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Abstract: The machining processes are of major importance to industries, due to the fact
that these processes take part in the manufacturing of a substantial portion of mechanical
components. Hence, during these processes, operational interruptions and accidents induced by
fault occurrence are likely to cause economic losses. Concerning these consequences, real-time
monitoring can result in productivity and safety increase along with cost reduction. This paper
aims to discuss an autonomous model based on self-organised direction aware data partitioning
algorithm and machine learning techniques, including features extraction and selection based on
hypothesis tests, to solve the adressed problem. The model proposed in this work was evaluated
using a data set acquired in a real machining system at the Manufacturing Processes Laboratory
of Federal University of Juiz de Fora (UFJF).

Keywords: Autonomous Learning; Empirical Data Analyses; Machine Learning; Machining
Processes.

1. INTRODUCTION

The companies around the world, recognising the com-
petitiveness increase in the manufacturing scenario, have
directed their efforts to the optimisation of its production
processes. Considering this optimisation the reliability and
availability of its production equipment are crucial. Ac-
cordingly, Condition Based Maintenance (CBM) (Jardine
et al., 2006; Mobley, 2002), has been broadly implemented
in industrial processes and is one of the most efficient pre-
dictive maintenance approaches, owing to its success into
decreasing the uncertainty associated with maintenance
activities (Rastegari and Mobin, 2016).

Moreover, the manufacturing process by machining
emerges as one of the most important, considering that the
major part of the mechanical components, fabricated for
industrial use, went through a machining process during
its manufacturing. According to Trent and Wright (Trent
and Wright, 2000), machining transforms about 10% of all
metal production in chips and employs dozens of millions
of persons worldwide, implying that the development of
new technologies in this area is of fundamental importance.

The manufacturing environment has experienced consid-
erable transformations in recent decades. The use of more
efficient machines and staff reduction are strategies com-

monly adopted by industries to obtain cost savings. How-
ever, improvements in manufacturing time and product
quality are also demanded (Byrne et al., 1995). Thus, these
demands resulted in researches centred on the reduction
of the human factor within the manufacturing processes.
Consequently, the development of new technologies gained
momentum. Regarding this scenario, the real-time mon-
itoring of quantities, such as acoustic emission, power,
voltage, vibration and current, emerged as a solution of
major importance.

In the 1980s and 1990s, the implementation of adaptive
inspection mechanisms supported the development of new
tool replacement methods. Particularly, the methods based
on monitoring cutting edge wear (Snr, 2000). Despite
representing an enhancement to the traditional methods,
the great number of variables involved make this type of
technology to be expensive and subjective to use. Thus
its use is not justified for real-time monitoring appli-
cations. Lately, to overcome these issues, computational
intelligence tools have been used into the development of
diagnosis, prognosis and monitoring systems for industrial
processes. Regarding the implementation of CBM methods
and monitoring systems, the artificial neural networks
(ANN’s) are the mainly applied tool, as presented in
(Calderano et al., 2019; Lee et al., 2010). However, the
information provided by monitoring systems applied in
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machining processes is acquired in the form of extremely
dynamic data flows which have large dimensionality. Due
to these data flow particularities, monitoring systems
based on ANN’s are not the best option in solving the
proposed problem. Furthermore, the retraining systems
are generally not an applicable option, since data flows
arrive continuously (Bouchachia et al., 2014).

Consequently, the development of systems capable of su-
pervising the machining process through real-time moni-
toring data gained momentum, as well as strategies that
minimise human interference in the process. Additionally,
The implementation of smarter maintenance procedures
intends to replace the schedule-based maintenance by a
condition-based maintenance (Calderano et al., 2019; Lee
et al., 2010). The CBM allows predictive analysis in sen-
sor monitored equipment based on the historical stored
data previously to the fault’s occurrence (Ellis, 2008).
Furthermore, the CBM concerns in improve reliability
as well as reduce the time of maintenance in industrial
processes which leads to lower incurred costs. Considering
this scenario, autonomous learning and machine learning
techniques emerge as key tools to avoid faults, to prevent
accidents and to reduce losses that may occur between
overhauls.

Although the literature presents numerous fault diagnostic
methods(Simon et al., 2014), autonomous learning tech-
niques application in lathe’s cutting toll classification holds
unexplored potential. Therefore, a time series analyses
method was applied in this work, owing to its increasing
relevance for forecasting and control (Box et al., 2015).
This approach aims to develop a model suitable for apply-
ing a CBM on machining processes.

The analysis of time series with large dimensionality is
a task of high computational cost for several algorithms,
particularly regarding the required execution time. Conse-
quently, the dimensionality reduction through feature ex-
traction is essential when considering real-time monitoring
applications. Moreover, selecting pertinent and represen-
tative features from the data is one of the major challenges
when analysing time series. To overcome these challenges,
a methodology named TSFRESH was adopted in this work
Christ et al. (2018). The TSFRESH algorithm extracts
the features from the time series. Additionally, it applies
feature selection by the means of hypotheses test.

Furthermore, the authors in (Gu et al., 2018) claim that
traditional clustering techniques demand prior knowledge
and handcrafting to operate, leading to a subjective result.
Hence, aiming to minimise users interference in the model,
the Self-Organised Direction Aware Data Partitioning Al-
gorithm was adopted in this work. It is worth to mention
that SODA algorithm permits a future improvement of the
model presented in this work. Owing to its high efficiency
of adapting to various types of data, along with its capabil-
ity of processing streaming data, it allows the development
of an online extension of the proposed model.

In this context, the main contributions of this work are
summarised as follows:

• We apply the SODA algorithm (Gu et al., 2018) to a
data-set recorded by Fluke 125 Industrial Scopeme-
ter, in the UFJF’s Manufacturing Processes Labo-

ratory. The SODA is capable of self-adjusting the
data-clouds structure and centres to follow the data
patterns in an agile manner.

• An autonomous model for classifying cutting tools’
wear state is presented for the first time in the
literature.

• We propose a novel model which does not require
prior expert knowledge and aims to improve the ma-
chining process reliability, by the means of classifying
cutting tools’ wear state.

And our major conclusions are:

• The proposed model is suitable for identifying the
data patterns that separate the adequate condition
from the inadequate condition of cutting tools’ wear,
obtaining satisfactory performances in all cases and
allowing to avoid faulty pieces fabrication.

• The feature extraction and selection based on the
scalable hypothesis (TSFRESH algorithm) (Christ
et al., 2018) is completely applicable to the time series
analyses of a lathes’ three-phase motor, considering
the satisfactory outcomes in our research.

• The development of a lathe’s cutting tool diagnosis
methodology based on the TSFRESH, SODA and
Machine Learning Techniques is justified by the ben-
efits of analysing the time series of lathes’ motor,
such as the capacity to manage uncertainties. The
numerical examples in this paper exhibit that the
proposed autonomous model provides high-quality
classification results and has notable computational
efficiency.

This paper is organised as follows: Section 2 states the
problem formulation. Section 3 discusses the methods
adopted in the proposed model. After that, Section 4
explains the numerical results. Finally, Section 5 closes the
work and presents the conclusions concerning the stated
propositions.

2. PROBLEM FORMULATION

Considering the attention gained by the machining cutting
power in the literature, electric voltage and current of the
lathe’s motor were elected as variables of the time series
analysed in this work. The adoption of these quantities in
monitoring systems is supported by the implication that
more energy is consumed when machining with a worn
tool, than with a new tool (Shao et al., 2004).

The flank wear occurs when the portion of the tool in
contact with the workpiece is eroded by their friction. The
tool’s flank wear evolution produces an enlargement of the
contact area at the tool-workpiece interface. Consequently,
the increase in power consumption is likely to be associated
with the intensification of friction and machining forces.
Furthermore, this work applies statistical and multivariate
analysis tools, such as Principal Component Analysis
(PCA) and TSFREH to select pertinent features by the
means of reducing the computational complexity of the
classification task.

The data-set used in this work was acquired from oper-
ations of a real machining system at the UFJF’s Man-
ufacturing Processes Laboratory. The acquisition process
consisted of recording consecutive machining operations,



starting with an adequate state tool and stopping when
the cutting tool reaches an inadequate state. These two
states were established considering ISO 3685/1993. Ac-
knowledging the technical guidelines presented in ISO
3685/1993, the machining conditions defined were: depth
of cut of 0.5mm, spindle speed of 755rpm and feed rate
of 0.156mm/rev. The turning process was performed in a
Timemaster Tb 350 universal lathe exposed presented in
Figure 1.

Figure 1. Timemaster Tb 350 universal lathe

The lathe was equipped with a WEG’s cfw500 frequency
inverter and using a set of interchangeable carbide in-
serts.The operations data were collected by an acquisition
system using Fluke 125 Industrial Scopemeter connected
to the lathe’s three-phase motor.

3. THE LATHE’S CUTTING TOOL PROGNOSTIC
MODE

The structure of the model presented in this work is
exhibited in Figure 2:

Figure 2. Proposed Model

The data set R consist of 185 time series recorded with
Fluke 125 Industrial Scopemeterof in an acquisition rate

of 100 measurements per second. Each time serie has 250
measurements of voltage and curent of the lathe’s motor.
Firstly, R is presented to the pre-processing stage, which
commences with the normalisation of the time-series, rep-
resented by F in Figure 2. After the pre-processing stage,
the data are presented to the Feature extracting/selecting
stage and then to the data partitioning stage. Finally, the
data are presented to the Classification stage in which a
cutting tool can be classified as an adequate state tool or
inadequate state tool.This classification output is repre-
sented by S in Figure 2.

3.1 Pre-Processing

Accounting for the magnitude discrepancy between our
variables, the time series were normalised following the
equation 1.

xnorm =
x− xmim

xmax − xmin
− 1 (1)

3.2 Feature Extraction on basis of Scalable Hypothesis
tests (TSFRESH)

TSFRESH is a python package used to to extract char-
acteristics from time series. It automatically calculates a
large number of time series characteristics, the so called
features. Further the package contains methods to evaluate
the explaining power and importance of such character-
istics for regression or classification tasks. (Christ et al.,
2018)

The relevancy of a featureX (Radivojac et al., 2004; Christ
et al., 2018) to a target Y is calculated as the difference
between their conditional distribution and expressed as:
fx|y=y1 and fx|y=y2 when Y = y1 and Y = y2 respectively.
Therefore, feature X is relevant to estimate Y if, and only
if,

∃y1, y2 with fy(y1), fy(y2) > 0 : fx|y=y1 6= fx|y=y2 (2)

Equation 2 also corresponds to X and Y being statistically
dependants. Feature X is irrelevant when:

∃y1, y2 with fy(y1), fy(y2) > 0 : fx|y=y1 = fx|y=y2 (3)

and it also means that X and Y are statistically indepen-
dents.

The relevancy can also be investigated through hypoth-
esis test (Christ et al., 2016). To the extracted features
X1, X2, ..., Xn, a hypothesis test is applied independently,
in order to investigate the following hypothesis:

Hi
0 = Xi is not relevant to Y

and Hi
1 = Xi is relevant to Y (4)

The result of each test is called p-value and corresponds
to the probability of obtaining a measure of equality or
inequality between the hypothesis test and the observed
in the data based on the null hypothesis. In this work, the
p-value measures if the analysed feature is relevant or not
and small p-values show more relevant features.

The test applied in this paper is the Kolmogorov-Smirnov
(KS) (Wilcox, 2005), considering the following hypotheses:



Hi
0 =

{
fXi|Y=y1 = fXi|Y=y2

}
Hi

1 =
{
fXi|Y=y1 6= fXi|Y=y2

} (5)

where fXi|Y=y1 is the cumulative distribution function
(CDF) of feature X considering the healthy operation
and fXi|Y=y2 is the CDF of feature Xi considering faulty
operations.

The KS test considers the maximum difference between
the CDF obtained from the features, a shown in Equation
(6).

D = sup |fXi|Y=y1 − fXi|Y=y2 |. (6)

Therefore, the null hypothesis Hi
o is rejected if D > Dn,a,

in which Dn,a is a critical value that can be found in
Appendix A.

The presence of irrelevant features can yield to a false-
positive result. In addition, when multiple hypothesis and
features are used, these errors are accumulated (Curran-
Everett, 2000). Authors in (Benjamini and Yekutieli, 2001)
propose to reject the hypothesis based on the p-values
while controlling the False Discovery Rate (FDR) (Ben-
jamini and Hochberg, 1995)

FDR =
R

V
(7)

where, R is the total number of rejected hypothesis and V
the number of true null hypothesis rejected. This approach
seeks the first intersection of the p-values p(i) and the
following linear sequence:

ri =
i · FDA

n
∑i
k=1 k

−1
(8)

where n is the total number of hypothesis.

3.3 Principal Component Analysis

Given a set of variables X = xi, with i = 1, 2, 3, ..., n, it is
possible to investigate a smaller set of variables, within X,
in which their linear combination αkX preserves a major
part of the information available in X with maximum
variance. These variable are called principal components
and the first of the principal components is zi, known for
comprising the major variability of the data:

z1 = α11x1 + α12x2 + ...+ α1nxn =

n∑
k=1

α1kxk (9)

The other components are calculated analogously and the
jth principal component must not be correlated to the
previous components (Jolliffe, 1986):

zj = αj1xj + αj2xj + ...+ αjnxn =

n∑
k=1

αjkxk (10)

3.4 Self-Organised Direction Aware Data Partitioning
Algorithm(SODA)

In order to express this method, we must consider data
space Rm and assume a data set as {x1, x2, x3...} , where
xi = [xi,1, xi,2, ..., xi,m]T ∈ Rm is a m dimensional vector,
i = 1, 2, 3, ...; m is the dimensionality; subscript i(i =
1, 2, 3, ...) indicate the time instances at which the ith

data sample arrives. Therefore, within the observed data
set at the nth time instance denoted by {x1, x2, ..., xn} ,

we also consider the set of sorted unique values of data
samples {u1, u2, ..., unu

} (ui = [ui,1, ui,2, ..., ui,m]T ∈ Rm)
from {x1, x2, ..., xn} and the corresponding normalised
numbers of repeats {f1, f2, ..., fn}, where nu(1 < nu ≤ n)
is the number of unique data samples and

∑nu

i=1 fi = 1.
The following derivations are conducted at the nth time
instance as a default unless there is a specific declaration
(Gu et al., 2018).

Distance/Dissimilarity Components in SODA The
SODA approach, in this work, employs (Gu et al., 2018):

i a magnitude component dM (xi, xj) based on the
Canberra distance metric;

ii a angular dA(xi, xj) component based on the cosine
similarity;

EDA Operators The recently introduced Empirical Data
Analytics (EDA) (Gu et al., 2018) is an alternative
methodology for machine learning which is entirely based
on actual empirically observed data samples (Angelov,
2014; Angelov et al., 2017a,b).

The EDA operators include(Gu et al., 2018):

i. Cumulative ProximityGu et al. (2018):
The cumulative proximity, π of xi(i = 1, 2, ..., n) is

defined as (Angelov, 2014; Angelov et al., 2017b):

πn(xi) =

n∑
j=1

d2(xi, xj) (11)

where d(xi, xj) denotes the distance/dissimilarity
between xi and xj .

ii. Local Density Gu et al. (2018):
Local density D is defined as the inverse of the

normalised cumulative proximity and it directly indi-
cates the main pattern of the observed data. The local
density, D of i xi(i = 1, 2, ..., n;nu > 1) is defined as
follows (Angelov et al., 2017a,b):

Dn(xi) =

∑n
j=1 πn(xj)

2nπn(xi)
(12)

In the proposed SODA data partitioning approach,
since both components, the magnitude (metric) and
the angular one are equally important, the local den-
sity of xi(i = 1, 2, ..., n;nu > 1) is defined as the sum
of the metric/Canberra-based local density (DM

n (xi))
and the angular-based local density (DA

n (xi)).
iii. The Global Density Gu et al. (2018):

The global density is defined for unique data sam-
ples together with their corresponding numbers of re-
peats in the data set/stream. It has the ability of pro-
viding multi-modal distributions automatically with-
out the need of user decisions, search/optimisation
procedures or clustering algorithms. The global den-
sity of a particular unique data sample, ui(i =
1, 2, ..., nu;nu > 1) is expressed as the product of its
local density and its number of repeats considered as
a weighting factor (Angelov et al., 2017b) as follows:

DG
n (ui) = fiDn(ui) (13)

As we can see from the above equations, the main
EDA operators: cumulative proximity (π ), local den-
sity (D) and global density (DG) can be updated
recursively, which shows that the proposed SODA al-



gorithm is suitable for online processing of streaming
data.

SODA Algorithm for Data Partitioning The main steps
of the SODA algorithm include: firstly, form a number of
DA planes from the observed data samples using both, the
magnitude-based and angular-based densities; secondly,
identify focal points, using the granularity γ of the clus-
tering results and relates to the Chebyshev inequality
(Angelov et al., 2017b), we used γ = 2.0 in this work;
finally, use the focal points to partition the data space
into data-clouds. The detailed procedure of the proposed
SODA partitioning algorithm is presented by (Gu et al.,
2018).

Grouping algorithm This algorithm gathers all data-
clouds that contain data pertaining to the same group.
The groups are adequate condition tool data (Index = 0)
and inadequate condition tool data (Index = 1), as pre-
sented in Section 1. Accordingly, the grouping algorithm
associates each data sample to a label that is used in the
classification module. The output provided by SODA is a
vector composed by the indexes that indicate from which
data-cloud each data sample belongs. Taking the number
of data samples into consideration for each data-cloud, the
percentage of data relating to each group (0 or 1) was
determined. Hence, if a data-cloud contains more than 67%
of its data relating to one of the groups, the algorithm
assigns the group’s index as a label to each data sample
of the data-cloud. The data-clouds with less than 67% of
data pertaining to one of the groups was disregarded, in
order to avoid misleading classifications.

4. EXPERIMENTAL RESULTS

In this Section, all the algorithms were performed on a
computer with Intel Core i5-7200U processor with clock
frequency 3.10 GHz and 8 GB of RAM. The acquired data
set is composed of 185 normalised time series of voltage
and current. Additionally, 100 of those time series were
recorded using an adequate condition tool and the other
85 used the inadequate condition tool. Moreover, different
levels of additive white Gaussian noise (AWGN) were
applied in the original data set in order to challenge the
proposed model. Aiming to represent possible variations
of the machine tool defects, three different intensities of
AWGN were applied in all data set, resulting in signals
with Signal Noise Ratio (SNR) = 1, 3 and 5dB, as pre-
sented in Figure 3 and 4. After evaluating the performance
with those values, SNR = 3dB was selected and used as a
strategy to corrupt the original data set. The performance
gains in terms of accuracy are similar for other values of
SNR.

4.1 Classification

The first step of our classification problem was to extract
and select the features to be used as inputs of the classifiers
listed in Table 1. The TSFRESH algorithm was applied in
this task, extracting and selecting 65 features for each time
serie. Subsequently, the PCA method was applied to the
TSFRESH output data aiming to reduce its dimensional-
ity. Owing to the fact that using more components would

(a) Original Time Serie.

(b) Time Serie corrupted with SNR = 1 dB.

Figure 3. Demonstrative image considering a Current Time
Serie, from an appropriate condition tool

(a) Time Serie corrupted with SNR = 3 dB.

(b) Time Serie corrupted with SNR = 5 dB.

Figure 4. Demonstrative image considering a Current Time
Serie, from an appropriate condition tool

not increase significantly the representation of the previous
data, the first 3 PC’s were kept.

The data partitioning, performed by the SODA algorithm
(Gu et al., 2018) has formed 4 data-clouds. The group-
ing algorithm divided these data-clouds into 2 groups as
it follows: adequate condition tools’ clouds, inadequate
condition tools’ clouds. Accordingly, the data samples,
contained in each of the grouped data-clouds, was labelled
as discussed in Section 2. Therefore, the labelled data
samples were randomly divided using the proportion of



60% for the training phase and 40% for the testing phase.
The classification was executed 33 times and the result
obtained by each classifier is presented in Table 1.

Table 1. Classification Accuracy

Classifier Average Standard Deviation

Nearest Neighbors 91.89 0.0
Radial-basis function kernel SVM 91.89 0.0

Radial-basis function kernel Gaussian Process 91.89 0.0
Decision Tree 91.89 0.0

Random Forest 90,50 1.84
MLP Neural Network 91.89 0.00

AdaBoost 91.89 0.0
Gaussian Naive Bayes 91.89 0.0

Quadratic Discriminant Analysis 91.89 0.0

The classifiers used in this work were implemented
trough scikit-learn (Pedregosa et al., 2011), an open-
source machine learning library in python. Although
other configurations were studied, the maximum
accuracy of the classifiers was accomplished with
the configurations exhibited in the example that follows
https://scikit-learn.org/stable/auto_examples/
classification/plot_classifier_comparison.html,
except the Random Forest, the MLP methods and the
Decision Tree. In the Decision tree and in the Random
Forest methods, the nodes are expanded until all leaves
are pure or until all leaves contain less than 2 samples,
since the maximum depth of the tree was not defined. In
the MLP the maximum iterations number was set to 200.

5. CONCLUSION

This paper proposed an autonomous approach for clas-
sifying cutting tool’s wear state based on TSFRESH,
SODA and Machine Learning Techniques. The model is
suitable for identifying the data patterns that separate
the adequate condition from the inadequate condition of
cutting tools’ wear, obtaining satisfactory performances
in all cases and allowing to avoid faulty pieces fabrica-
tion. The feature extraction and selection provided by
TSFRESH algorithm is completely applicable to the time
series analyses of a lathes’ three-phase motor, considering
the satisfactory outcomes in our research.

Moreover, SODA algorithm considers both spatial and
angular divergence, resulting in a more accurate similar-
ity recognition among the data than traditional cluster-
ing/partitioning methods. Additionally, it presents a great
efficiency when applied to large-scale and high-dimensional
situations and do not demands prior knowledge nor hand-
crafting to operate it. Hence, minimising human inter-
ference in the application of the proposed model and
granting a high computational efficiency, which supports
the machine learning techniques in the classification task.
Owing to its effectiveness when adapting to various types
of data, along with its capability of processing streaming
data, an indication for future works is the development
of an online extension of the proposed model using SODA
algorithm. Furthermore, we will apply the model discussed
in this work in other engineering problems (i.e rotating
machines), preventing fault occurrences and classifying
them in order to help professionals not only in the de-
cision making processes but also to devise strategies in the
industry.
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Appendix A. CRITICAL VALUES FOR THE
KOMOLGOROV-SMIRNOV TEST

Table A.1. Critical values Dn,α of KS test for
α = 0.05 e α = 0.01.

n 0.05 0.01 n 0.05 0.01 n 0.05 0.01 n 0.05 0.01

1 0.9750 0.9950 26 0.2591 0.3106 51 0.1866 0.2239 76 0.1534 0.1841
2 0.8419 0.9293 27 0.2544 0.3050 52 0.1848 0.2217 77 0.1524 0.1829
3 0.7076 0.8290 28 0.2499 0.2997 53 0.1831 0.2197 78 0.1515 0.1817
4 0.6239 0.7342 29 0.2457 0.2947 54 0.1814 0.2177 79 0.1505 0.1806
5 0.5633 0.6685 30 0.2417 0.2899 55 0.1798 0.2157 80 0.1496 0.1795
6 0.5193 0.6166 31 0.2379 0.2853 56 0.1782 0.2138 81 0.1487 0.1784
7 0.4834 0.5758 32 0.2342 0.2809 57 0.1767 0.2120 82 0.1478 0.1773
8 0.4543 0.5418 33 0.2308 0.2768 58 0.1752 0.2102 83 0.1469 0.1763
9 0.4300 0.5133 34 0.2274 0.2728 59 0.1737 0.2084 84 0.1460 0.1752
10 0.4092 0.4889 35 0.2242 0.2690 60 0.1723 0.2067 85 0.1452 0.1742
11 0.3912 0.4677 36 0.2212 0.2653 61 0.1709 0.2051 86 0.1444 0.1732
12 0.3754 0.4490 37 0.2183 0.2618 62 0.1696 0.2034 87 0.1435 0.1722
13 0.3614 0.4325 38 0.2154 0.2584 63 0.1682 0.2018 88 0.1427 0.1713
14 0.3489 0.4176 39 0.2127 0.2552 64 0.1669 0.2003 89 0.1419 0.1703
15 0.3376 0.4042 40 0.2101 0.2521 65 0.1657 0.1988 90 0.1412 0.1694
16 0.3273 0.3920 41 0.2076 0.2490 66 0.1644 0.1973 91 0.1404 0.1685
17 0.3180 0.3809 42 0.2052 0.2461 67 0.1632 0.1958 92 0.1396 0.1676
18 0.3094 0.3706 43 0.2028 0.2433 68 0.1620 0.1944 93 0.1389 0.1667
19 0.3014 0.3612 44 0.2006 0.2406 69 0.1609 0.1930 94 0.1382 0.1658
20 0.2941 0.3524 45 0.1984 0.2380 70 0.1597 0.1917 95 0.1375 0.1649
21 0.2872 0.3443 46 0.1963 0.2354 71 0.1586 0.1903 96 0.1368 0.1641
22 0.2809 0.3367 47 0.1942 0.2330 72 0.1576 0.1890 97 0.1361 0.1632
23 0.2749 0.3295 48 0.1922 0.2306 73 0.1565 0.1878 98 0.1354 0.1624
24 0.2693 0.3229 49 0.1903 0.2283 74 0.1554 0.1865 99 0.1347 0.1616
25 0.2640 0.3166 50 0.1884 0.2260 75 0.1544 0.1853 100 0.1340 0.1608
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