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Abstract— We propose LMI conditions for Ho analysis and state-feedback control of discrete-time Markov

Jump Lur’e systems.

We will also approach two possible situations, either mode-dependent and mode-

independent state-feedback control. For the first approach, we consider that the controller has access to the
Markov mode 6(k), on the other hand, for the second approach, we consider that the Markov parameter 6(k)
cannot be read by the controller. A numerical example illustrates the obtained results.
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1 Introduction

Systems are studied through a mathematical
representation of their dynamics. Most represen-
tations of physical phenomena need to take non-
linearities into account. Nonlinearities are found
in most economical, biological and physical mod-
els, such as the survival of different species in a
given environment, spread of viruses among a cer-
tain population, electronic oscillators and so forth,
(Monteiro, 2011).

If such systems are subject to abrupt changes,
a single deterministic model may not be enoughly
precise. Moreover, such changes may occur in
a random fashion and may be described by a
stochastic process. Those occurrences are taken
into account through their statistics, such as prob-
abilities, expected values, variance among other
parameters.

One way to model abrupt changes in dynamic
systems is to consider a combination of different
subsystems, each representing an operation mode.
FEach mode is described by a set of linear equa-
tions and the randomness is modeled as a jump be-
tween the different operation modes. Such model-
ing is referred to in the literature as Markov Jump
Linear Systems (MJLS) and has been subject of
a large amount of research. We indicate (Costa
et al., 2006) and (Costa et al., 2013) and their
comprehensive list of references.

The objective of this work is to present Linear
Matriz Inequalities (LMIs) stability conditions for
stability analysis and synthesis of state-feedback
control with bounded H,—cost, for discrete-time
Markov Jump Lur’e systems. We consider both
scenarios for the availability of the Markov mode
to the controller: mode-dependent and mode-
independent. To achieve that goal, we start rep-
resenting the Markov System in the Lur’e format,
which is a representation of the nonlinear system

as the interconnection of two parts: a conven-
tional linear model and a nonlinear function of
the output which is negatively fedback into the
previous linear representation. Moreover, we com-
plete the system representation by considering a
bounded exogenous input, a control input and a
performance output. Furthermore, note that the
study of Lur’e systems is commonly referred in
the literature as the absolute stability problem,
(Khalil, 2002).

In this paper, the nonlinearities under con-
sideration are those that belong to a given sec-
tor and we consider that, in a first scenario, the
Markov mode 6(k) can be measured by the con-
troller. In a second scenario, the process 6(k) can-
not be measured, thus the design of controller is
mode-independent, (Gongalves et al., 2012). Our
alm is to address an extension of the absolute
stability problem for H., state-feedback control
using a similar approach as the one presented in
(Gongalves et al., 2012). If the nonlinear feedback
of the Lur’e system is substituted by a linear gain,
our results recover the ones presented in that pa-
per.

The reference (Gongalves et al., 2012) also
deals with uncertain transition probabilities and
cluster observation of the Markov modes. It is
possible to extend the LMI conditions presented
here to also address both additional constraints.

Convex optimization problems, especially
those with LMI constraints, are well established
in the control literature (Boyd et al., 1994).
There are specialized computer packages that
can solve those optimization programs efficiently.
Among others we cite: LMI Control Toolbox
or SeDuMi with Yalmip parser (Sturm, 1999),
(Lofberg, 2005).


creacteve_alessandra
Texto digitado
DOI: 10.48011/asba.v2i1.1090


2 Notation

Throughout the text, (-)' indicates trans-
posed matrices or vectors, diag(:) indicates a
diagonal matrix, Tr(-) indicates the trace op-
erator, (x) indicates a block induced by sym-
metry at symmetric matrices, the operator E[]
(E[-|1]) is the (conditional) expected value of a
random variable, ¢ is the standard deviation,

R4 (N+ £10,1,2,--- ,oo}) indicates the set of

positive real (natural) numbers, and Her (4) =
A+ A’. The set of nonlinear functions belonging
to given sector is denoted by F. ||z (k)] is the Eu-
clidean norm of vector x(k). We define £ (§), as
the space of all p—dimensional square-summable
stochastic signals, « : Ny — RP, such that ||J;||§ =

E [Zzozo ||x(k)||2} < 00. Also, we consider the fol-

A

lowing operators, & (P) = >_,c mi;Pj and, with
a slight abuse of notation, & (Z) £ Z]EK i Zij
and L; (P) & A&; (P) A; — P;. Finally, we recall
the following auxiliary result for symmetric and
positive definite matrices X; > 0 and T; of com-
patible dimensions, Ti’Xi_lTl- > Her (T;) — X;, i €
K.

3 Preliminaries

We will assume the probability space
(Q,§, Prob), where Q is the sample space, § is the
o-field into 2, Prob is the probability measure.

Furthermore, we consider the following
Markov jump nonlinear system G:

where x : N; — R” is the state, z : N, — R® is
the performance output, w : Ny — R” exogenous
input, p: Ny — R™ is an input to the linear part
of the system, ¢ : N — R™ is the output sig-
nal, and ¢ : R™ — R™ is a nonlinearity between
q(k) and p(k). It is important to notice that such
input and output signals p(k) and ¢(k) may not
be signals with physical meaning, but rather they
may be mathematically defined so that the non-
linear system can be cast in the Lur’e framework.
The nonlinear function ¢ is such that, ¢(0) = 0,
which ensures the origin = 0 is an equilibrium
point. As it is common in the treatment of passive
and/or positive real systems, we consider that the
dimension m € N_ of inputs and outputs is the
same (Khalil, 2002).

Additionally, we say that ¢(-) belongs to the
sector [0, S, with & £ diag(k1," -+, km), k; > 0

for j € {1,2,--- ,m},if
(6 (a(k)) — Sa(k)) ¢ (g(k)) <0, ¥k € Ny (2)

The random variable 6(k) € K £
{1, 2, ---, N} is governed by a Discrete-time
Markov chain (DTMC) (Costa et al., 2006), there-
fore, the stochastic process {6(k), k € N} is such
that

Prob(8(k + 1) = jl0(k) = i) = m;,  (3)

with transition probability matrix given by Il =
[7i;] where

g Z O, Z?Tij == 1, Vi € K.
JEK

In the following subsection, we define stochas-
tic stability and H., bound for our system.

3.1 Stochastic stability and H.o—cost

The following definitions are important for ob-
taining analysis and synthesis conditions for the
absolute stability problem. The reader can find
more information on (Costa et al., 2006) and its
references.

We consider the Markov jump Lur’e system
(1) with initial conditions z(0) = xq, 6(0) = 6o,
and matrices Ag(k), Eg(k), Gg(k) FG(k)7 JG(k) and
Hyg () with appropriate dimensions. In order to
simplify the notation, we will write Xg)—; =
X;, Viek.

Definition 1 (Stochastic Stability). System
G, with null inputs, initial conditions x(0) = xg
and 0(0) € K, is said to be stochastically stable

when
> IIw(k)||2] < oo. (4)
k=0

On the other hand, we assume that system
(1) is subject to a stochastic disturbance w =
{wk), k>0 : wely(F}.

E

Definition 2 (Ho,—norm). The Ho norm of
stochastically stable system G is defined as the
least v > 0 such that,

121y < llwll; - (5)

4 Main Results

The purpose of this section is to present
two important results: analysis and state feed-
back control design with guaranteed H o, —cost, for
discrete-time Markov jump Lur’e system.



4.1 Stochastic stability of Lur’e systems
Consider the dynamical system (1).

Theorem 1 (Ho—cost of Lur’e system). The
system (1), with ¢ € [0,S] and x(0) = 0 is
stochastically stable with guaranteed Ho, cost v €
Ry, if there exists feasible solutions P; > 0,1 € K,
for the LMIs

Pi * *

Al [&‘E)P) ?] Ai—|=sG; 21 « | <o,
0 0 ~2I
(6)
where
A, —FE; J;
A= |:Fz 0 H] Vi € K.
In the affirmative case, that guarantees
max||zls < fwlz2, F={¢(q(k)) €0, S} (7)

Proof: We assume that inequality (6) holds, we
also consider the following stochastic Lyapunov
function v, (k).9m=i = @(k) Px(k). After multi-
plying inequality (6) to the right by [¢/ ¢' 0']
and to the left by its transpose, we obtain
+ Her ((25’ (—E:gz(P)Al-i-SGJ CC) <0

(8)

Grouping the terms of inequality (8)

E [:U(k + 1)’P9(k+1)x(k + 1)|x,9(k)] *I/PQ(]C)SC <

A(”m(}c),ﬁ(k))
Her ((¢ — Sq)’ ¢), (9)
—_—

<0

Therefore, the inequality (9) guarantees the Lur’e
system stochastic stability. After applying the
Schur complement to inequality (6), we multiply
it to the left by [#/ ¢’ w’] and to the right by
its transpose to get,

« (Li(P)+ F/F))x

+¢' (=21 + Ej&(P)E;) ¢+

+ Her (¢/ (—E\&;(P)A; + SG;) z) +

+ Her (w' (—J/&(P)E;) ¢) +

+ Her (w' (J{&;(P)A; + H{F;) z) +

+w' (=71 + J/&(P)J; + H/H;) w < 0,

Grouping the terms of inequality (10), we have,

A (va(iy,o0) + 127 =2 w(k)|* <

Her (¢ — Sg)'¢), (11)

<0

where

A (va(i) o) =
E [z(k 4+ 1) Pygorryz(k + 1)|2,0(k)] — var),o0k)-

Summing up (11) for ¥ = 0 to oo and applying
the expectation operator, remembering that the
system is stochastically stable, we get

ZA Va(k),0(k) )

=0

+zl13 =?llwll3 <0, (12)

guaranteeing, in the worst case

max||z][z < 7ljwl2, (13)

concluding the proof. |

4.2 State-feedback  control of Discrete-time
Markov jump Lur’e system

Consider the following closed-loop Lur’e sys-
tem, with the following control signal v : Ny —
R, on the probability space (€, §, Prob),

z(k + 1) = Aguyx(k) + Egeyp(k) + Joyw(k),
q(k Ga(k)x(k%
p(k) = - (q(k)),
2(k) = Fyuy (k) + Hyyw(k),
(14)
where,

A; 2 Aj+ BiK;, F; 2 F,+ L;K;, Vi € K, (15)

where, B;, L;, H;, with appropriate dimensions.
We also consider Ai and Fi are closed-loop matri-
ces, that are obtained by adding a control input
u(k) = Kgyyz(k) to the system (1). The next re-
sult addresses the H, mode-dependent controller.

Theorem 2 (H., State-feedback Control).
The closed-loop system (14) with ¢(q) € [0, S]
1s stochastically stable with guaranteed Hoo cost
v € Ry, if there exists a feasible solution in the
set S & {Xl >0,Y;, T; Zij, Wi, Vi, je K} for
the LMIs

Zij *

W, X, >0, (16)
Her (T;) — X;  * * * *
-SG;T; 21 * * *
0 0 A2 * x| > 0.
AT, +BY: —E; J; Her(W))—&(Z)
ET, + LY, 0 H 0 I
(17)
In the affirmative case,
K, = YT, (18)
guarantees that,
max [2ll, <7 ull,. F 2 {o(a(k)) € [0, ]}



Proof: We assume that LMIs (16) and (17) hold.
From LMI (16), we have, Zi; > W/ (X;)”' Wi.
Multiplying these inequalities by m;; and summing
up for all j € K we obtain

ijZij > Wll Zﬂ'ij (Xj)_l W;
j€K JjeK (20)
—1

> Her (W;) — (& (X71)) 7,
_ N1
where (& (X)) = (Sjeams (X))
and rewriting the inequality (20),

(& (X))

On the other hand, notice that Her (T;) — X; <
T{Xi_lTi,W € K, also consider, (21) and (15),

' > Her (Wi) =& (Z). (21)

TX7'T,  « * *
-SG;T;, 21 * * *
0 0 A2 * x| >0,
A:iTi —FE; J; ((S'Z (Xil))il *
ET, 0 H; 0 1
(22)
note that, X; = Pi1 Vi €K, so applymg the con-
gruence tranbformatlon diag (T 1,1,1,1 )
P; * * * *
-S8G; 21 * * *
0 0 A2I * x| >0, (23)
A~i —Ei Jz 52 (P)71 *
F, 0 H, 0 I

after applying Schur complement to inequality
(23), we have,

P; * *
A [&‘E)P ) ?] A - |-sG, 21 «|<o,
0 0 A2

where,

i A, —E;
A’_{Fi 0 Hi

Now, adopting a strategy similar to that of last
proof, we multiply the inequality (24) on the left
by [2/ ¢’ 0'] and on the right by its transpose,

o’ (Aj&;(P)A; — P) x + ¢/ (=21 + E&(P)E;) ¢+
+ Her (¢/ (—E}&(P)A; + SG;) x) <0,
(25)

grouping the terms of inequality (25), we have,

E [z(k + 1) Pyrrnyx(k + 1)[z,0(k)] =2 Pyyx <

A(vairy o)
Her ((¢ — Sq) ), (26)

<0

note that, vy em = z(k)' Poyz(k) is the
stochastic Lyapunov function. Therefore, inequal-
ity (26) guarantees the stochastic stability of
closed-loop Lur’e system. After, pre and post mul-
tiplying the inequality (24) by [z ¢ '],

o’ (Li(P) + F/Fy) a+

+ o (—20 + E€ (P
+ Her (¢' (—E/&i(P
+ Her (w' (=, ( VEi) ¢) +

+ Her (w’ (JZ-/&'( )A; + H/F;) z) +
+w' (=7*1 + J[&(P)J; + H{H;) w < 0,

i) o+

)E
JA;+8G;) x) +

where £; (P) = A;&(P)Al — P;. Grouping the
terms of inequality (27), we have

E [Vp(ks1),006+1)| 2(k),00k)] — var) o0+

A(vary,o0)
+ [[2(k)[1? = ¥*[lw(k)||* < Her ((¢ — Sq)" ),

<0

(28)

summing in k£ and applying the expectation oper-
ator, remembering that the closed-loop system is
stochastically stable,

o0

Z Uz(k a(k

k=0

+2l5 = llwl3 <0, (29)

=0

guaranteeing, in the worst case
max||z]lz <7lwl2, (30)

concluding the proof. ]
In order to find the lowest guaranteed cost 7, it is
possible to solve the following convex optimization
problem

subject to (16) — (17)},

inf {7 :
inf {y
and the controller can be obtained from (18) guar-
anteeing (19).
For the mode-independent control problem,
we consider the following closed-loop matrices,

A, 2 A +BK, F, 2 F, + LK. (31)

The following corollary provides conditions to de-
termine mode-independent feedback control gains.

Corollary 3 (H~ State-feedback Control).
The closed-loop system (14) with ¢(q) € [0, S]
is stochastically stable with guaranteed Hoo cost
~v € Ry if there exists a feasible solution in the set



Sé{XZ>0,KT, Zij,Wi7Vi,j€K},
Z7 *

W, X, >0, (32)
Her (T) — X; * * * *
-SG;T 21 * * *
0 0 A2 * x| >0
F,T+ L;Y 0 H; 0 1
(33)
In the affirmative case,
K=YT!, (34)

guarantees that, in closed-loop,

max |z, <7 fwl,y, F={¢(g) € [0, S]}. (35)

Proof: We assume that LMIs (32) and (33) hold.
Inequalities (32) are equivalent to (16). On
the other hand, notice that Her(T) — X; <
T’Xi_lT7 Vi € K, also consider (31),

T'X7'T o« * * *

-SG;T 21 * * *
0 0 ~2I * x| >0,

%iT —F; J; (EZ (Xil))il *

ET 0 H; 0 I
(36)

note that, X; = Pfl,Vi € K, so applying the con-
gruence transformation diag (T‘l, I, 1,1, I) ,

P; * * * *
-S8G; 21 * * *
0 0 I * = >0, (37
Ai _Ei Jz (‘:Z (P)_l *
F; 0 H; 0 I

so notice that inequality (37) is equivalent to (23),
therefore, if inequalities (32) and (33) had feasi-
ble solution, then (16) and (17) will also have,
concluding the proof. O

Again, to find the lowest guaranteed cost =, it is
possible to solve the following convex optimization
problem

ilglf {7 : subject to (32) — (33)},

and the controller can be obtained from (34) guar-
anteeing (35).

5 Numerical Example

We study a Lur’e system taken from (Gonzaga
and Costa, 2014) in our numerical example. We
consider a following adaptation: nonlinear func-
tion ¢(q(k)) and sector k are mode-independent.
The transition probability matrix II and initial
probability distribution which is used in simula-
tion, u = Prob (g = i), are given by,

0.6000 0.4000 0.3333 }

[ 1 ‘ H } ~ | 0.2000 0.8000 0.6667

With the system matrices,

[ 04 041005
A | By | By 02 1.0/|1.2]05
A2 FEs | By . 1.1 0.6]1.2]0.7
Gi| 0] 0 | 03 04[1.0]05 |’
Go] 010 0.9 05]0.0/00
| 1.0 0.7[0.0]0.0
Ji | Hi | [010 012]05
Jy | Hy || 010 01101 |°

[Fi|Li]=[1 1]1]ieK

Solving the optimizations problems proposed in
Theorem 2 and Corollary 3, considering the
sector [0, 0.7], we have the controllers,

—0.9818
—-0.9116 |’

K, | | —0.9352
{ K, } - [ ~1.2190
which guarantee the upper bound for H.,—cost
v < 0.5075. In order to illustrate that fact,
we perform a Monte-Carlo realization of 2,500
samples, each lasting 400 discrete time units
with nonlinear function ¢(q(k)) = 0.35q(k)(1 +
cos(25¢(k))), and disturbance input,

2
iy

i <k<
w(k) = sm(200 ), 0 <k <200,

0, 200 < k < 400.

The chosen signal is bounded and deterministic to
simplify the simulation, though it could be ran-
dom as indicated in Definition 2.

0 50 100 150 200 250 300 350 100

k)|

=005}

[Ju

0

0 50 100 150 200 250 300 350 400
k

Figure 1:  Mean of |[[z(k)||> (black) and
lu(k)||* (blue) evaluated at all times k, for

mode-dependent controller, the gray region is
2 2
E(|lz(k)[") £ o and E(|u(k)]") £ 0.

We obtained the Ho, norm ~Ysmulated =
0.3013. On the other hand, for the mode-
independent controller

K =[-1.3198 —0.4633],

we can guarantee the upper bound for H.,—cost
v < 1.5075.
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Figure 2: Mean of ||z(k)||> (black) and
lu(k)||*> (blue) evaluated at all times k, for

mode-independent controller, the gray region is
2 2
E([[z(k)[7) £ o and E([[u(k)[]") £ .

Figure 1 shows the mean-square behavior of
both performance output and the control input
for mode-dependent controller, on the other hand,
in Figure 2 shows the mean-square behavior of
both performance output and the control input
for mode-independent controller.

Running 2,500 Monte-Carlo realizations, with
the same nonlinear function, we calculated the
value Vsimulated = 0.3166. Note that the norms
obtained through the simulations, for both mode-
dependent and mode-independent controllers, are
less than the guaranteed costs, as expected.

6 Conclusion

In this paper, we present conditions for the
stochastic stability test, as well as for the design of
controllers, both with upper bounds for H ., —cost.
Such controllers may or may not measure Markov
parameter, 6(k), i.e, we design mode-dependent
and mode-independent controllers. The paper
ends with a numerical example that illustrates the
obtained results.
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