 

estimação por pontos, junto a expansão Edgeworth fornece resultados satisfatórios com baixo esforço 

computacional, alta precisão das informações estatísticas quando comparados à simulação de Monte Carlo. 
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1. INTRODUCTION 

The adoption of distributed energy resources (DERs) into the 

traditional distribution network increased significantly over 

the recent years. That transition of the distribution network 

took place not only as a measure of environmental impact 

reduction and energy policies to counteract carbon emission 

from traditional fossil fuels but also to harness the potential of 

low-carbon technologies (Carstens and da Cunha, 2018).  

 

Among the DERs, photovoltaic (PV) systems have been 

gaining momentum due to its cost-competitive investments, 

more efficient production capacity and financial incentives. 

This technology not only brought systems support benefits but 

also energy bills reduction and increases the independence 

from traditional fossil fuels from small to utility-scale projects 

(REN21, 2020). 
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However, traditional distribution networks were not designed 

to operate for the intermittency in generation, which also 

brought technical challenges, for instance, reverse power flow 

, overvoltage, and thermal overloading (de Lima Vianna et al., 

2018). Furthermore, the growth in intermittency and 

variability of distributed energy resources (e.g. wind and solar 

power plant, energy storage systems, electric vehicles) 

increases the uncertainty in operation and investment decision. 

In order to understand the effects of this non-dispatchable 

source in the operation and planning of the distribution 

network, the traditional approach such as the deterministic 

power flow is not enough because it was designed to solve 

problem for one specific point in time without taking into 

consideration uncertainties; which may lead to unrealistic 

outcomes. Therefore, a probabilistic power flow (PPF) is 

essential to cater for the intermittency and variability of 

distributed resources, leading to a more realistic representation 

of the characteristics of the power system (Chen, Chen and 

Bak-Jensen, 2008). 

A well-known method to deal with the PPF is the Monte Carlo 

simulation (MCS). It was used to investigate the effects of 

reverse power flow in the presence of wind and photovoltaic 

systems for medium voltage (MV) distribution network 

(Constante-Flores and Illindala, 2019). Although the MCS has 

the ability to represent complex system behaviour by 

evaluating thousands of deterministic analyses, the major 

drawback has been its high computational effort. 

Another alternative for the PPF is the 2m+1 point estimate 

method (PEM). That approach was used to solve the optimal 

PPF with the objective to minimize cost grid operation for 

unbalanced three phase MV networks (Giraldo et al., 2019). 

This approximate method is a strong technique that accurately 

approximates the expected value and variance of a variable, 

furthermore, the computational burden is reduced (Plattner, 

Farah Semlali and Kong, 2017).  

In order to obtain more statistical information of a variable of 

interest, approximate curves of the probability density function 

(PDF) and cumulative distribution function (CDF), the Gram-

Charlier expansion were proposed by Zhang and Lee (2004) to 

estimate the PDF of branch power flow for transmission 

systems. However, the Gram-Charlier expansion is divergent 

for higher orders. On the other hand, the Edgeworth expansion 

for nearly Gaussian distribution provides better results  

(Blinnikov and Moessner, 1998; Fan et al., 2012). 

For the probabilistic approach, historical measurements, 

theoretical modelling or synthetic profiles can be considered 

to calculate the probability density function of input variables 

(Soroudi, 2014). 

According to (Constante-Flores and Illindala, 2019), the load 

demand can be represented by a normal probability density 

function. For the photovoltaic (PV) generation, the solar 

irradiation and temperature intermittency influences the PV 

power output, hence, the PV characteristic and location are 

important. For estimating the solar irradiation, the Beta 

probability density function was adopted by authors 

(Dhayalini and Mukesh, 2019; Fernandes et al., 2019). 

This paper addresses the lack of significant statistic 

information on the behaviour of main feeder utilization, 

voltage levels and power flow variables. The knowledge of 

probability distribution of state variables is of special interest 

to meet technical and economic optimization of the 

distribution network. Therefore, the PPF based on 2m+1 PEM 

combined with the Edgeworth expansion approximation is 

used to calculate PDF and CDF of state variables. This method 

solves the PPF with high penetration of photovoltaic systems 

as well as their effects by providing statistical information 

regarding confidence interval for a variable of interest 

This paper is organized as follow. Section 2, the MCS and 

PEM methods used in this paper with their respective 

implementation steps, and the Edgeworth expansion for PDF 

and CDF. Second, uncertain variables modelling such as load 

and photovoltaic generation. Section 3, the application of the 

PPF based on 2m+1 PEM. Section 4, the assessment of the 

PEM is carried out for different cases using a modified IEEE 

33-bus radial distribution test system with photovoltaic 

systems installation. Section 5, some relevant conclusions are 

summarized.  

2. PROBABILISTIC TECHNIQUES 

Probabilistic power flow techniques are developed for impact 

assessment of the uncertainties such as the random behaviour 

of energy consumers and the introduction of DERs in the 

power systems. The MCS is used for purpose comparison as 

benchmark, and this section describes general steps for its 

implementation. The 2m+1 PEM method is also presented 

with a generalized steps for implementation. 

2.1  Monte Carlo Simulation 

The MCS method is a well-known method to obtain accurate 

statistical results, though the computational burden to reach an 

acceptable result is unattractive  (Zhang and S.T. Lee, 2004). 

This method usually involves the calculation of thousands 

deterministic analysis. For each deterministic case, a scenario 

is created containing a set of points randomly selected from 

each uncertain variable (Constante-Flores and Illindala, 2019).  

The MCS can be implemented through the following general 

steps: 

Step 1: Compute the deterministic analysis for each set of 

scenarios; 

Step 2: Store results for the variable of interest; 

Step 3: Verify the stopping criterion (the maximum number of 

iterations or the convergence of the expected value);  

Step 4: Calculate the statistical information (e.g, expected 

value, standard deviation) for the variable of interest. 

2.2  2m+1 Point Estimate Method 

This approximate technique performs as many deterministic 

analysis as two times uncertain variables are considered plus 

one deterministic analysis for the expected value of all 

uncertain variables (Giraldo et al., 2019). Let 𝐙𝒓 represents a 

set of points for the uncertain variable 𝒓, where 𝒓 ∈
 {𝟏, 𝟐, … , 𝒎} . From 𝐙𝒓, the method selects two points based 

on mean 𝜇𝒓, standard deviation 𝜎𝒓, skewness 𝜆𝒓,𝟑 and kurtosis 

𝜆𝒓,𝟒 coefficients. The generalized following steps are applied:  



 

 

     

 

Step 1: Calculate concentrations {𝑦𝒓,𝒊, 𝜔𝒓,𝒊}, for its location 𝑦𝒓,𝒊 

of all the uncertain variables 𝒓 using (1)-(2), and let 𝒊 ∈ {𝟏, 𝟐}; 

𝜉𝒓,𝒊 = 𝜆𝒓,𝟑/2 + (−1)3−𝒊√𝜆𝒓,𝟒 + 3(𝜆𝒓,𝟑)2/4 (1) 

𝑦𝒓,𝒊 = 𝜇𝒓 + 𝜉𝒓,𝒊𝜎𝒓,𝒊   (2) 

 

Step 2: Perform a deterministic analysis for each location 𝑦𝒓,𝒊, 

while fixing the remaining variables to their expected values;  

Step 3: Perform an extra deterministic analysis using the 

expected value (𝜇𝒓) of the uncertain variables; 

Step 4: Define 𝒀𝒙 = {𝑥𝑟,,𝑖 ∪ 𝑥0}, whose length is 2m+1. This 

vector stores results 𝑥𝑟,,𝑖  from step 2 and 𝑥0 from step 3 for a 

variable of interest 𝑥;  

Step 5: Calculate the weighting factor 𝜔𝒓,𝒊 for each location 

𝑦𝒓,𝒊 using (3); 

𝜔𝒓,𝒊 = (−1)3−𝒊 (𝜉𝒓,𝒊(𝜉𝒓,𝟏 − 𝜉𝒓,𝟐))
−1

 (3) 

 

Step 6: Calculate an extra weighting factor for Step 3 using 

(4); 

 

𝜔0 = 1 − ∑ (𝜆𝒓,𝒊(𝜆𝒓,𝟏 − 𝜆𝒓,𝟐))
−1

𝒎
𝒓=𝟏    (4) 

 

Step 7: Define 𝑾𝒙 = {𝜔𝒓,𝒊 ∪ 𝜔0}, with length 2m+1. 

Step 8: Calculate the j-th moment 𝑬[𝒙𝒋] for a variable of 

interest 𝒙 using (5);   

 

𝐸[𝑥𝑗] =  𝑾𝒙(𝒀𝒙)𝒋 = ∑ (𝜔𝒓,𝒊(𝑥𝑟,,𝑖)
𝒋
)

𝑚

𝑟=1

+ 𝜔0(𝑥0)𝒋 (5) 

 

Step 9: Calculate the statistical information in terms of the raw 

moments 𝐸[𝑥𝑗]. Calculate the mean and standard deviation of 

a variable of interest 𝒙 using (6) and (7).  

          

𝜇𝑥 = 𝐸[𝑥1] (6) 

𝜎𝑥 = √𝐸[𝑥2] − (𝐸[𝑥1])2   (7) 

 

This paper uses the Edgeworth expansion because of its 

asymptotic expansion property to estimate the PDF and the 

CDF for a variable of interest 𝑥, whose υth cumulant can be 

calculated in terms of the raw moments 𝛼𝜐(e.g. 𝛼1= 𝐸[𝑥1]) 

using (8) (Fan et al., 2012; Pender, 2014). 

𝜅υ = 𝛼𝜐 − ∑ (
𝜐 − 1
𝑖 − 1

)

𝜐−1

𝑖=1

𝜅υ𝛼𝜐−𝑖 (8) 

The reference function 𝜑(𝑧) represents a PDF, and  𝜙(𝑧) 

represents a CDF for normal distribution written in (9)-(10). 

 

𝜑(𝑧) = exp (−𝑧2/2)/√2𝜋     (9) 

 

𝜙(𝑧) = ∫ 𝜑(𝑧)𝑑𝑧
𝑧

−∞
   (10) 

 

The PDF of 𝑥 with a reference function 𝜑(𝑧) up to the 5th 

cumulant is written in (11), in which 𝑧 is a normalized variable 

of 𝑥 with mean 𝜇𝑥 and standard deviation 𝜎𝑥. For the CDF of 

𝑥, the 𝐹(𝑥) is calculated using 𝜙(𝑧) instead of 𝜑(𝑧) in ℎ(𝑥) =
σ𝑓(𝑥). 

𝑓(𝑥) = (𝜑(𝑧) − 𝜅3𝜑(3) (𝑧) 3⁄ ! + 𝜅4𝜑(4) (𝑧) 4⁄ !

− 𝜅5𝜑(5) (𝑧) 5⁄ !

+ 10𝜅3
2𝜑(6) (𝑧) 6⁄ !)/σ 

 

(11) 

 

3. UNCERTAIN LOAD AND PHOTOVOLTAIC 

GENERATION MODELLING 

3.1 Probabilistic Load Modelling 

The normal distribution function is considered to represent the 

active and reactive power of the load buses (Constante-Flores 

and Illindala, 2019). Buses with load are treated as PQ buses 

and the main feeder is the reference bus. Let 𝐿 represent the 

load, the normal PDF for L is written in (12). 

 

𝑓(𝐿) = exp (−(𝐿 − μ𝐿)/(2σ𝐿
2))/√2𝜋𝜎2  (12) 

 

in which μ𝐿 is the mean, and 𝜎𝐿 is the standard deviation for 

the variable 𝐿. 

2.2 Probabilistic Photovoltaic Generation Modelling 

For the buses where PV generations is installed, this non-

dispatchable form of generation can be considered as PQ buses 

with a unitary power factor (Constante-Flores and Illindala, 

2019). The PV power injected is intermittent due to the 

stochastic nature of solar irradiation. To calculate the PV 

injected power, the solar irradiance 𝑠 [𝑘𝑊/𝑚2] is modelled 

using the Beta distribution (Dhayalini and Mukesh, 2019). 

 

𝑓𝛽(𝑠) =
Γ(α + β)

Γ(α)Γ(β)
𝑠(𝛼−1)(1 − 𝑠)𝛽−1 (13) 

 

In which, 𝑓𝛽(𝑠) represents the Beta PDF of 𝑠 in (13), Γ(∙) 

represents the gamma function, and the parameter α, 𝛽 are 

determined in terms of the  mean and standard deviation of 𝑠 

calculated using (14) and (15). 

 

𝛼 = 𝜇2(1 − μ)/σ2 − 𝜇 (14) 

 

𝛽 = α(1 − 𝜇)/μ (15) 

 

The PV injected power 𝑃𝑜𝑢𝑡𝑝𝑢𝑡 [W] of N modules is calculated 

using (16)-(20). 

 

𝑃𝑜𝑢𝑡𝑝𝑢𝑡(𝑠) = N ∗ FF ∗ V𝑠 ∗ 𝐼𝑠 (16) 

 

FF = (V𝑀𝑃𝑃 ∗ I𝑀𝑃𝑃)/(V𝑂𝐶 ∗ 𝐼𝑆𝐶) (17) 

 

𝑇𝐶 = 𝑇𝐴 + s ∗ (𝑁𝑂𝐶𝑇 − 20)/0.8 (18) 

 

V𝑠 = V𝑂𝐶 + 𝐾𝑉 ∗ 𝑇𝐶  (19) 

 

I𝑠 = s ∗ (𝐼𝑆𝐶 + 𝐾𝐼 ∗ (𝑇𝐶 − 25)) (20) 



 

 

     

 

 
Fig.  1 PDF and CDF of solar irradiance- Summer 

 
Fig.  2 PDF of HIT module power output 

 

Table 1 Technical specification HIT PV module 

V𝑀𝑃𝑃 I𝑀𝑃𝑃 V𝑂𝐶  𝐼𝑆𝐶  𝑁𝑂𝐶𝑇 𝐾𝑉 𝐾𝐼  

58.0 5.70 69.7 6.07 44 -0.164 0.00334 

 

in which, FF is known as the fill factor, V𝑠 [V] and 𝐼𝑠 [A] is the 

actual output voltage and current. V𝑀𝑃𝑃 [V] and I𝑀𝑃𝑃 [A] are 

the maximum power point voltage and current. 

𝐕𝑶𝑪 [V] and 𝑰𝑺𝑪 [A] are the open-circuit voltage and short-

circuit current. 𝑻𝑪, 𝑻𝑨 and 𝑵𝑶𝑪𝑻 are cell, ambient and nominal 

operating cell temperature [℃]. Finally, 𝑲𝑽 [𝐕/℃] and 𝑲𝑰 

[𝐀/℃] are the voltage and current temperature coefficient.  

This paper assumes an expected solar irradiation of 0.663 

𝒌𝑾/𝒎𝟐 and a standard deviation of 0.162 𝒌𝑾/𝒎𝟐 for a 

period between 12:00h and 13:00h of a summer day as in  

(Dhayalini and Mukesh, 2019). The PDF and CDF of solar 

irradiance for this period of time is presented in Fig.  1. 

To evaluate the injected PV power, the technical specification 

in Table 1 of HIT module is considered since it outperforms 

others types of technology in terms of generated energy and 

area ratio (Mesquita et al., 2019). The PDF of the PV power 

output for 𝐍 = 𝟏, and considering 𝑻𝑨 = 𝟑𝟏℃ is presented in 

Fig.  2. 

 

4. APPLICATION OF THE 2m+1 PEM TO THE POWER 

FLOW ANALYSIS 

Based on the above probabilistic techniques, the procedure to 

perform the PPF based on the 2m+1 PEM is shown in Fig.  3. 

 

Step 1: Read data for load modelling and data of solar 

irradiation for PV generation modelling; 

Step 2: Compute the 2m+1 PEM method to determine the 

estimated points taken from the uncertain variables using (2). 

Step 3: Execute deterministic power flow analysis with each 

estimating point in order to obtain the raw moments for a 

variable of interest (e.g. voltage, current, branch power flow); 

 
Fig.  3 PPF based on the 2m+1 PEM computational 

procedure 

Step 4: Calculate the approximate curve for PDF and CDF of 

a variable of interest using (11). 

5.  CASE STUDY AND RESULTS COMPARISON 

The PEM was applied to the IEEE 33-bus radial distribution 

test system, which consist of 33 buses and 32 lines. The 

modified distribution is represented using single line diagram 

with high penetration of PV systems shown in Fig.  6. The 

system has a rated voltage of 12.66 kV, and a total demand of 

3.715 MW and 2.3 MVAr. The original data of the 

aforementioned systems is taken from the work of Vita (Vita, 

2017).  

The Monte Carlo simulation performs 10 000 deterministic 

power flow analysis. This high sampling is intended to 

guarantee a good accuracy of the estimated values. Thus, the 

MCS results are taken as reference to verify the accuracy of 

the 2m+1 PEM. The implementations of the probabilistic 

methods were done in MATLAB on a computer with an Intel 

Core i5 2.4GHz processor with 6GB of RAM. 

This paper also considers the following data for the analysis of 

the PPF with high penetration of PV systems. For load 

modelling, normal distribution is considered standard 

deviations arbitrarily set as follow: 5% for buses #1-#6, 7% for 

buses # 19 -#22, 7% for buses #23-#25, 10% for buses #7-#18 

and for buses #26 -#33. It is assumed a maximum power of the 

PV system equal to 1.5 MWp. The PDF of solar irradiance in 

Fig.  1 is considered for the stochastic PV system power. The 

current limits for lines #1-#9 are 400, and for lines #10-#32 are 

200 A.  

The following cases are considered: Case 1, the distribution 

network without PV systems; Case 2, 2 PV systems are 

connected at buses #18 and #30; Case 3, 4 PV systems are 

connected at buses #22, #25, #18, and #30; Case 4, 6 PV 

systems are connected to buses #25, #22, #30, #18, #14, and 

#33. 

5.1 Index for Accuracy 

Variables of interest are generally large. Therefore, the 

average root mean square index provides a degree of accuracy 

for the quality of an estimator. The average root mean square 

(ARMS) index in (21) is defined to quantitatively assess the 

performance of the 2m+1 PEM compared to the MCS.  

 



 

 

     

 

 
Fig.  4 Variable of interest Index Error - Expected value for 

Case 1-4 

 
Fig.  5 Variable of interest Index Error – Standard Deviation 

for Case 1-4 

ARMS𝜇,𝜎 =
1

n
∗ (√∑(𝑋𝑀𝐶𝑆,𝑖 − 𝑋𝑃𝐸𝑀,𝑖)

2
𝑛

𝑖=1

) 

  

(21) 

 

in which 𝑋 represents the type of variable of interest for mean 

or standard deviation values,  𝑋𝑀𝐶𝑆,𝑖, 𝑋𝑃𝐸𝑀,𝑖 are the i-th point 

of the variable 𝑿 for the MCS and the PEM method, and  𝐧 is 

the total sample of a specific variable. 

The results for the ARMSs in Fig.  4 and Fig.  5 indicate that 

the 2m+1 PEM method can accurately estimate the expected 

and standard deviation values, with index errors is closer to 

zero for the variables of interest; thus, demonstrating the 

robustness of the 2m+1 PEM method. The variables of interest 

show in Fig.  4 and Fig.  5 are the voltage (𝑽), active and 

reactive power flow (𝑷𝒊𝒋, 𝑸𝒊𝒋), line current (𝑰𝒊𝒋), active and 

reactive energy loss (𝑷𝑳𝒐𝒔𝒔, 𝑸𝑳𝒐𝒔𝒔). 

5.2 Probabilistic Power Flow Analysis  

The PPF provides a more realistic characteristic of the 

distribution network state variables under the stochastic 

presence of load and photovoltaic generation. The 2m+1 PEM 

method has a good degree of accuracy for the expected and 

standard deviation values, as shown in Table 2 for the expected 

and standard deviation up to three decimal places of accuracy 

for the main feeder supply and total energy loss.  

According to Table 2, the main feeder experieces a reverse 

power flow for Case 3 and Case 4. In the later, the integration 

of 6 PV systems increased the total energy loss due to 

significant reverse power flow through lines. The total energy 

loss is comparable to Case 1.  

Similarly, the integration of 4 PV systems (Case 3) causes 

reverse power flow in the main feeder, though its value is only 

3.92% compared to feeder utilization in Case 1. Furthermore,  

Table 2 Main feeder and total energy loss statistical 

information – expected and standard deviation 

   Case 1 Case 2 Case 3 Case 4 

Main 
Feeder 
supply 

 

P 
[MW] 

𝜇 3.919 1.795 -0.226 -2.125 

𝜎 0.074 0.338 0.469 0.541 

Q 
[MVAr] 

𝜇 2.437 2.380 2.384 2.481 

𝜎 0.072 0.073 0.073 0.083 

Total 
Energy 

loss 

P 
[MW] 

𝜇 0.203 0.109 0.107 0.238 

𝜎 0.009 0.013 0.015 0.056 

Q 
[MVAr] 

𝜇 0.135 0.080 0.084 0.181 

𝜎 0.006 0.012 0.014 0.042 

 

 
Fig.  6 Single line diagram IEEE 33-bus with PV systems 

this case presents greater energy loss reduction compared to 

the other cases. On the other hand, the main feeder utilization 

is aliviated in due to integration of 2 PV systems (Case 2) 

which are located far from the main feeder. Furthermore, the 

total energy loss is significantly reduced.  

The expected and standard deviation for voltage and branch 

power flow behaviour in the distribtuion network is depicted 

in Fig.  7 to Fig.  10. It can be seen that the variation of the 

standard deviation increases when PV systems are installed in 

the distribution network as shows in Cases 2,3 and 4. 

Another important aspect to point out is that buses where PV 

systems are installed improve voltage levels at the expense of 

reverse power flow to the adjacent bus. For instance, Case 2 

presents power flow reversion which not only relates to line 

#17 and #29 which are closer to the PV installations but also 

from lines #7 to #16 and from lines #25 to #26. For Case 3, the 

installation of 4 PV systems at buses #18, #22, #25, and #30 

increases reverse power flow for Line #1, and from line # 7 to 

#29. Similarly, Case 4 presents reverse power flow from 

almost all lines towards the main feeder.  

Regarding the power flow reversion, the presence of 2 PV 

systems in Fig.  8 modifies the traditional one direction power 

flow shown in Fig.  7. It is also observed for Case 2 in Fig.  8 

that line #17 presents the highest power flow reversion. 

In planning, the confidence interval of power flow through 

lines is of great importance to prevent overloading. For 

instance, using the 2m+1 PEM an 80% confidence interval of 

power flow through line #17 is between [-1.2262; -0.5989] 

MW for the Case 2. Similarly, for Case 3, it is calculated the 

80% confidence interval of the maximum power flow reverse 

for line #21 and its confidence interval is [-1.2277;   -0.5965] 

MW. 

For voltage analysis, it can be observed that PV systems 

improves the voltage level for all cases. However, Case 4 

presents overvoltages in different buses, thus, the probability  



 

 

     

 

 
Fig.  7 Voltage and branch power flow for Case 1 

 
Fig.  8 Voltage and branch power flow for Case 2 

 
Fig.  9 Voltage and branch power flow for Case 3 

 
Fig.  10 Voltage and branch power flow for Case 4 

of overvoltage ocurrence increased with the integration of 6 

PV systems. Furthermore, Case 4 shows a crititcal power flow 

reversion and this may compromise the assets utilization in the 

distribution network. 

5.3 PDF and CDF analysis 

The 2m+1 PEM method is combined with the Edgeworth 

series approximation in order to obtain the PDF and CDF of a 

variable of interest. 

For the MCS fitting curve of PDF and CDF, the kernel 

function estimator is used to describe the PDF and CDF of the 

variables of interest. This technique is used to visualize the 

shape of MCS data as a reference curve from the obtained 

histogram. MCS is also approximated using the normal 

distribution.  

 
Fig.  11 Density and Cumulative probability function of the 

main feeder for Case 4 

 
Fig.  12 Density and Cumulative probability function of 

voltage at bus 18 for Case 4 

For the 2m+1 PEM method, the Edgeworth expansion is used 

to represent the curve approximation of PDF and CDF of a 

variable of interest. 

The PDF and CDF for the main feeder is shown in Fig.  11 and 

for the voltage at bus #18 in Fig.  12 considering the Case 4, 

where 6 PV systems are installed. For the main feeder in Case 

4, it is observed that the reverse power flow behaves as a 

Normal distribution. However, its base distribution has a 

positive skewness, and the Edgeworth expansion has a better 

approximation. Furthermore, the CDF of the reverse power 

flow in the main feeder has a high degree of accuracy as shown 

in Fig.  11. 

For the voltage at bus #18, which presents the maximum 

voltage in Case 4; it is observed that its PDF is affected by the 

dominance of the PV generation distribution probability, 

whose skewness value is negative. The Edgeworth expansion 

shows a better approximation both the PDF and CDF as shown 

in Fig.  12 compared to the normal distribution which presents 

an acceptable approximation. 

The curve approximation PDF and CDF using 2m+1 PEM 

combined with Edgeworth expansion overcomes the lack of 

perfect knowledge from the stochastic variable probability 

function as shown in Fig.  11 in Fig.  12. Therefore, this 

approximation requires few statistical moments to represent 

with high accuracy the curve approximation. 

 

Table 3 provides the information regarding the shape of the 

probability distribution in terms of skewness and kurtosis for 

voltages, branch power flow, current and total energy loss. 

This information is taken from the MCS to understand how the 

integration of PV systems affects the behaviour of state 

variables. For a short description, skewness is the degree of 

distortion from the symmetrical bell curve. If the skewness is  

 



 

 

     

 

Table 3 Average values of Skewness and Kurtosis for 

variables of interest in each considered case 

 Case 1 Case 2 Case 3 Case 4 

 𝜆𝒓,𝟑 𝜆𝒓,𝟒 𝜆𝒓,𝟑 𝜆𝒓,𝟒 𝜆𝒓,𝟑 𝜆𝒓,𝟒 𝜆𝒓,𝟑 𝜆𝒓,𝟒 

𝑉 0.03 3.04 -0.41 2.95 -0.40 2.92 -0.38 2.99 

𝑃𝑖𝑗  -0.02 3.01 0.32 2.85 0.40 2.81 0.40 2.86 

𝐼𝑖𝑗  0.01 3.02 0.21 3.27 0.23 3.33 -0.16 2.72 

𝑆𝐿𝑜𝑠𝑠 0.05 3.02 0.40 2.62 0.40 2.82 0.17 2.66 

positive, more data relies on the right side of the distribution, 

and vice versa negative skewness means data relies on the left 

side. 

For skewness between -0.5 and 0.5, the data are fairly 

symmetrical. Kurtosis is a measure of outliers presented by 

describing the tails of the distribution, a kurtosis value of three 

is similar to a normal distribution. If kurtosis is greater than 3, 

tails are fatter (profusion of outliers). If kurtosis is less than 3, 

tails are thinner (lack of outliers). From the information of 

Table 3, the variables of interest for Case 1 presents a similar 

distribution that matches a normal distribution. Case 2, Case 3 

and Case 4 differ from a proper Normal distribution; the 

voltage variable stands out with a  negative skewness (e.g. Fig.  

12). Similarly, it can be observed for the power flow through 

lines that presents a positive skewness (e.g. Fig.  11). 

5.4 Confidence Interval 

The CDF provides information regarding how probable a 

value is below or above in the distribution data. For the main 

feeder, the estimated 80% and 90% confidence interval is 

given in Table 4 and Table 5 by using a normal approximation 

for MCS, the Edgeworth approximation for 2m+1 PEM, and 

the kernel estimator for MCS.  

For example, the range that covers 80% of possibilities for the 

power through the main feeder means that there is an 80% of 

chance the power through the main feeder falls somewhere 

between this range. This information is of great interest for 

operation and planning due to the fact the main feeder should 

not exceed its capacity. Furthermore, it is observed in Case 3 

and Case 4, the presence of power flow reversion towards the 

main feeder, which is uncommon for distribution networks 

operation.  

5.5 Analysis of Computational Effort 

The computation effort of the 2m+1 PEM is of great interest 

for practical applications. For this reason, the analysis of 

accuracy and time effort is necessary. The required calculation 

time for 10000 trials of MCS is 220.5 seconds and for the 

2m+1 PEM method is just 4.1 seconds. The approximate 

method time is less time consuming compared to MCS; and 

this method is almost 50 times faster. 

6. CONCLUSIONS 

The probabilistic analysis is essential to cater for the 

uncertainties introduced by load and non-dispatchable 

generation in order to control and minimize the risk associated 

with operation and planning in power systems. This work 

presents the probabilistic power flow based on the 2m+1 point  

Table 4 Main Feeder [MW] - 80% Confidence Interval 

for Cases 1-4 
 Main Feeder [MW] - 80% Confidence Interval 

 MCS: Normal PEM: Edgeworth MCS: Kernel 

Cases 10% 90% 10% 90% 10% 90% 

Case 1      3.823 4.014 3.821 4.016 3.821 4.015 
Case 2 1.378 2.241 1.362 2.242 1.368 2.250 
Case 3 -0.819 0.395 -0.831 0.391 -0.826 0.404 
Case 4 -2.817 -1.419 -2.816 -1.426 -2.826 -1.405 

Table 5 Main Feeder [MW] - 90% Confidence Interval 

for Cases 1-4 

 Main Feeder [MW] - 90% Confidence Interval 

 MCS: Normal PEM: Edgeworth MCS: Kernel 

Cases 5% 95% 5% 95% 5% 95% 

Case 1      3.794 4.041 3.795 4.042 3.793 4.042 
Case 2 1.281 2.389 1.259 2.373 1.272 2.400 
Case 3 -0.970 0.577 -0.982 0.565 -0.982 0.588 
Case 4 -2.982 -1.223 -2.989 -1.232 -2.996 -1.199 

 

estimate method considering a high penetration of PV systems 

in the IEEE 33-bus radial distribution tests system.  

Reverse power flow, overvoltage and feeder energy supply and 

energy losses are estimated. Normal and Beta distribution have 

been used to model the load behaviour and the solar irradiation 

for a specific period of time in a summer season. 

The expected and standard deviation of state variables (e.g. 

voltage, branch power flow, current, energy loss) are 

accurately estimated for the distribution network; this 

calculation is based on average root mean square results, 

which are closer to zero for all considered cases. Therefore, the 

results show an acceptable error of expected and standard 

deviation for variables of interest.  

The PV system voltage support benefits is clearly seen among 

the considered cases, however; it introduces reverse power 

flow in the system up to a point of increasing energy loss (e.g. 

Case 4).The PDF and CDF of voltage and branch power flows 

is mainly affected by the location and generation where PV is 

installed as shown in Fig.6-10, and Table 3.  

For the curve approximation of PDF and CDF was used the 

Edgeworth expansion which shows a high fitting accuracy. 

Therefore, it can be used for calculation of required 

probabilities and confidence intervals.  

Finally, the computational burden of the 2m+1 PEM method 

is considerable lower which is crucial for practical 

applications. Further studies can be carried out for the 

implementation of control methods and risk minimization 

aiming the DER integration to cope with overvoltage and 

thermal limits, based on the probabilistic PEM method.  
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