

Image Representation of Time Series for Reinforcement Learning Trading Agent

Guinther K. da Costa1, Leandro dos S. Coelho1,2 Roberto Z. Freire1

1 - Pontifical Catholic University of Parana (PUCPR), Industrial and Systems Engineering Graduate Program (PPGEPS)

Rua Imaculada Conceição, 1155, 80215-901 Curitiba, PR – Brazil (guintherk14@gmail.com; roberto.freire@pucpr.br)

2 - Department of Electrical Engineering (DEE/PPGEE), Federal University of Parana (UFPR), Polytechnic Center,

81531-980 Curitiba, PR – Brazil (leandro.coelho@pucpr.br)

Abstract: The availability of diverse data has increased the demand for expertise in algorithmic trading
strategies. Reinforcement learning has shown interesting applicability in a wide range of tasks, especially

in some challenging problems as trading, where slow model convergence, inference speed, and reduced

model accuracy appear as barriers in this type of application. In this paper, we propose the transformation

of time series into images considering a transfer learning based on a semi-supervised model with deep

Q learning agents, where labels were generated by an evolutionary algorithm to improve both training

speed and performance measures.

Resumo: A disponibilidade de dados diversos aumentou a demanda por conhecimento em estratégias de

trading algorítmico. O aprendizado por reforço mostrou aplicabilidade interessante em uma ampla gama

de tarefas, especialmente em alguns problemas desafiadores como negociação, onde a convergência lenta

de modelos, velocidade de inferência e precisão reduzida do modelo aparecem como barreiras nesse para

esse tipo de abordagem em ambientes reais. Neste artigo, propõe-se a transformação de séries temporais

em imagens considerando o uso de transferência de aprendizado baseado em um modelo semi-

supervisionado com agentes de aprendizado profundo Q por reforço, onde os rótulos foram gerados por

um algoritmo evolutivo para melhorar a velocidade do treinamento e as medidas de desempenho.

Keywords: stock trading; algorithmic trading; financial market; machine learning, reinforcement learning;

time series forecasting.

Palavras-chaves: negociação de ações; negociação algorítmica; mercado financeiro; aprendizado de

máquina, aprendizado por reforço; previsão de séries temporais.

1. INTRODUCTION

Algorithmic trading in stocks is attracting the attention of

specialists in machine learning, as financial area researchers

and market practitioners are considering recent advances for
automatic or supported decisions. The problem in decision-

making is to learn feature representation from non-stationary

and noisy financial time series.

Machine Learning (ML) techniques are being used for market

trading. Gerlein et al. (2016) conducted analyses on the role of

simple machine learning models to achieve profitable trading

through a series of trading simulations in the FOREX Market.

The researchers discussed how a combination of attributes in

addition to technical indicators as predictors are used to

enhance the classification capabilities. Xiaodong et al. (2016)

presented the design and architecture of a trading signal
mining platform that employs extreme learning machine

(ELM) to make stock price prediction, based on news (text)

and quantitative data concurrently.

Vora et al. (2017) presented a review of some machine

learning approaches (classification and regression) to make

stock predictions and a comparison of programming languages

for the applications, and Weng et al. (2017) used three models

(decision trees, neural networks and support vector machines)

to show that diversifying the knowledge base by combining

quantitative and disparate sources data can help improve the

performance of financial expert systems.

Alessandretti et al. (2018) used two gradient boosting decision
trees (GBM) and one long and short-term memory networks

(LSTM) to make daily forecasts of 1,681 cryptocurrency

prices and results find that all of the three models perform

better than a baseline ‘simple moving average’. Macchiarulo

(2018) made a comparison on whether machine learning or

technical analysis best predicts the stock Market using 20 years

of stock market data and concludes at the 99% confidence

level, machine learning outperformed compared to all but the

buy and hold technical analysis method in the up-market

period, but underperformed at the low-market period.

With the objective of outperforming baselines models in the
context of trading, Zhang et al. (2019) used Deep Q-learning

Networks (DQN), Mnih et al. (2013) considered the Double

Deep Q-Learning DDQN, Hasselt et al. (2015) the Policy

Gradients (PG), Sutton et al. (1999) the Advantage Actor-

Critic (A2C) Konda and Tsitsiklis (1999).

Pengfei Y. & Xuesong Y. (2020) used financial product price

data treated as a one-dimensional series generated by the

projection of a chaotic system composed of multiple factors

creacteve_michele
Texto digitado
DOI: 10.48011/asba.v2i1.1108

into the time dimension, and the price series was reconstructed

using the time series phase-space reconstruction (PSR) method

with an LSTM, and this approach provided higher accuracy

than baseline methods used in trading. Lei et al. (2020)

proposed a time-driven feature-aware jointly deep

reinforcement learning model (TFJ-DRL) that integrates deep

learning and reinforcement learning models to improve the

financial signal representation learning and action decision-

making in algorithmic trading, showing robust results.

Modern portfolio theory (Markowitz, 1952) implies that, given

a finite time horizon, an investor chooses actions to maximize
some expected utility of final wealth:

𝐸[𝑈(𝑊𝑇)] = 𝐸[𝑈(𝑊0 +∑δ𝑊𝑇)]

𝑇

𝑡=1

,

(1)

where 𝑈 is the utility function, 𝑊𝑇 is the final wealth over a

finite horizon T, and δ𝑊𝑇 represents the change in wealth. The

value of the final wealth measure relies upon sequences of

interdependent actions where optimal trading decisions do not

decide just immediate trade returns but also affect subsequent

future returns, thus, has a long-term dependency. As

mentioned in (Merton, 1969), this falls under the framework

of optimal control theory (Kirk, 2012), and forms a classical

sequential decision-making process. If the investor is risk-
neutral, the utility function becomes linear and we only need

to maximize the expected cumulative trades returns

E(∑ δ𝑊𝑇)
𝑇
𝑡=1 and we observe that the problem fits exactly with

the framework of Reinforcement Learning (RL), where the

goal is to train a return-maximizing agent in an uncertain and

dynamic environment that has much in common with an
investor or a trading strategy that interacts with markets. This

situation relies on the availability of an environment, which in

this case, is the availability of historic trading data itself.

The Deep Reinforcement Learning approach has been

successfully applied to game-playing agents, most

prominently to the game of Go (Silver et al, 2013), but also

complex video games (Mnih et al., 2012), which indicated the

ability of these models to deal with constantly changing

Environments.

The key contributions of this paper are: i) to consider

multidimensional time series as images for reinforcement

learning tasks; ii) to assume Differential Evolution (DE) to
optimize the parametric rule-based strategy to label data and

further train a model with these labels; and iii) to use transfer

learning from this supervised trained model to improve

training time and convergence in a Deep Q Learning model.

The next section of this paper describes the trading problem

details and different strategies. In the sequence, methods and

techniques are presented in detail. Section 4 presents the

preliminary results of the proposed method. Finally, the

conclusion and future works are addressed in Section 5.

2. THE TRADING PROBLEM

The availability of data and accessible Application
Programming Interfaces (APIs) have increased the demand for

expertise in algorithmic trading strategies. Based on computer

programs to automate trading, some common tasks are

portfolio management (Chandrinos et al., 2018), where the

goal is to optimize the amount of capital allocated in each

operation keeping some balance between risk and returns;

forecasting (Lim et al., 2019), where the goal is to directly

predict the value of an asset in the future and use it to make

decisions; and finally, testing and strategies evaluation

(Jansen, 2018) where the goal is to make the correct evaluation

of a method in a backtest to assure that it will provide

reasonable performance in real applications.

The financial crises of 2001 and 2008 have affected how

investors approach diversification and risk management,
stimulating low-cost passive investment vehicles in the form

of exchange-traded funds (ETFs). Amid low yield and low

volatility cost-conscious, investors shifted 2 trillion dollars

from actively managed mutual funds to passively managed

ETFs. According to Jansen (2018), algorithmic trading is

applied in a wide range of time scales and distinct data sources.

In High-Frequency Trade (HFT), orders are executed with

extremely low latency, in the microsecond range, holding

positions for short periods. The goal is to detect and exploit

inefficiencies in the market microstructure. Aiming to earn

small profits per trade, HFT considers both passive or
aggressive strategies. In Day Trading, high volatility is

expected, and the time interval of operation varies from

minutes to hours, exploiting momentum and sentiment factors

to design trading strategies.

In Swing Trade, usually, a hybrid of fundamental and technical

(candle shape) analysis is used, and the operations happen in a

week frame. Finally, in Position Trade, economic and political

scenarios are evaluated, and the positions are held in the range

of months. This work focus on operations in the range of hours,

thus, Day Trade is the kind of operation it is suited for.

3. METHODS

This section addresses the techniques assumed for the trading
problem. The first subsection presents concepts of

Reinforcement Learning (RL) and how indicators were

converted into images. In the sequence, transfer learning

concepts are presented.

3.1 Reinforcement Learning

As presented by Sutton and Barto (1998), RL is a prevalent

self-taught learning paradigm that was developed to solve the

Markov decision problem (Tesauro, 1994).

The current literature on RL in trading can be categorized into

three main methods: critic-only, actor-only, and actor-critic

approach (Fischer, 2018). The critic-approach, mainly DQN,

is the most published method in this field (Bertoluzzo and

Corazza, 2012; Jin and El-Saawy, 2016; Tan et al., 2011;

Huang, 2018; Ritter, 2017), where a state-action value

function, Q, is constructed to represent how good a particular
action is in a state.

Recently, a combination of Reinforcement Learning (RL) and

Deep Learning (DL) provided interesting results in a large

variety of problems, showing applicability for financial tasks.

There is a large variety of models that combine DL and RL, to

cite some not previously cited: Asynchronous Advantage

Actor-Critic (A3C) (Mnih et al., 2016), Proximal Policy

Optimization Algorithms (PPO) (Schulman et al., 2017), Trust

Region Policy Optimization (TRPO) (Schulman et al., 2015),

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,

2015), Twin Delayed Deep Deterministic Policy Gradient

(TD3) (Fujimoto et al., 2018), Soft Actor-Critic (SAC)

(Haarnoja et al. 2018), 51-atom agent (C51) (Bellemare et al.

2017), Regression DQN (QR-DQN) (Dabney et al., 2017), and

Hindsight Experience Replay (HER) (Andrychowicz et al.,

2017). A more visible relation and aspects of those models can

be seen in figure 1.

Fig. 1: Map of Reinforcement Learning models.

In this work, we choose to use Deep Q-Learning (DQN),

which is an approach that uses Deep Learning to evaluate the

quality of a predefined Action, providing information about

the environment.

In the context of trading, the usage of time series as images has
shown potential in (Cohen et al., 2018), where a classification

approach was used. Based on the Elliott Waves theory (Elliott

et al., 1994) we propose a combination of three concepts: RL,

Evolutionary Algorithms (EA) – Differential Evolution

Algorithm proposed by Storn and Price (1997) – and the

transformation of time series into images. These concepts were

assumed to propose a model for trading. In this way, state,

action, reward, and environmental aspects are addressed in the

sequence, followed by a model description.

3.1.1 State

The state is the respective situation of the agent in the

environment. Usually, four indicators are assumed to describe

the state of the model: price, volume, relative strength index

(RSI), and moving average convergence divergence (MACD).

Price is the mean between low and high from the past period
(candle). Volume is the sum of exchanged values given by

𝑀𝐴[𝑖] =∑
𝑌[𝑖]

𝑁

𝑁

𝑖

,

𝑀𝐴𝐶𝐷 = 𝑀𝐴[𝑖] −𝑀𝐴[𝑖 + 𝐻],
𝑆𝐼𝐺𝑁𝐴𝐿 = 𝑀𝐴[𝑗] ∶ 𝑖 < 𝑗 < 𝑖 + 𝐻.

(2)

where MACD is the difference from two moving averages of
different periods and the third one with a period among them.

From Eq. 1, MA is the moving average, 𝑌 is the price time

series, 𝑁 is the window size, and 𝐻 is the slower 𝑀𝐴 window

size. The RSI estimates the acceleration of the price movement

and gives indications about price movement changes of

direction, with the concept that price should slow down before

changing direction being

𝑅𝑆𝐼 = 100 − [
100

1 +
𝛼
𝛽

], (3)

where 𝛼 and 𝛽 represent the average percentual loss and gain,
respectively. After obtaining these indicators, the time series

of features are transformed into images of 64×64 pixels and

concatenated into 4×64×64, as each one of the indicators can
be stated as an image channel (Figure 2).

 (a)

 (b)

 (c)

 (d)

 (e)

 (f)

 (g)

 (h)

Fig. 2: Conversion of time series to images: (a) and (e) MACD;
(b) and (f) RSI; (c) and (g) volume; (d) and (h) price.

3.1.2 Action

The action represents the agent movement at each time-step

following some policy to increase rewards. By considering the

action space restricted to buy, sell, or hold, it is assumed a

predefined size for the order placement. The buy orders turn

into a first-in, first-out (FIFO) queue, with a predefined limit

of entry orders.

3.1.2 Reward

The reward is the signal which assesses the quality of the

agent’s actions. Classical trading strategies often use the

concept of Alpha (Jansen, 2018). It is important, for any

trading strategy, to find optimal enter and exit moments, both

maximizing returns. Assuming return as a reward showed no

convergence as the model is often encouraged to take no

actions as a way to minimize loss, so we applied a weighted
evaluation to each action taken. A negative reward is applied

if the model chooses to hold (wait). Again, if low weight is

applied to this negative reward, the model fast converges into

no action to minimize the loss of a bad decision. But if a too

high value is used, the quality of actions decay, as there is not

enough difference between a random decision and no action.

This situation can lead to non-optimal sell time by early

decision to avoid the negative reward of waiting. Another

aspect considered is the time of operation between buying and

selling, as it something that is commonly used to stop real

operations. Based on these assumptions, the following rules

were stated:

{

𝑅𝑏𝑢𝑦 = 𝑅 − 50

𝑅𝑠𝑒𝑙𝑙 = {
𝑅 + 𝑅𝑎 + 𝑅𝑎 ∗ ∆𝑃 + (𝑡𝑠 − 𝑡𝑏) ∗ ∆𝑃: 𝑖𝑓 ∆𝑃 > 0

𝑅 − 𝑅𝑎 +𝑅𝑎 ∗ ∆𝑃 + (𝑡𝑠 − 𝑡𝑠) ∗ ∆𝑃: 𝑖𝑓 ∆𝑃 < 0
𝑅ℎ𝑜𝑙𝑑 = 𝑅 − 𝑅ℎ

, (4)

where 𝑅 is the cumulated previous reward, 𝑅𝑎 is the action

reward (equal to 100), 𝑅ℎ is the hold reward (equal to 2), ∆P is

the profit, 𝑡𝑏 is the buy instant, and 𝑡𝑠 is the sell instant. Both

𝑅𝑎 and 𝑅ℎ were trial-and-error defined.

3.1.2 Environment

In this study, it was assumed that models’ actions do not affect

the prices, and no trade fees were considered. The dynamic

aspects of the environment are the financial balance and the

financial signals (price, volume and indicators) of assets,

which have very non-linearity and non-stationary behaviors.

For real-world applications, other aspects can be stated as the

delay of order placement, no market maker to fill the order,

and false triggers made by other agents.

2.3 Model

DQL algorithms estimate the action-value function 𝑄(𝑠, 𝑎),
which indicates the quality of an action 𝑎, giving a State 𝑠, for
a sequence of actions and observed rewards. At each time-step,

the agent selects an action from 𝐴 = {1, . . . , 𝐾}. The algorithm

uses an aprioristic environment model to learn based on

experience or estimates the rewards from 𝑄(𝑠, 𝑎) without

considering a model. Often, the sequence of state actions is too

large for a discrete function approximator. In this case, the

neural network is used to approximate the 𝑄(𝑠, 𝑎) function

trough a reward function that estimates the optimal action

based on the Bellman’s equation:

𝑄∗(𝑠, 𝑎) = 𝐸(𝑅𝑡+1 + 𝜌𝑀𝑎𝑥𝑎′𝑄(𝑠, 𝑎)), (5)

where 𝐸 is the expectation of an 𝑅𝑡+1 reward plus a 𝜌 discount

factor times the 𝑀𝑎𝑥 𝑄(𝑠, 𝑎) quality state reward function.

The goal of the agent is to find the optimal policy giving the

set of actions in the environment. The model in this work was

trained using an adaptation of the Deep Q-learning with

Experience Replay algorithm from the study presented by

Mnih et al. (2013), with a transfer learning approach, which

will be discussed in the next section.

3.2 Transfer Learning

Taking into account that RL agents usually take several

thousands of episodes to converge, and maybe do not converge

at all (Lim et al., 2019), in this study, we propose the use of

the evolutionary algorithm DE to optimize one parametric
rule-based strategy. which has access to the whole dataset in

time series format and is responsible for labeling each 𝑡 instant

as buy, sell, or hold, to maximize the differences of subsequent

buys and sells using the following set of rules:

{

 𝑖𝑓: ∑𝑃𝑖𝑋𝑖[𝑡] > 𝑃𝑖+1

𝑁

𝑖

∶ 𝐵𝑈𝑌

𝑖𝑓: ∑𝑃𝑗𝑋𝑗[𝑡] > 𝑃𝑗+1 ∶ 𝑆𝐸𝐿𝐿

𝑀

𝑗

, (6)

where 𝑋𝑖 is the indicator 𝑖 at time 𝑡.

The previous 64 samples of price, volume, MACD, and RSI,

before each label (buy, sell or hold) defined by DE are
transformed into images and used to train a supervised

classification model. The model is a Convolutional Neural

Network (CNN) with the same architecture as the one in the

RL agent 𝑄(𝑠, 𝑎). The proposed model is described in

Figure 3, where both the evolutionary and supervised steps are

executed previously to the RL (Q approximator) train loop in

the environment.

Fig. 3: Hybrid model proposed for trading.

4. EXPERIMENTS

The experiments assumed to validate the proposed model

consisted of both training and testing phases. The agent was

trained using hourly data from 200 stocks, with 460 days

each, from The New York Stock Exchange (NYSE). The

parameters of the EA were standardized for all models and

were not the subject of study associated with this research. In

this way, it was assumed 10 individuals multiplied by the

number of parameters, 10 generations, 25% of recombination

factor, and mutation factor equal to 0.5, using the best

𝑏𝑒𝑠𝑡2𝑒𝑥𝑝 strategy. For the CNN, 3 convolutional layers were

assumed, paddling the image into 64 × 64, 32 × 32, and 16 ×
16, with kernel sizes of 9 × 9, 6 × 6, 3 × 3, with 124, 64, and

32 kernels in each layer. At the top, a Multilayer Perceptron

with 64, 32, and 8 neurons in each layer was considered. The

RL agent was trained using memory replay size equal to 32

steps, with 𝛾 equal to 0.95, initial 𝜀 equal to 1, and three

different decay values (𝜑).

Finally, 7,800 stocks of NYSE were assumed to test the model

considering 2,000 episodes. Assuming that the agent has

always an available amount of US$ 100.00 whenever he

decides to buy. The return for each one of the stocks can be

verified in Figure 4.

(a)

(b)

(c)

Fig. 4: Results: (a) 𝜑 = 0.9991 in 35 episodes;

(b) 𝜑 = 0.9996 in 200 episodes; (c) 𝜑 = 0.99996 in

2,000 episodes.

The final cumulative profit was calculated in

comparison to the available US$ 100.00. In 4,126

stocks, the return was negative, in 2,351, the agent

took no actions, and in 1,323 it was positive. The

maximum return was 330%, and the worst return

was −152, as shown in Figure 5.

Fig. 5: Agent returns (%) over 7,800 NYSE stocks in

backtesting.

ACKNOWLEDGMENT

The authors thank the support from the National Council for

Scientific and Technological Development (CNPq – Grant #

304783/2017-0) for funding this research.

REFERENCES

Gerleinac, E.A., McGinnityab, M., Belatrechea. (2016)

Evaluating machine learning classification for financial

trading: An empirical approach. Expert Systems with

Applications, Volume 54, 15 July, Pages 193-207.

Xiaodong Li, Haoran Xie, Ran Wang, Yi Cai, Jingjing Cao,

Feng Wang, Huaqing Min & Xiaotie Deng. (2016).

Empirical analysis: stock market prediction via extreme
learning machine. Neural Computing and Applications.

volume 27, pages 67–78.

Vora D., Singh N., Khalfay N., Soni V. (2017) Stock

Prediction using Machine Learning a Review Paper.

International Journal of Computer Applications

163(5):36-43

Weng B., Mohamed A., Fadel A., Megahedbc M. (2017).

Stock market one-day ahead movement prediction using

disparate data sources. Expert Systems with Applications.

Volume 79, 15, Pages 153-163

Alessandretti L., Bahrawy E. A., Maria L. A., Baronchelli A.
(2018). Anticipating Cryptocurrency Prices Using

Machine Learning. Complexity Journal. Volume 2018.

Macchiarulo A. (2018). Predicting and beating the stock

market with machine learning and technical analysis,

Journal of Internet Banking and Commerce.

Zhang Z., Zohren S., Roberts S. (2019). Deep Reinforcement

Learning for Trading arXiv preprint arXiv:1911.10107.

Deng Y., Bao F., Kong Y., Ren Z., Dai Q. (2016). Deep Direct

Reinforcement Learning for Financial Signal

Representation and Trading. IEEE Transactions on neural

networks and learning systems.

Pengfei Y., Xuesong Y. (2020). Stock price prediction based
on deep neural networks. Neural Computing and

Applications volume 32, pages 1609–1628

Lei K., Zhang B., Yu L., Min Y. , Ying S. (2020) Time-driven

feature-aware jointly deep reinforcement learning for

financial signal representation and algorithmic trading

Expert Systems with Applications. Volume 140, February.

Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou

I., Wierstra D., Riedmiller M. (2013). Playing atari with

deep reinforcement learning. preprint arXiv:1312.5602.

Silver D., Schrittwieser J., Simonyan K., Antonoglou I.,

Huang A., Guez A., Hubert T., Baker L., Lai M., Bolton

A., Chen Y., Lillicrap T., Hui F., Sifre L., Driessche G.,

Graepel T., Hassabis D. (2017). Mastering the game of go

without human knowledge. Nature, 550:354–359.

Sutton R. S., McAllester D., Singh S., Mansour Y. (1999).

Policy Gradient Methods for Reinforcement Learning

with Function Approximation, Advances in Neural

Information Processing (NIPS) 12.

Konda V. R., Tsitsiklis J. N. (1999). Actor-Critic Algorithms,

Advances. Neural Information Processing (NIPS) 12.

Hasselt H., Guez A., Silver D. (2015). Deep Reinforcement

Learning with Double Q-learning. arXiv preprint
arXiv:1509.06461.

Mnih V., Badia A. P., Mirza M., Graves A., Harley T.,

Lillicrap T. P., Silver D., Kavukcuoglu K. (2016).

Asynchronous Methods for Deep Reinforcement

Learning.., preprint arXiv:1509.06461.

Schulman J., Wolski F., Dhariwal P., Radford A., Klimov O.

(2017). Proximal Policy Optimization Algorithms arXiv

preprint 1707.06347

Schulman J., Levine S., Moritz P., Jordan M. I., Abbeel P.

(2015). Trust Region Policy Optimization arXiv preprint

1602.01783.
Lillicrap T. P., Hunt J. J., Pritzel A., Heess N., Erez T., Tassa

Y., Silver D., Wierstra D. (2015). Continuous control with

deep reinforcement learning arXiv preprint 1509.02971

Fujimoto S, Hoof H., Meger D. (2018). Addressing Function

Approximation Error in Actor-Critic Methods arXiv

preprint 1802.09477

Haarnoja T., Zhou A., Abbeel P., Levine S. (2018). Soft Actor-

Critic: Off-Policy Maximum Entropy Deep

Reinforcement Learning with a Stochastic Actor. arXiv

preprint 1801.01290

Bellemare M. G., Dabney W., Munos R. (2017) A

Distributional Perspective on Reinforcement Learning,
Actor arXiv preprint 1707.06887

Dabney W., Rowland M., Bellemare M. G., Munos R. (2017).

Distributional Reinforcement Learning with Quantile

Regression arXiv preprint 1710.10044
Andrychowicz M., Wolski F., Ray A., Schneider J., Fong R.,

Welinder P., McGrew B., Tobin J., Abbeel P., Zaremba

W. (2017). Hindsight Experience Replay. 31st

Conference on Neural Information Processing Systems

(NIPS 2017), Long Beach, CA, USA.

Markowitz H. (1952). Portfolio Selection. The Journal of

Finance, Vol. 7, No. 1., pp. 77-91.
Merton R. C. (1969). Lifetime Portfolio Selection under

Uncertainty: The Continuous-Time Case. Review of

Economics and Statistics 51(3):247-57.

Kirk E. (2004). Optimal Control Theory: An Introduction.

Courier Corporation. London.

Almahdi S., Yang S. Y. (2019). A constrained portfolio

trading system using particle swarm algorithm and

recurrent reinforcement learning. Expert Systems with

Applications, Elsevier, 130:145-156.

Chandrinos, S. K., Sakkas, G. and Lagaros, N. D. (2018).

AIRMS: A risk management tool using machine learning.

Expert Systems with Applications, Elsevier, 105:34-48.
Lim B., Zohren S., Roberts S. (2019). Enhancing Time Series

Momentum Strategies Using Deep Neural Networks. The

Journal of Financial Data Science, PMR, arXiv preprint

arXiv:1904.04912.

Jansen S. (2018). Hands-On Machine Learning for

Algorithmic Trading: Design and implement investment

strategies based on smart algorithms that learn from data

using Python. Packt Publishing, Birmingham.

Storn R., Price K. (1997). Differential evolution–a simple and

efficient heuristic for global optimization over continuous

spaces. Journal of global optimization, 11(4):341-359,.

Cohen N., Balch T., Veloso M. Trading via Image

Classification, arXiv preprint arXiv:1907.09567v2, 2019.
Intercontinental Exchange, New York Stock Exchange

Accessed: 11-August-2019, available at:

[https://www.nyse.com/market-data/historical].

Elliott R. N., Prechter R., Jr. (1994). (ed.). R.N. Elliott's

Masterworks. Gainesville, GA: New Classics Library. pp.

70, 217, 194, 196.

Hasselt H., Guez A., Silver D. (2016). Deep reinforcement

learning with double Q-learning. In Thirtieth AAAI

conference on artificial intelligence.

Arrow K. J. (1971). The theory of risk aversion. Essays in the

theory of risk-bearing, pages 90–120.
Sutton R. S., Barto A. G. (1998). Reinforcement Learning: An

Introduction. Cambridge, MA, USA: MIT Press.

Tesauro G. (1994). “TD-Gammon, a self-teaching

backgammon program, achieves master-level play,”

Neural Comput., vol. 6, no. 2, pp. 215–219.

Fischer T. G. (2018). Reinforcement learning in financial

markets - A survey. Technical report, FAU Discussion

Papers in Economics.

Huang C. Y. (2018). Financial trading as a game: A deep

reinforcement learning approach. arXiv preprint

arXiv:1807.02787.

Jin O. El-Saawy H. (2016). Portfolio management using
reinforcement learning. Technical report, Working paper,

Stanford University.

Ritter G. (2017). Machine learning for trading. Working paper,

New York University.

Tan Z., Quek C., Cheng P. (2011). Stock trading with cycles:

A financial application of ANFIS and reinforcement

learning. Expert Systems with Applications, 38(5):4741–

4755.

