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Abstract: A comparative analysis of machine learning techniques for rotating machine faults
diagnosis based on vibration spectra images is presented. The feature extraction of different types
of faults, such as unbalance, misalignment, shaft crack, rotor-stator rub, and hydrodynamic
instability, is performed by processing the spectral image of vibration orbits acquired during
the rotating machine run-up. The classifiers are trained with simulation data and tested with
both simulation and experimental data. The experimental data are obtained from measurements
performed on an rotor-disk system test rig supported on hydrodynamic bearings. To generate the
simulated data, a numerical model of the rotating system is developed using the Finite Element
Method (FEM). Deep learning, ensemble and traditional classification methods are evaluated.
The ability of the methods to generalize the image classification is evaluated based on their
performance in classifying experimental test patterns that were not used during training. The
obtained results suggest that despite considerable computational cost, the method based on
Convolutional Neural Network (CNN) presents the best performance for classification of faults

based on spectral images.
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1. INTRODUCTION

Rotating machines such as pumps, motors and electric
generators, turbines, compressors, and industrial fans are
widely used in the industry. In order to reduce the risk
of damage and possible failure of such equipment, fault
diagnostic methods are frequently applied. Generally, fault
diagnosis consists of two steps: feature extraction and fault
classification (Liu et al., 2018; Jardine et al., 2006).

As an abnormal condition of rotating machinery is most
frequently accompanied by changes in vibration patterns,
faults can be detected by extracting the features of vibra-
tion signals. In the literature, traditional feature extrac-
tion methods include time domain, frequency domain, and
time-frequency domain methods (Bin et al., 2012; Chandra
and Sekhar, 2016; Li et al., 2015).

Time domain methods deal directly with the waveform
by applying filters or extracting features that include the
mean, standard deviation, Root Mean Square (RMS), crest
factor, and kurtosis factor (Jardine et al., 2006).

In the frequency domain, the most traditional and widely
used method is the Fast Fourier Transform (FFT). Other
important method is the spectrum of orbits formed by vi-
bration signals measured in two mutually orthogonal direc-
tions, known as Full Spectrum (Goldman and Muszynska,
1999; Southwick, 1994; Laws, 1998; Southwick, 1993).

Time-frequency methods are combinations of time and
frequency domain methods. This category of method is
used to analyze signals from non-stationary waveforms.
Short Time Fourier Transforms (STFT) and the Wavelet
Transform (WT) are among the most popular methods.
Comparative studies can be found in Chandra and Sekhar
(2016).

As the Full Spectrum is recognized to provide more in-
formation than traditional frequency spectrum, it allows
to detect the symptoms of some types of failure. It can
be used for steady state analysis or for transient analysis
by means of the Full Spectrum Cascade plot, formed by a
series of time-indexed spectra obtained during the machine
run-up or run-down (Muszynska, 2005).

Investigation of dynamic behavior and fault diagnosis
using the transient response of a machine has attracted
interest of many researchers due to the fact that it provides
superior performance when compared to the use of steady
state response (Chandra and Sekhar, 2016; Wei et al.,
2019).

Recently, researchers have employed image processing
methods to perform automatic feature extraction and fault
diagnosis in a two-dimensional space. According to Cia-
battoni et al. (2018); Lu et al. (2016); Amar et al. (2015);
Jeong et al. (2016), two-dimensional pattern classification
techniques have proven to be a powerful tool for rotary
machine fault diagnosis.
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Classification methods, such as Convolutional Neural Net-
work (CNN), Support Vector Machine (SVM), k-Nearest
Neighbors (kNN), and Multiple Classifier System (MCS)
or ensemble, have been proposed for image classification.
Some classification approaches have focused on designing
an effective dimension reduction technique, such as Princi-
pal Component Analysis (PCA), Independent Component
Analysis (ICA), and autoencoder (AE) (Ng, 2017; Lin
et al., 2013).

The topic of the present study is the identification of
unbalance, misalignment, transverse shaft crack, rotor-
stator rub, and hydrodynamic instability faults in rotating
machinery, based on vibration responses. The fault fea-
ture extraction is performed by processing the spectral
image of orbits in run-up vibration response. Promising
fault classification methods based in image processing
are evaluated. The modeling of an experimental rotor-
bearing system with faults is performed using Finite Ele-
ment Method (FEM). Fault modeling allows to study the
dynamic behavior of the rotary system under controlled
parameters such as location and magnitude of faults. In
addition, this enables to avoid exhaustive work to obtain
the amount of data needed to train the classifiers. The
classifiers are trained with data obtained from computer-
simulated data and tested with both computational and
experimental data sets. Thus, the generalization capability
of the classifiers can be well investigated.

In Section 3, the FEM of the rotor-bearing system with
faults is presented. The main theoretical foundations for
fault feature extraction that underlie this work are pre-
sented in Section 4. In Section 5, simulation and experi-
mental fault image processing, and classifier performance,
are presented followed by conclusions in Section 6.

2. PROPOSED METHOD

The proposed fault diagnosis procedure is showed schemat-
ically in Fig.1. It comprises five major steps:

e Acquisition of transverse vibration signals in two
orthogonal directions and the corresponding rotating
speed, during run-up of the machine.

e Computation of the Full Spectrum Cascade plot of
the vibration signals.

e Image construction with normalization and reduction
of image resolution. Maximum filter is applied to
reduce the resolution to 30x30 pixels.

e Dimension reduction using PCA or AE required for
classic classification methods. kNN, SVM and Ran-
dom Forest (RF).

e Fault classification. CNN, kNN, Random Subspace
ensemble for kNN (RS kNN), SVM, and RF classi-
fication methods are proposed for this research work.

3. MODELING OF ROTATING SYSTEM WITH
FAULTS

A typical rotating system consists of a flexible shaft
supported by bearings. Disks are disposed along the shaft.
For the FEM modeling, the formulation presented in
Friswell et al. (2010) is followed. Timoshenko’s beam
element theory is used to model the shaft, including the
effects of transverse shear deformation, rotary inertia and
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Figure 1. The proposed fault diagnosis scheme.

gyroscopic moments. The disks are assumed to be rigid,
and the bearings are of the hydrodynamic type, which
means that forces are transmitted between the fixed and
rotating parts of the bearing through a an oil film.

The global finite element model of the rotor-bearing sys-
tem with the faults represented by forces exercised on the
rotor is written as follows Friswell et al. (2010); Lalanne
and Ferraris (2001):

[g} = {—M‘lgi —M—l(CI+ QG)} [3] * [Mqlf}(l)

£f=F9 %4 £2 4™ 47 4 £°, (2)

where,

In Eq. q,q,q denote, respectively, the vectors of nodal
displacements and rotations, and corresponding velocities
and accelerations. In addition, (1), M is the global mass
matrix, C is the global damping matrix, G is the global
gyroscopic matrix, K is the global stiffness matrix and €2 is
the rotational speed. In Eq. 2, the vector f is composed of
the following forces applied to the shaft: gravitational force
f9; unbalance force f*; forces applied by the bearings f®
(Adiletta et al., 1996); misalignment force f™ (Sekhar and
Prabhu, 1995); rub force f (Han et al., 2008); and shaft
crack force f¢ (Papadopoulos and Dimarogonas, 1987;
Mayes and Davies, 1984; Sekhar and Prabhu, 1992).

4. FEATURE EXTRACTION BASED ON ORBIT
SPECTRUM

The vibration orbit at a given point of the rotor-bearing
can be expressed as the vector sum of the harmonic
components of vibration in the x and y directions in the
complex plane:



c(t) = =(t) + jy(1), 3)

where j = v/—1.

The full spectrum is calculated by the discrete Fourier
transform of the vibration orbit. The time signals ap-
pearing in (3) are first converted into their discrete-time
representations x(n), y(n), and the complex coefficients
which contains the amplitude and phase of the orbit vector
is computed as follows:
N-1
e(k) = D _la(n)e T 4 jy(n)e I "H),
n=0

where, £k =0,...,N — 1.

(4)

Fig. 2 shows a typical Full Spectrum Cascade plot obtained
from a run-up rotating machine. This plot is obtained
adding rotational speed axis to the Full Spectrum plot.
This third dimension, together with frequency and vibra-
tion amplitude dimensions, is obtained positioning the Full
Spectrum’s in the order of increasing rotational speed.
Each baseline of plotted Full Spectrum corresponds to the
rotational speed. Forward (1X and 2X) and reverse (-1X
and -2X) components are shown, where, 1X and 2X are
forward components with the same frequency and with
the double frequency of rotation speed, respectively.
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Figure 2. Typical full spectrum cascade plot.

5. RESULTS
5.1 Computational simulation

Computational simulations of a rotor-bearing system were
performed on a finite element model intended to represent
the test bench depicted in Fig. 3. The rotor system with a
flexible shaft has one disk and is supported by two identical
hydrodynamic bearings. Cylinder sleeves aligned with the
vibration sensors were modeled as small disks. The sleeves
were installed on the experimental rotor shaft in order
to reduce measurement noise caused by electromagnetic
interference between the sensors. The geometry and details
of the finite element model are shown in Fig. 4, while the
properties of the rotor-bearing system are given in Table
1. Vibration response of the shaft is acquired at nodes 5
and 17 in the horizontal and vertical directions.

In order to get training data that broadly span the problem
data space, random variations with uniform distribution of

Figure 3. Experimental test bench. (a) Rotor-bearing test
bench. (b) Rotor-stator rub setup. (¢) Crack shaft
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Figure 4. Finite element model and geometry of rotor-
bearing system.

the some model parameters were performed. The chosen
model parameters and distribution limits with respect to
the nominal values were defined for each type of fault. In
addition, the simulations distributed in the same quantity
at nodes 7, 9, 11, 13 and 15. The full spectrum cascade
plots for each fault type. which are described next, are
shown in Figs. 5 to 9.

Unbalance A disk unbalance mass of 1.02 g, located
5cm from the centerline of the rotor shaft, was considered
for unbalance fault simulation with the following range of
random variations: unbalance mass from -35% to +5%;
damping factor from -30% to +30%; bearing clearance
from -20% to +20%; disk thickness from -20% to +20%.

Misalignment  For the rotor-bearing system with angu-
lar misalignment, the following variations are considered:
unbalance mass from -35% to +5%; damping factor from
-30% to +30%; bearing clearance from -20% to +20%; disk
thickness from -20% to +20%; and angular misalignment
from 0.006° to 0.02°.



Table 1. Properties of the rotor-bearing system

Parameter Value

Shaft

Length 091 m
Diameter 15.83x1073 m
Density 7800 kg/m3
Modulus of elasticity 2.11x10* N/m?2
Poisson’s coefficient 0.3

Damping factor 8x10~°

Disk

External diameter 0.15 m
Internal diameter 15.83x1073 m
Width 14.0x1073 m
Density 2697 kg/m3
Sleeve

External diameter 32x1073 m
Internal diameter 15.83%x1073 m
Width 43.5x1073 m
Density 7800 kg/m3
Hydrodynamic Bearing

Length (L) 6.5x1073 m
Diameter (D) 15.96x1073 m
Clearance 64.0x10~% m
Dynamic viscosity 0.1398 Pa s

¢/

Figure 5. Image of a typical simulated full spectrum
cascade plot for the rotating machine with unbalance.

*

Figure 6. Image of a typical simulated full spectrum cas-
cade plot for the rotating machine with misalignment.

Rubbing For the rotor-bearing system subjected to rotor-
stator rubbing, the following variations were considered:
stator clearance from 30% to 50% of the difference between
final and maximum values of vibration in x axis, at node
11; unbalance from -5% to +5%; damping factor from -
30% to +30%; bearing clearance from -20% to +20%; and
disk thickness from -20% to +20%.
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Figure 7. Image of a typical simulated full spectrum
cascade plot for the rotating machine with rotor-
stator rubbing.

Shaft crack In this case, the following variations were
considered: unbalance from -35% to +5%; damping factor
from -30% to +30%; bearing clearance from -20% to
+20%; disk thickness from -20% to +20%; and crack from
50% to 65% of the shaft radius.

Figure 8. Image of a typical simulated full spectrum
cascade plot for the rotating machine with a shaft
crack.

Hydrodynamic instability  In this simulation, the rotor
weight is removed and dynamic oil viscosity reduced to
0,0093 Pa.s; variation of unbalance simulation from -
32% to -18%; damping factor from -5% to +5%; bearing
clearance from -5% to 5%; and disk thickness from -5% to
+5%.
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Figure 9. Image of a typical simulated full spectrum cas-
cade plot for the rotating machine presenting hydro-
dynamic instability.



As can be seen in Fig. 6, misalignment lead to increase
of both forward and reverse components (2X, 3X, 4X, -
2X, -3X and -4X), whereas the shaft crack, showed in
Fig. 8, promotes predominantly increase of the forward
components (2X and 3X). The significant influence of
rubbing is observed with increases of reverse component
(-1X) at critical speed, as presented in Fig. 7. In Fig. 9,
hydrodynamic instability is evidenced by the presence of
forward subsynchronous components (about 0.48X). In the
presence of unbalance (Fig. 5), predominantly only forward
1X component is increased.

5.2 FExperimental tests

As in Section 5.1, the experimental measurements were
acquired at positions corresponding to nodes 7, 9, 11, 13
and 15. An image of the full spectrum obtained for the
rotating machine under each fault type is shown in Figs.
10 to 14.

Unbalance In addition to changing the position of the
disk, some experiments were performed with residual un-
balance while others were conducted with a mass of 1.02
g, located 5 cm from the centerline of the rotor shaft.

»

Figure 10. Image of an experimental full spectrum cascade
plot for the rotating machine with unbalance.

Misalignment  The value of the angular misalignment is
between 0.15° and 0.4°.

0.1 oz 0.3 0.4 0.5

0.6 07 08 08 1

Figure 11. Image of an experimental full spectrum cas-
cade plot for the rotating machine presenting with
misalignment.

Rubbing  Stator clearance is adjusted for rubbing when
rotor rotation passes through critical speed.

Figure 12. Image of an experimental full spectrum cascade
plot for the rotating machine presenting rotor-stator
rubbing.

Shaft crack  Using two shafts connected by flanges, the
experiments were performed by adjusting the tightness
of two adjacent flange screws. Part of the experiments
were performed with residual unbalance and part with the
additional unbalance mass installed on the disk at different
angular positions.
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Figure 13. Image of an experimental full spectrum cascade
plot for the rotating machine presenting a shaft crack.

Hydrodynamic Instability = The experiments were per-
formed with a bearing with longer length (length/diameter

ratio = 1).
n
|
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Figure 14. Image of an experimental full spectrum cascade
plot for the rotating machine with hydrodynamic
instability.



5.8 Classification performance

Table 2 describes all of the images obtained from numerical
simulations and experimental tests. Out of 1250 simulation
images, 1125 were used for training and 125 for fault
classification test. k-fold cross-validation is performed with
k=10. In addition, all the 150 experimental images were
used for test.

Table 2. Number of simulated and experimen-
tal full spectrum images.

Simulated Image Experimental
(10-Fold Cross-Validation) Image Total
Train Test Test

1125 125 150 1400

The means (u) of the accuracies and the computational
costs of the fault classifications methods with their respec-
tives standard deviations (o) are presented in Table 3. The
entire development was performed with a computer code
written in environment MATLAB, version R2018b, run on
microcomputer having an Intel Core i7 processor.

The best configuration found for each classifier proposed
in this work are:

e CNN: first convolution layer: 32 filters 3x 3, activation
function ReLU, maxpooling 2 x 2, stride 2; second
convolution layer: 56 filters 4 x 4, activation function
ReLU, maxpooling 3 x 3, stride 1; fully connected
layer: 5 neurons; dropout: 0.5.

e RS kNN: number of subspaces: 450; number of esti-
mators: 30.

e PCA kNN: principal components: 12; distance mea-
sure: cosine; number of neighbors: 1.

e PCA SVM: principal components: 19; Kernel func-
tion: gaussian; C: 0.7; v: 1.

e AE SVM: hidden layer size: 150; regularization: 1
(sparsity) and 0.001 (L2 weight); proportion (spar-
sity): 0.3; Kernel function: RBF.

e PCA RF: principal components: 19; number of esti-
mators: 40, meta-algorithm: bagging.

Table 3. Fault Classification Results

Experi-
Simulation Data mental
Data
Method Train Test Test Test
Time(s) Time(s) Acc(%) Acc(%)
" o n o o o o o
CNN 77.5 1.8 0.16 0.01 92.7 2.0 88.7 3.6

RS kNN 0.59 | 0.07 | 0.03 | 0.01 | 91.6 | 3.1 | 66.2 | 4.1
PCA kNN 0.57 | 0.60 | 0.03 | 0.01 | 85.8 | 4.2 | 75.5 | 2.8
PCA SVM | 0.72 | 0.07 | 0.04 | 0.01 788 | 4.0 | 70.3 | 1.5
AE SVM 97.5 0.6 0.03 | 0.01 73.0 | 25 | 71.9 | 2.3
PCA RF 1.12 | 0.10 | 0.06 | 0.01 | 93.0 | 1.7 | 66.0 | 6.2

The results of Table 3 showed that the CNN classification
method presented the best performance, reaching 88.7%
test accuracy for the experimental data set. Despite the
PCA with Random Forest method reached 93.0% accuracy
in the test with simulation data, it reached only 66.0% in
the test with experimental data, indicating that has been
over-fitted, this method showed poorly performance than
other proposed classifiers.

As the execution time can measure the computational
cost of an algorithm (Ascencio and de Aratjo, 2010),

the execution times of the proposed methods with the
simulation data set showed that the AE SVM classification
method presented highest computational cost, with an
execution time of 97.5 s for training, followed by CNN with
77.5 s. On the other hand, the PCA kNN classification
method showed the lowest computational cost, consuming
only 0.57 s of training execution time.

Confusion matrices were created (Tables 4 and 5) to check
which classes or faults were confused in the respective
classification methods. The matrix columns indicate the
true classes while the lines indicate the estimated classes.
Each element of the matrix corresponds to the number of
images of a true class that was assigned to the estimated
class. At the bottom of the matrix is the result of calcu-
lating the effectiveness for the classification of each fault,
this metric is generally known as Recall (Sokolova and
Lapalme, 2009). An acronym was assigned to each fault,
namely: (SC) shaft crack, (HI) hydrodynamic instability,
(MA) misalignment, (RU) rubbing and (UB) unbalance.

Table 4. Confusion matrix of the experimental
test with CNN (88.7% accuracy).

True Values
SC HI MA RU UB
SC 294 29 45 0 49
HI 0 255 4 0 0
MA 6 0 232 0 0
RU 0 12 18 300 1
UB 0 4 1 0 250
98% 8% 7% 100% 83%

Table 5. Confusion matrix of the experimental
test with PCA kNN (75.5% accuracy).

True Values
SC HI MA RU UB
SC 248 40 82 32 72
HI 0 260 0 0 0
MA 20 0 130 0 1
RU 0 0 43 268 0
UB 32 0 45 0 227
83% 8% 43% 89% 76%

The confusion matrices obtained with the experimental
data set showed that misalignment was one of the faults
with the highest number of false negatives, with the predic-
tion rates 77% for CNN and 43% for PCA kNN, indicating
low efficiency of the classifiers for the identification of this
type of fault. Based on these results, it can be seen that
among the models of the simulated faults, misalignment
was the one that presented the lowest fidelity in relation
to the respective fault tested at the experimental bench,
since the training data did not cover all the data space of
the respective experiment.

6. CONCLUSIONS

Considering that spectral analysis of full spectrum cascade
plots is a powerful method used to identify the condition
of the rotating machine, an autonomous diagnostic system
based in spectral image extracted from these plots was
developed to identify a group of faults of interest.

According to the results, the classification method based
in CNN presented greater generalization capacity than



the other proposed methods, since this method presented
higher accuracy rate in tests with experimental data.

The lowest computational costs were found in the clas-
sifiers combined with the reduction of dimensionality by
the PCA method. A relevant highlight is the PCA kNN
classifier, which, in spite of showing performance inferior
to CNN, presented a satisfactory performance at the lowest
computational cost.
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