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Abstract: The constant evolution of resources in computational processing and machine
learning algorithms, combined with the increasing complexity of embedded systems, made
the hardware implementation of machine learning models more viable. This paper proposes
a methodology for online implementation of a support vector machine classifier through the
development of a simple, concise, and easily adapted algorithm for data classification. The
system was validated through the development of an application that classifies disturbances in
a power transformer, followed by a comparison with the results obtained with the Library for
Support Vector Machines (LIBSVM). Besides the very similar results when compared with the
LIBSVM, the proposed methodology achieved high overall accuracy and fast classification time.

Resumo: A constante evolução dos recursos em processamento computacional e dos algoritmos
de aprendizagem de máquina, combinado com o aumento da complexidade dos sistemas
embarcados, tornou a implementação em hardware de modelos de aprendizagem de máquina
mais viáveis. Este artigo propõe uma metodologia para implementação online de uma máquina
de vetor de suporte através do desenvolvimento de um algoritmo simples, conciso e facilmente
adaptado para classificação de dados. O sistema foi validado através do desenvolvimento de uma
aplicação que classifica distúrbios em um transformador de potência, e em seguida foi feita uma
comparação com os resultados obtidos com a Library for Support Vector Machines (LIBSVM).
Além de resultados muito similares quando comparado com a LIBSVM, a metodologia proposta
alcançou uma alta acurácia e um tempo rápido de classificação.
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1. INTRODUCTION

Machine learning (ML) is a key technology in the 21st
century and the main contributing factor for many recent
performance boosts in computer vision, natural language
processing, speech recognition and signal processing (Roth
et al., 2020). It has evolved from the study of computa-
tional learning theory and pattern recognition, being the
most effective method used in the field of data analytics
in order to predict something by devising some models
and algorithms (Angra and Ahuja, 2017). ML models
allow researchers, engineers, data scientists and analysts
to produce reliable and valid results and decisions by
the discover of some hidden patterns or features through
historical learning’s and trends in data. Among the several
ML-based algorithms, the support vector machine (SVM)
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has presented promising results in pattern recognition
problems (Karamizadeh et al., 2014).

The SVM was initially introduced by Boser, Guyon
and Vapnik in 1992 (Guyon et al., 1992), experiencing a
rapid development applied to handwriting recognition and
text categorisation, through the Structural Risk Minimiza-
tion (SRM) method. Currently, the SVM has been applied
in several areas, such as robotics, computer vision, pat-
tern recognition, computer security, and biomedics (Yun-
qian Ma, 2014). For instance, Shah and Bhalja (2013)
presents a SVM-based differential protection scheme is
proposed which effectively differentiates internal faults
with other type of disturbances in a power transformer.
Also, Bhargav Yashvantrai Vyas (2015) presents a pattern
recognition based fault type identification approach for
transmission line protection, which in comparison to a
scheme based on artificial neural networks (ANN), the
SVM has proved to be a better classifier for protection
system.

The advancement in computational processing com-
bined with the increased complexity of embedded systems

creacteve_michele
Texto digitado
DOI: 10.48011/asba.v2i1.1105



has made the implementation of ML models in hardware
language more viable in current applications. Nowadays,
ML algorithms are often implemented with custom in-
tegrated circuits, devices, and systems to achieve high
performance. Nevertheless, the development of embedded
systems present a variety of challenges as it has to deal
with multiple viewpoints, types of requirements, program-
ming languages and forms of description. It is indispens-
able for the system to be concise, since the diversity of
specifications is a major source of inefficiency and failure
(Sebastian Bab, 2006).

In recent years, the hardware implementation of
ML-based algorithms has been reported in some works
in the literature. For instance, a highly-compacted em-
bedded system from the System inPackage type, imple-
mented online on Polymer Electrolyte Membrane Fuel Cell
(PEMFC), is presented in (Zhongliang Li, 2019). A SVM
algorithm is implemented on a digital signal processor
(DSP) for signal prediction in classication and regression
applications in (Zabalza et al., 2012), and despite the high
consumption of time in some stages, the SVM implemen-
tation has been carried out successfully. Furthermore, the
implementation of SVMs in DSPs for image tracking was
also seen in (Assia Arsalanea, 2018) and (Xinghong Li,
2017), and both of them show that SVM has higher track-
ing precision and obtained a high speed of target tracking,
which makes it possible to achieve real-time performance.

This paper proposes a methodology for online im-
plementation of a support vector machine classifier to
be feasible in an embedded system. The proposed SVM
classifier was tuned for providing appropriate classification
of disturbances in a power transformer, such as internal
faults, external faults, and transformer energizations. The
disturbances were simulated in a power transformer mod-
eled in ATP software and the signals used as inputs for
the SVM classifier are the differential wavelet coefficient
energies, which were computed by means of the real-time
boundary stationary wavelet transform (RT-BSWT), as
seen in (Medeiros and Costa, 2018a). The results revealed
the algorithm is simple, efficient and easily adapted for any
programming language, also presenting a fast classification
time.

2. SUPPORT VECTOR MACHINE

The SVM is a supervised learning ML technique
that is based on the statistical learning theory and might
be used for both classification or regression problems
(Widodo and Yang, 2007). For data classification, the
SVM aims to separate data by means of an optimal
hyperplane. For this purpose, many formulations can be
taken, and one of them is the C-SVM, which achieves it by
solving an optimization problem (Chang and Lin, 2011).
The SVM is essentially a binary classification algorithm,
however, there are methods that make it possible to solve
multiclass problems. The fundamentals of both approaches
are covered in the remainder of this section.

2.1 Binary classification

The binary SVM classification consists in the parti-
tion of an optimal separation hyperplane into two classes,
which allows to obtain the support vectors, that delimit
the positive and negative hyperplane sides so that data

will be classified as belonging to one of these classes (Faceli
et al., 2011). The support vectors are positioned in the
closest points to the optimal hyperplane, generating a
maximized separation margin, represented by ρ., as de-
picted in Fig. 1.

ρ
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Fig. 1. The optimal separating hyperplane.

Linearly separable data. Let a two class n-feature
dataset D with m samples. The samples are assumed to
have two classes namely positive class and negative class,
with associated labels y = 1 and y = −1 for positive
and negative class, respectively. In the case of linearly
separable data, it is possible to determine the hyperplane
that separates the given data by

wTx + b = 0, (1)

where
f(x) = wTx + b (2)

is the linear classifier. The variables w and b correspond to
a n-dimensional vector and a scalar, respectively, and both
are used to define the position of the optimal separating
hyperplane (Vapnik, 2013).

Given an unclassified data input x, the decision func-
tion uses the sign of the linear classifier to determine the
class of x (C(x)), as follows (Vapnik, 2013):

C(x) =

{
+1, if f(x) ≥ 0,

−1, if f(x) < 0,
(3)

in which C(x) = 1 and C(x) = −1 correspond to a positive
and a negative classes, respectively.

Nonlinearly separable data. SVM can be used in non-
linearly separable data classification applications. In this
way, the data to be classified is positioned, by means of
kernel functions, in a high-dimension separation hyper-
plane, allowing a linear classification. In this case, the
linear classifier can be rewritten as,

f(x) =

l∑
i=1

αiy
(i)
s K(x(i)

s ,x) + b, (4)

where l is the number of support vectors, x
(i)
s , y

(i)
s and

αi are the i-th support vector, its associated label and

weight, respectively, and K(x
(i)
s ,x) is the kernel function

(Vapnik, 2013; Cristianini and Shawe-Taylor, 2000). In the
case of linear separable data, the kernel function is the
dot product between the unclassified feature vector x and



the support vector x
(i)
s . By replacing it in the classifier

equation (4) it is possible to return to the linear classifier
equation (2) (Vapnik, 2013).

There are a few types of commonly used kernel
functions: the dot product (linear kernel) for linearly
separable data, the radial basis function (RBF), and the
polynomial and sigmoidal kernel for nonlinearly separable
data. Table 1 describes the equations for each of these
kernels, being u and v two n-feature vectors.

Table 1. Some of the most commonly used
kernel functions.

Dot product (linear kernel) K(u,v) = u · v
RBF K(u,v) = e−γ‖u−v‖2

Polynomial K(u,v) = [τ1(u · v) + τ0]d

Sigmoidal K(u,v) = tanh[β1(u · v) + β0]

According to Table 1, the ‖u− v‖2 is the squared
Euclidean distance between the two feature vectors and
γ, τ0, τ1, d, β0 and β1 are free parameters (Wang, 2005;
Vapnik, 2013).

2.2 Multiclass classification

Two of the main approaches for multiclass classi-
fication problems are the one-versus-all and one-versus-
one. Given a K-class dataset, these two approaches are
described below.

One-versus-all. this method takes one class as positive
and rest all as negative and trains the classifier. For
instance, if the data has n-classes, it trains n classifiers.
Each learner (model) is trained using all patterns of
its respective class as positive (+1) and the remaining
classes patterns as negative (-1) (Rocha and Goldenstein,
2014). For prediction, the input observations is classified
according to the class with the highest response.

One-versus-one. In the training stage this approach will
divide the training set in CK

2 subsets and fit CK
2 binary

classification models. In the prediction stage, given an
unclassified data u, the CK

2 binary classification models
will assign a class for u, and the class that receives the
most votes will be the class chosen for u (Rocha and
Goldenstein, 2014).

The following example explains how the one-vs-one
approach works. In the training stage of a dataset with the
classes A, B and C (3 classes), the corresponding training
set will be divided into 3 (C3

2 ) subsets, with the training
examples which contain only the classes A and B, A and C
and B and C, respectively. These subsets will train binary
classification models for classes A and B, A and C, and
B and C. In the prediction stage, given an unclassified
data u, the three binary classification models perform the
following assignments:

• AB classifier assigns the class A,
• AC classifier assigns the class A,
• BC classifier assigns the class C.

In this case, class A had more votes, thus, the observation
u shall be assigned for class A.

3. PROPOSED METHODOLOGY

This paper proposes a methodology for online im-
plementation of an SVM-based classifier which had been

trained offline. For this purpose, considering the wide
variety of platforms that enable the training of a classi-
fication model, the Library for Support Vector Machines
(LIBSVM) (Chang and Lin, 2011) was chosen since it is
an open-source, well-established library. The LIBSVM is
an integrated open-source ML library for support vector
classification, regression, and distribution estimation (one-
class SVM), which supports multiple programming lan-
guages, such as C/C ++, Python, Java, MATLAB, R,
among others. Furthermore, it is also able to perform C-
SVM classification, ν-SVM classification, one-class-SVM,
ε-SVM regression, and ν-SVM regression (Chang and Lin,
2011). In this paper, a C-SVM classification algorithm is
carried out, and the LIBSVM was used for purposes of
training and validating the model, as well as the proposed
method.

Fig. 2 depicts the flowchart with the required stages
for online implementation on embedded systems of a SVM
classifier, which are: Data acquisition stage (block 1);
dataset handling stage (block 2); training stage (block 3);
prediction stage (block 4); online validation stage (block
5); and embedded system development, if desired (block
6). Details of each stage are addressed in the remainder of
this section.

3.1 Data acquisition stage

The three main methods to get a dataset for training
a model for a classification problem are:

• Online open source dataset collections,
• Dataset generated by a computer simulation of a

physical system,
• Dataset generated by measurements of a physical

system experiment.

In this paper the performance assessment was per-
formed by using a dataset generated by a computer simu-
lation of a physical system.

3.2 Dataset handling stage

Data acquisition bias breaking. Sometimes, data acqui-
sition can carry some biases. For instance, suppose that a
model is trained with 1000 feature vectors extracted from
measurements and stored in a matrix D, of size m×(n+1),
where m stands for the number of observations, n stands
for the number of features, and the (n+ 1)-th column has
the labels of each observation. Suppose further that the
first half of the measurements corresponds to event A and
the other half corresponds to event B. At following, the
matrix D must be divided for training and test steps. If,
for instance, the first 800 rows of D are assigned to the
training set and the rest to the test set, a bias will arise
even though the original dataset does not show it. This
bias can lead to bad performance. Therefore, it is a good
practice to shuffle rows of D at the beginning of the dataset
handling stage.

Split dataset into training and test set. In order to
validate if the trained model is able to perform well with
unseen data, it is needed to split the dataset into two
subsets: training set and test set (Suthaharan, 2016). It is
good practice to leave 20 to 30% of the dataset for testing
purposes.
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Fig. 2. Proposed methodology methodology for hardware
implementation of a support vector machine.

Feature scaling. The feature scaling allows, by means
of mathematical handlings, that the features present the
same value range (Reddy et al., 2016). This approach
speed up the training stage and can lead to better results
(Li and Liu, 2011). There are several feature scaling
methods in literature, such as decimal scaling, min-max,
zero-mean, sigmoidal, softmax and max normalization (Li

and Liu, 2011). For instance, taking x
(i)
k a non-scaled

variable, its respective scaled version can be obtained with
the min-max [0,1] and zero-mean normalization methods,
respectively, as follows:

x
′(i)
k =

x
(i)
k −min(xk)

max(xk)−min(xk)
, (5)

x
′(i)
k =

x
(i)
k − xk
σk

, (6)

where min(xk), max(xk), xk and σk are the minimum, the
maximum, the average and the standard deviation value
of the feature k in the dataset, respectively (Li and Liu,
2011). The feature scaling step should be carried after the

dataset is divided into training and test set, and even
more relevant: it should be performed accounting only
the feature scaling parameters from the training set, since
using both training and test data for normalization will
cause data leakage. This causes the model to artificially
inflate its performance in the test stage, however, it makes
its performance worse when facing new, real world data
(Ameisen, 2020).

Original dataset to LIBSVM data format conversion.
LIBSVM stores data in a quite particular format. There-
fore, before running the training stage, it is needed to
convert the original data to LIBSVM format. In our case,
for instance, it was needed to make the conversion from
comma-separated value (CSV) to the LIBSVM format.
More information about this data type conversion can be
found at (Chang and Lin, 2019).

3.3 Training stage

Once dataset handling is finished, the training stage is
then carried out. The model is trained with the LIBSVM
svmtrain function, in which is loaded the training set
(observations and its respective labels) and is defined: the
SVM algorithm and the kernel function and its hyperpa-
rameters (Chang and Lin, 2011). Hyperparameters are pa-
rameters that are not directly learnt within estimator, i.e.,
free parameters. For instance, in a C-SVM classification
estimator with a RBF kernel, the regularization parameter
C and the RBF free parameter γ are the hyperparameters.
The parameters C and γ must be strictly positive, and
they have a crucial role in learning the dataset behavior.
For too large values of C or γ, overfitting is likely to occur,
which means that the model learns too well the training
set data behavior (high accuracy classification), however
it fails in generalization capability (the hability to gener-
alize the model to unseen data), which is a key concept
in machine learning models assessment. Conversely, very
small values of C or γ can also cause bad performance,
thus yielding an approximately linear separation between
the data, causing a bad performance for both training and
unseen (test) data (Johnson and Yadav, 2017).

In order to achieve better performance, the hyperpa-
rameters need to be tuned. The following section describes
a method commonly used to adjust hyperparameters,
known as grid search.

Tuning the hyper-parameters of an estimator. The grid
search is a technique used to optimize the SVM parameters
through cross-validation (CV), being able to identify the
best combination between the hyperparameters such that
the classifier predicts the unknown data and achieves
better accuracy, also avoiding overfitting (Iwan Syarif,
2016). In this technique, the CV error is computed with
different values of C and γ, and the best CV accuracy (or
the lowest CV error) is used to train a final model of the
SVM to be used in the test stage.

3.4 Prediction stage

After the training stage, it is obtained a file con-
taining information about the classification parameters,
such as the support vectors and the kernel. Therefore,
an algorithm for classification of this new information is
required, which must be of simple implementation in order
to make its adaptation more viable to other programming



languages compatible with embedded systems (Lin et al.,
2019). For this purpose, two main functions were created:
predict and kernel. However, it was also necessary create a
multiclass classification algorithm for handling cases where
there are more than two classes, for which the predict
function is not sufficient.

Kernel function. The kernel function contains the
equations that define the chosen kernel, for instance, the
kernel equations from Table 1 or any other user-defined
kernel equation.

Predict function. The predict function receives as in-
puts the trained model and an unclassified data vector, and
implements the routines of the classification hyperplane,
the classifier and the decision function, in addition to using
the kernel function. This predict algorithm is adaptable
for any kernel, being able to return the classification results
according to the model and entered values.

The employed C-SVM binary prediction algorithm
is shown in Algorithm 1. The trained model is loaded
with the following parameters: support vectors and their
respective labels and weights, γ, positive and negative class
labels. Based on these parameters and on the hyperplane’s
equations, the algorithm computes a classification score,
and according to the sign of the obtained value, the
function decides whether the input vector, or observation,
is on the positive or negative side of the hyperplane.

One-vs-one function. The methodology discussed in Sec-
tion 2.2 for one-vs-one multiclass classification is directly
applied to the algorithm, whereas the same data is received
as input in each binary classification model, and the final
output (class) of this function is the one that has the most
votes among the results obtained with the aforementioned
predict function.

3.5 Offline validation stage

This validation stage was performed comparing the
classification scores and the confusion matrices from both
our implemented predict function and the LIBSVM
svmpredict function. The purpose was to obtain results
approximately equal between both algorithms. Details of
this comparison are addressed in the next section.

3.6 Embedded system deployment

After the algorithm validation, the same is available to
be adapted to the programming language of the respective
embedded system in which is intended to be used. This
task was not tested in this paper. However, considering
the procedure used in the previous steps, it is expected the
embedding process of the SVM algorithm to be simple and
feasible. Nevertheless, MATLAB platform was used as an
alternative for SVM algorithm development, by allowing
the implementation of the preprocessing steps, as well as
the kernel and the predict functions for the performance
assessment.

4. PERFORMANCE ASSESSMENT

In this paper, the proposed SVM algorithm was
used with purpose of classify electrical disturbances in a
power transformer. In this way, an electrical power system
was simulated in Alternative Transient Program (ATP),
as depicted in Fig. 3. The system consists of a power

Algorithm 1 C-SVM binary prediction algorithm

1: procedure predict(model, u)
2: . Classification score calculation
3: score = 0
4: for i = 1, k do . k is the number of support vec.
5: score = score+ αiy

(i) ∗ kernel(u,x(i), γ)
6: end for
7: score = score+ b
8: . Decision
9: if score ≥ 0 then

10: out = positive class
11: else
12: out = negative class
13: end if
14: end procedure
15: procedure kernel(x1, x2, γ)
16: sim = 0
17: norm = 0
18: difference = 0
19: square = 0
20: add = 0
21: for i = 1, n do . n is the number of features
22: difference = x1(i)− x2(i)
23: square = difference2

24: add = add+ square
25: end for
26: norm = sqrt(add)
27: sim = exp(−γ ∗ norm2)
28: out = sim
29: end procedure
30: procedure main()
31: repeat
32: load u
33: predict(model,u)
34: until stop
35: end procedure

transformer with their primary and secondary windings
connected to the 230 kV and 69 kV busbars, respectively.
The currents measured in the current transformers CT1
and CT2 are inputs for the relay, where they are sampled
at a sampling frequency of 15360 Hz (256 samples per
cycle of 60 Hz). Details about the preprocessing steps, as
well as the system parameters, are adressed in (Medeiros
and Costa, 2018a).

S2

T1

SVM-based event

classification scheme

CTCTCB
S1

11 2 CB2ZS1 ZS2

kV kV

Fig. 3. Electrical system single phase diagram employed to
validate the proposed methodology.

The following databases were used to evaluate the
performance of the method:

• Database 1 (external faults): AG, AB, AC, ABG,
ACG and ABC faults, on both high and low voltage
sides of the power transformer, with fault inception



angle θf = {0, 30, 60, 90, 120, 150, 180} electrical de-
grees and fault resistance Rf = {1, 2, 3,
..., 9, 10} Ω (840 records).
• Database 2 (internal faults): AG, BG, CG, AB, BC,

AC, ABG, BCG, ACG and ABC faults, on the
high and the low voltage windings of the power
transformer, with θf = {0, 30, 60, 90, 120, 150, 180}
electrical degrees and Rf = {10, 20, 30, ..., 90, 100}Ω
(1400 records).
• Database 3 (critical internal faults): turn-to-turn

faults on the phase A wye winding; turn-to-turn faults
on the delta winding between phases A and B; turn-
to-earth faults on the phase A wye winding; and turn-
to-earth faults on the delta winding between the A-
to-B winding and the earth. The percentage of turns
affected by the fault varies with e = {1, 2, 3, ..., 98}%
(392 records)
• Database 4 (transformer energizations): switching

performed on the high voltage side (230 kV ), with
the secondary terminal opened, and varying the
high voltage circuit breaker closing time at angles
θs = {0, 1, 2, ..., 179, 180} electrical degrees, consid-
ering the presence and the absence of residual flux
for each assessed angle (362 records).

The proposed method is feeded with the operating
and restraining wavelet coefficient energies of the currents,
which were proposed in (Medeiros and Costa, 2018b).
When any disturbance (internal fault, external fault or
transformer energization) is detected, the differential en-
ergies sudden increase and the SVM-based classification
algorithm is enabled. At following, a vector containing the
first eight post-disturbance samples of the operating and
restraining wavelet energies of the A, B, and C phases,
and also of the negative sequence, is stored, which yields
64 input features for each observation. These features are
used as inputs for the predict function so that already
trained SVM indicates the type of fault that occurred.

The kernel chosen for the training of SVM in LIBSVM
was the RBF, thus, being it necessary to assign values to
C and γ parameters. A grid search with 10-fold cross-
validation was then performed in order to obtain the
combination of values for C and γ that achieve the
highest accuracy during the cross-validation, as described
in Section 3.3. For the binary model, C = 1 and γ = 100
were obtained, and for the multiclass model, C = 10
and γ = 10 in two binary classifiers (internal faults vs.
transformer energizations dataset and external faults vs.
transformer energizations dataset) and C = 1000 and
γ = 100 in the third one (external faults vs. internal faults
dataset).

4.1 Binary algorithm performance evaluation

With C and γ parameters defined and the data gener-
ated, the classifier performance is evaluated. Fig. 4 depicts
the confusion matrix obtained for the binary classifier,
with distinction between internal fault and transformer
energization cases. The main diagonal of the confusion ma-
trix represents the percentage of cases correctly classified
for each detected event, whereas the other elements are
associated to the misclassified cases.

According to Fig. 4, the proposed SVM classification
model obtained a 100% success rate in discriminating
between internal fault and transformer energizations and
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Fig. 4. Proposed SVM algorithm performance distinguish-
ing between internal faults (IF) and transformer en-
ergizations (EN).

no false positive or negative were find. These events were
correctly classified in a maximum time delay of 8 sam-
ples after the event detection, which makes the proposed
method quite fast for electrical disturbance classification
purposes.

The performance of the proposed function was val-
idated against the LIBSVM svmpredict function, which
has its results for the same test set depicted in 5. Likewise,
to further investigate the performance of the implemented
predict function, a comparison with the classification
scores obtained from the LIBSVM svmpredict function
was made. These classification scores are used to define
whether an observation at hand belongs to a class or
another. Table 2 depicts the classification scores from
the LIBSVM and the proposed method for 10 random
observations from the test set, as well as its predicted
classes (diagnosis). For all the shown cases, the classifi-
cation scores are equal, therefore, the diagnosis is also the
same for both the LIBSVM and our predict function,
hence validating the good performance of the proposed
methodology when compared to the LIBSVM.

Table 2. Classification score comparison.

LIBSVM Proposed Method Diagnosis

0,99784 0,99784 EN
1,00053 1,00053 EN
-1,75508 -1,75508 IF
-3,78615 -3,78615 IF
-0,97821 -0,97821 IF
-2,32951 -2,32951 IF
0,99958 0,99958 EN
-0,99555 -0,99555 IF
-1,16307 -1,16307 IF
0,99918 0,99918 EN

4.2 Multiclass algorithm performance evaluation

The choice of C and γ parameters in the multiclass
algorithm is different of what is accomplished in the
binary case. The method chosen was the one-vs-one and
it was necessary to make the grid search for three binary
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Fig. 5. LIBSVM svmpredict function performance distin-
guishing between internal faults (IF) and transformer
energizations (EN).

classifiers that would be the inputs for the predictive one-
vs-one function. Coincidentally, the values of C and γ
obtained by the three classifiers were very similar and
reached a high accuracy.

Fig. 6 illustrates the confusion matrix obtained for the
multiclass one-vs-one classifier, with distinctions among
the external faults, internal faults, and transformer ener-
gizations.
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Fig. 6. Proposed SVM algorithm performance distinguish-
ing among external faults (EF), internal faults (IF)
and transformer energizations (EN).

According to Fig. 6, the proposed SVM model showed
an expressive success rate of 99.7% in discriminating
among internal faults, external faults, and transformer
energizations. There were only 2 cases misclassified (two
internal faults misclassified as external faults). Further-
more, all events were correctly classified with a maximum
time delay of 8 samples after their detection.

Similarly to the comparison made to validate the
results for the binary classification, another comparison
was carried out for the multiclass case. The confusion
matrix obtained for the LIBSVM svmpredict function is

depicted in Fig. 7. Even though the performance of the
LIBSVM svmpredict was slightly distinct, this could be
due to the different internal implementation of the one-
vs-one strategy from the LIBSVM, since it receives only
one pair of C and γ as input values, differently from our
implemented one-vs-one, which carries a diverse pair of C
and γ for each internal binary classifier. Nevertheless, it
possible to validate the performance of the implemented
multiclass algorithm, since the results from both confusion
matrices are very similar.
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Fig. 7. LIBSVM svmpredict function performance distin-
guishing among external faults (EF), internal faults
(IF) and transformer energizations (EN).

5. CONCLUSION

The efficiency and feasibility of the proposed method-
ology for implementing the online SVM were validated
in the application of fault classiffication in power trans-
formers. A point that makes the use of this method very
accessible is its association with LIBSVM training, a plat-
form that allows all stages of training to be carried out
in a simple and automatic way, in addition to providing
support for its use in different programming languages.
Despite this work addressing an application for electrical
engineering, the algorithms used were tested with different
types of databases, varying the number of samples, fea-
tures, classes, and their efficiency was likewise validated.
In the same way that the function was developed and
tested in MATLAB, this proposed methodology can be
easily adapted for languages like C/C++, Python, among
others, and later embedded on hardware devices, allowing
it to be employed for many other applications with real-
time requirements.
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