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Abstract— This paper presents a hardware-in-the-loop simulation environment for testing of control strategies
for Unmanned Aerial Vehicles in Tilt-rotor configuration. This proposal consists of a distributed system composed
by a general purpose computer, that runs the Gazebo simulator, and a stm32f4 discovery development board,
that executes the control strategy. For instrumentation and reference data transfer it was developed a serial
communication protocol that includes an error-detecting method for serial transmissions, which uses a checksum
for accidental change detection in data transfer chains. Besides, it was created a dynamic library in order
to provide an external channel with Gazebo Simulator to allow interaction between simulation and embedded
system. Also it was designed a trajectory creator program to select the reference points to be reached by the
control strategy, being either automatically or manually via joystick. Finally, the system is validated through
simulation of a Tilt-rotor UAV being controlled by a DLQR strategy.
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Resumo— Este artigo apresenta um ambiente de simulação via hardware-in-the-loop para testes de estratégias
de controle para Véıculos Aéreos Não Tripulados na configuração Tilt-rotor. O sistema proposto consiste em um
sistema distribúıdo composto por um computador de uso geral, que executa o simulador Gazebo, e uma placa
de desenvolvimento stm32f4 discovery, que implementa a estratégia de controle. Para transferência de dados
de referência e instrumentação entre o simulador e o controlador, desenvolveu-se um protocolo de comunicação
serial que inclui um método de detecção de erro para comunicações seriais usando um checksum com o objetivo
de detectar mudança acidental em cadeias de dados em transferência. Além disso, foi criada uma biblioteca
dinâmica para prover um canal externo com o simulador Gazebo e permitir a interação entre a simulação e o
sistema embarcado. Ademais, desenvolveu-se um programa de seleção de trajetória para selecionar os pontos
de referência a serem alcançados pela estratégia de controle, podendo ser de forma automática ou manual via
joystick. Por fim, o sistema é validado através de simulação de um VANT Tilt-rotor sendo controlado por uma
estratégia de controle DLQR.

Palavras-chave— VANT Tilt-rotor, Hardware-in-the-loop, Sistemas embarcados, Simulador Robótico, Siste-
mas de controle

1 Introduction

Nowadays, due to Unmanned Aerial Vehicle’s
range of applications as for example: spraying
of crops, livestock management, road monitoring,
inspection of power lines and delivery of supplies
in risky zones; there are a significant effort
in enginnering and science in order to design
and improve their technology. The process of
development and implementation usually is too
expensive and slow, mainly because of difficulties
in performing hardware and firmware tests. Thus,
it is necessary to adopt new methologies in order
to speed up the implementation process and to
decrease the financial costs.

Given the circumstances, the present
work features the development of a simulation
environment based on Hardware-in-the-loop
Simulation (HILS) of a Tilt-rotor UAV for testing
of control strategies. Tilt-rotor is a kind of

hibrid aircraft characterized by two propellers
and mechanisms responsible for tilting them,
allowing two modes of operation: helicopter and
airplane. Due to this configuration, it is capable
of performing both vertical takeoff and landing,
and forward flights with higher speeds when
compared to a rotary wing UAV. The model of
Tilt-rotor UAV, illustrated in Figure 1, is used in
this work to demonstrate the HILS environment.
Such aircraft was completely designed and
assembled in our research group.

In the context of control systems’ design,
simulation is a process of conducting experiments
with a computational/mathematical model of a
physical system in order to test the effectiveness
of some control strategy. However, rather
than testing the control algorithm on a purely
simulation environment (like Matlab/Simulink),
HILS includes a part of the real hardware in the



Figure 1: Tilt-rotor UAV 2.0.

simulation loop during the system development.
This embedded system has real-time requirements
to maintain the flow of input and output signals
between the simulation environment (running the
model) and the embedded system (running the
control strategy).

Recently, there are some approaches in
the literature that look into the small UAV
control design using HILS. Gans et al. (2005)
developed a HILS environment for airplane UAV
control tests. It uses virtual reality software to
produce real-world scenarios and a wind tunnel
for aerodynamic simulation of the aerial vehicle.
Trilaksono et al. (2011) designed a HILS for
visual target tracking of an octorotor UAV with
onboard computer vision. In Cheon et al. (2016),
a HILS platform was designed for verifying the
image-based object tracking method used in a
UAV, composed by a image processing, scene
generation module and a flight control modules.

The present work uses the Gazebo simulator1,
which is a 3D simulation software with free license
under the responsibility of Open Source Robotics
Foundation (OSRF). In order to allow fast data
tranfer between the embedded system and the
general purpose computer, it was proposed a
new serial communication protocol. Besides, a
dynamic library was designed to create an external
channel with the Gazebo Simulator, allowing an
interaction between the embedded system and
simulation. Also, it was developed a trajectory
creator program to select the reference points to
be achieved by the control strategy.

The design of HILS is an improvement of
the ProVANT Simulator (Lara et al., 2017).
ProVANT Simulator is a simulation environment
that uses models based on CAD (Computer Aided
Design) 3D models and the Gazebo Simulator,
with the purpose of validation and implemetation
of control strategies, which is the previous stage
of flight testing. The inclusion of HILS in the
ProVANT Simulator allows not only test the
control strategy, but also test its implementation
on the actual hardware that will, in fact, be used
in the prototypes.

1http://gazebosim.org/

This paper is organized as follows:
Section II presents the development of the
HILS environment; Section III decribes the
experimentation and obtained results; and,
finally, Section IV concludes this work and
discusses future works.

2 Hardware-in-the-loop Simulation
Environment

The proposed HILS presents some requiments. As
a functional requirement, we must use a protocol
of communication that has a worthless time lag.
And, as a non-functional (real-time) requirement,
the period of time between requests for sensor data
from the embedded system to the simulator should
be 12 ms. This sampling time value was defined
according to the limitation of the Tilt-rotor UAV’s
instrumentation.

The general purpose computer, which runs
the simulator and the trajectory creator program,
has a 64 bits processor Intel Core i7-4790 CPU
@3.60GHZx8; a Graphics Processing Unit: Intel
Haswell Desktop; and 7,3 GB of RAM and 659,4
GB of hard drive.

The embedded system, which runs the control
law, is a stm32f4 discovery development board
composed by an ARM Cortex-M4 with FPU core,
1 MB of Flash memory and 192 KB of RAM, and
possesses the following channels: SPI, UART, I2C
and CAN.

2.1 Communication

To perform the communication between the
general purpose computer and the embedded
system, it was chosen the UART (Universal
Asynchronous Receiver-Transmitter) protocol in
the embedded system side and the USB (Universal
Serial Bus) protocol in the general purpose
computer side. Thus, to make the translation of
these serial protocols, it is used two converters
FT232RL: one is responsable for sensors and
actuators data transfer and the other for reference
data transfer.

The serial communication uses baud rate of
921600 bps in order to provide fast communication
with a worthless time lag. For this work, the
maximum payload to be transmitted is 132 bytes
with time lag of 1.2 ms, which can be acceptable,
being 10% of the sampling time.

In order to have a reliable communication
between the embedded system and the computer,
it is necessary to guarantee a safe exchange of
packages between systems. The main related
problems are the late delivery of packages,
data corruption and the reception of duplicated
packages.

These problems are mittigated using a two
layer communication protocol. The low level layer



tackles data corruption and the entanglement of
packages by sending the data with redundant
information as to solve these problems. The high
level protocol handles the flow of communication
by implementing a client/server protocol.

The low level protocol was designed as an
adaptation/simplification of the Point-to-Point
(PPP) protocol (Simpson, 1994), widely used by
Internet providers for DSL (Digital Subscriber
Line) connections. The data structure of the
protocol is showed in Figure 2. In the data
structure, it can be seen the start and the end
fields, aiming to avoid package entanglement.
Besides, in order to avoid package corruption, a
2 byte checksum is added before the end byte,
and it uses the Fletcher’s checksum algorithm as
error-detecting code (Fletcher, 1982). In addition,
the data can have any length, and starts right after
the start byte.

Figure 2: Low level protocol’s frame.

The start and end bytes used are 0x7E.
Besides, in order to avoid confusion with a possible
start byte in the data, an escape byte is introduced
with value 0x7D. Whenever a start, end or escape
flag byte occurs in the data or checksum, the
escape byte is inserted and, then, the XOR
operation of the flag with 0x20 is inserted after
it. To recover the original frame, it is removed
the escape and substituted the next value with
the XOR operation of the byte with 0x20.

The high level protocol consists in a
client/server communication, where the embedded
system is the client of the application and asks
to the general purpose computer for services
identified through its ID and some information, if
necessary, as showed in Figure 3. The following
services are provided: i) Simulation start; ii)
Reading of sensors data; iii) Transmission of data
to actuators.

Figure 3: High level protocol’s package.

The data flow in the communication works
as showed in Figure 4. First of all, the client
commands to start the application, sending a
mensage with ID 1 without waiting for any
response. From this moment, it starts a periodic
cycle of sensor data request and sending actuator
commands. In sensor data request, the client
sends a message with ID 2 and waits for a
server’s answer, which consists of one float array
of 16 elements. However, when it sends actuator
commands, it uses a message with ID 3 with
more 4 float numbers corresponding to the control

signals resulting from the control law. As a
client/server protocol, this periodic cycle is set
on the client-side, and the server just waits for
requests.

Figure 4: Communication data flow between
server and client.

2.2 General purpose computer configuration

The general purpose computer uses the linux
distribution Ubuntu 16.04 LTS (Long Term
Support) as operating system, which does not
have real-time support. Besides, it is also used
the Gazebo Simulator to simulate the dynamic
behavior of the Tilt-rotor-UAV.

The simulation step of Gazebo simulator
was adjusted for 4 ms. The simulation step is
sampling time of the simulator. They are the time
instants where the simulator obtains the data of
control signals and computes the new states of the
system. By increasing the simulation step, it is
lost the precision of calculation, but the amount
of processing used by the simulator is decreased.

In addition, the Gazebo Simulator is
configured with real-time factor setting equals
to 1, making the simulator tries to keep the
simulation in real time according to the system
clock.

In order to interact with the simulation,
either by acquiring data and applying control
signals, or by changing simulation configurations,
it was created a dynamic library called Plugin
to be responsible for getting requests from serial
communication. It was used Boost2 ASIO

2http://www.boost.org



API (Application Program Interface), that is
a cross-platform C++ library for network and
low-level I/O programming, and Boost Thread
API for creating and managing threads.

Plugin works as showed in Figure 5. It is
composed for one thread, that waits for external
requests, and one callback that is called in every
simulation step. For each type of request, it has
a specific reaction and the verification process
happens in the following sequence: 1) start
simulation, 2) send actuator data to the simulator
and 3) get sensor data. Besides, a callback is
needed in order to ensure that the last value of
control input is applyed on the model, since all
input variables in simulation are reset in every new
simulation step in Gazebo simulation.

Figure 5: Logic of server software.

In addition to the Plugin, the general purpose
computer has also two different programs which
send reference points to be tracked by the control
system: the base station program and a joystick
reader. Both of them uses just the low level
protocol to communicate with embedded system,
but each one has a different behavior, as can be
observed in Figure 6, when one of them is turned
on, the other must be turned off.

The joystick reader receives data from joystick
driver and converts the data to magnitude and
the appropriate scale before sending references
to the embedded system. However, the base
station program gets the clock update of Gazebo
simulation and computes a new reference to the
UAV and, then, sends this data to the embedded
system.

2.3 Embedded system configuration

The stm32f4 discovery development board uses a
software architecture structured in a hierarchical
verticalization, where the elements of a lower
level provide services for elements of higher
level, as can be seen in Figure 7. In general

Figure 6: Logic of joystick reader and base station.

there are three layers: Core level, Middleware
level and Application level. At the first level,
it implements the basic run-time system for a
Cortex-M device and gives the access of processor
core and peripherals for the user. Middleware
level is the layer responsible for encapsulating
communication with peripherals and commonly
used code for dealing with the communication
problem between processes and mechanisms of
concurrence. Finally, Application implements the
modules of stabilization and navigation codes.

Figure 7: Client software architecture.

Besides, it has been used FreeRTOS3 as
an operating system. It is a real-time kernel
for embedded systems that allows the creation
of tasks and provides mechanisms in order to
achieve their real-time objectives. There is also
an inter-task communication mechanism using
thread queues, which is thread safe.

Thus, through the described infrastructure,
it was implemented a control system which has
four threads: one thread for getting sensor data,
one for processing the control law, one for sending
actuator data, and other to get reference data.
Their operation are showed in Figure 8. In
addition, theses threads are called by the time

3https://www.freertos.org/



interruption every sample time, which period is
12 ms.

Figure 8: Client software.

3 Experimental Results

In order to evaluate the proposed HILS,
experimental results were carried out, where
the embedded system was configured with a
Discrete Linear Quadratic Regulator (DLQR)
control technique proposed by Rego e Raffo
(2016), which was designed based an the physical
model presented in Donadel et al. (2014). In this
experiment the Tilt-rotor UAV must track some
trajectory generated by the base station program.

The kinematic description of the system is
perfomed according to Figure 9, where ξ ,
[x y z]T corresponds to the position of the main
body with respect to the inertial frame, φ, θ and
ψ describe the orientation of the main body with
respect to the inertial frame through the Z-Y-X
convention on local axes (Jazar, 2010), αR and
αL describe the inclination of the propellers with
respect to the main body of the aircraft. The
vectors dBCi , with i ∈ {1, 2, 3}, and the angle of
inclination β corresponds to design parameters
of the aircraft. Table 1 presents the physical
parameters of the UAV model used to tune the
DLQR controller.

The control strategy is based on the
linearization and discretization of the system
state equations, obtained through the
Euler-Lagrange formulation, around the reference
trajectory. The generalized coordinates were
q = (x, y, z, φ, θ, ψ, αR, αL), and integral actions
are added on the regulated variables (x, y, z and
ψ). The parameters used for control design are
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with fReq = 10.2751 N, fLeq = 10.2799 N, τReq = 0

N.m, τLeq = 0 N.m.

Table 1: Physical parameters of system.

Parameter Value
m1 1.92 Kg

m2, m3 0.08 Kg
dBC1 [−0.0025 0.00013 −0.018]T m

dBC2 [0.00002 −0.27761 0.05621]T m

dBC3 [0.00005 0.27761 0.05621]T m

I1

6900.0 4.7 36.0
∗ 790.0 −1.07
∗ ∗ 6600.0

 · 10−5 Kg·m2

I2

3.88 0 0
∗ 10.0 0
∗ ∗ 8.3

 · 10−5 Kg·m2

I3

3.83 0 0
∗ 10.0 0
∗ ∗ 8.3

 · 10−5 Kg·m2

ĝ [0 0 −9.81]T m/s2

kτ 1.7 · 10−7 N·m·s2
b 9.5 · 10−6 N·s2

(λR, λL) (1,−1)
β 5o
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Figure 9: Tilt-rotor UAV coordinates

During the experiment, it has been asked for
the UAV to track a spiral trajectory described
by equation (1), where n = 3 is the number of
turns, Tf = 60s is the total time, d = 5m is
the trajectory radius, h = 10m is the height, and
(x0, y0, z0) = (2, 0, 0.5) is the starting point of the
Tilt-rotor UAV in the trajectory.

w =
2nπ

Tf

yr(t) =d sinwt− yr(0) + y0

zr(t) =
ht

Tf
− zr(0) + z0

xr(t) =d coswt− xr(0) + x0

(1)

Besides, it has been chosen the ODE engine
for Gazebo’s configuration. The results of HILS is
showed in Figures 10, 11, 12 and 13.

Figure 10 shows that the UAV tracked
properly the trajectory, in Figure 11, it can be



Figure 10: Trajectory of model in HILS.

Figure 11: Roll, pitch and yaw.

Figure 12: Angles of servo motors.

observed that the yaw angle remained close to
the origin. In addition, the remaining states of
the system were maintenained stable, and the
control signals were properly generated without
saturation.

Another information obtained from the HILS
was the time periods between requests for sensor
data, which were measured in the server side.
This information was put in a histogram as can
be seen in Figure 14. Most periods between
requests for sensor data remain around 12 ms as

Figure 13: Control inputs.

specified by real-time requirement, but there is a
small volume of data concentrated around 13 ms.
This volume, probably, is the result of using the
Ubuntu 16.04 on the general purpose computer,
which is not a real-time operating system and
has others processes running concurrently with
HILS. Therefore, it does not guarantee that the
data obtained from the serial port is handled
immediately and, thus, causes such delays as seen
in the histogram.

Figure 14: Period of time between sensor requests.

4 Conclusion and Future Work

This work developed a HILS4 for the tilt-rotor
UAV that will serve as testbed for embedded
control systems. To enable the communication
between the embedded system and the general
purpose computer, it was designed two new
protocol layers of serial communication that
provide flow control of information and worthless
time lag. Besides, it was designed a dynamic
library to create a channel of communication
between the embedded system and the simulation.
Also, it was designed an trajectory program to

4Video with HILS is available at https://youtu.be/DQ-
2-HSwcnU



select the reference points to be tracked by the
control strategy. From numeric experiments, it
was observed that the application obeys most of
the time the real-time requirement. However,
even if there are some moments that the real-time
requirement is not fulfilled, the control strategy,
implemented in a stm32f4 discovery development
board, was able to control UAV Tilt-rotor and it
tracked properly a spiral trajectory .

As future works, it is expected to use the HILS
for testing the implementation of computationaly
expensive control algorithms using parallel
programming in embedded systems with GPU
processors, for instance, model predictive
controllers using nonlinear models. Besides,
it will be used HILS for testing fault-tolerant
distributed architectures of embedded systems,
verifying the robustness of the hardware and
software against expected failures.
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tomática .

Simpson, W. (1994). Ppp in hdlc-like framing,
STD 51, RFC Editor.

Trilaksono, B. R., Triadhitama, R., Adiprawita, W. e
Wibowo, A. (2011). Hardware-in-the-loop sim-
ulation for visual target tracking of octorotor
UAV, Aircraft Engineering and Aerospace Tech-
nology: An International Journal .


