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∗∗∗ Metallurgical and Materials Engineering program,

COPPE/UFRJ, Rio de Janeiro RJ, Brazil
(e-mail: jpayao@metalmat.ufrj.br)

Abstract: The development and integration of Wire Arc Additive Manufacturing (WAAM)
systems is nowadays a topic of growing interest. Industries are starting to focus on deploying
this technology due to its vast capability of producing different types of parts and creating new
possibilities for engineering design. Measuring the process characteristics is crucial in a WAAM
system, because it helps to ensure that the build up was done according as planned. In this work,
it was developed a passive vision-based monitoring method to measure the metal bead width
in a WAAM process. The deposition was carried out by using a carbon steel wire with GMAW
process, a Motoman HP20 robot arm and a welding torch device. A Xiris XVC-1000 camera
was used for visual inspection and mounted in a suitable configuration to minimize arc’s noise.
The experimental results show that it is possible to measure the bead deposition width in real
time with a satisfactory accuracy using monocular cameras. Therefore, it is a feasible solution
to be used in WAAM systems with the advantage of being relatively low-cost, as compared to
other active vision equipment.

Keywords: Wire arc additive manufacturing; Passive vision; Image processing; Visual sensing;
Bead width measurement; Single bead geometry; Metal additive manufacturing.

1. INTRODUCTION

According to Gibson et al. (2010), AM (Additive
Manufacturing) is the process of producing 3D objects
from a CAD (Computer-Aided Design) without the need
of process planning. However, not being as easy as it
sounds, AM certainly simplifies the whole process in
comparison to other standard manufacturing process that
requires a detailed analysis of the part being produced.
The parts are built up layer by layer, each layer having a
defined thickness, the layer height has a direct impact on
the part geometry precision. The thinner the layer the
bigger the precision will be achieved, but the production
time will also increase.

The junction of a wire feedstock with an electric arc as
heat source is referred as WAAM (Wire Arc Additive
Manufacturing). It uses standard off-the-shelf hardware,
like welding power source, torch, wire feeding system,
robot arm and others common welding equipment
(Williams et al., 2016). In particular, WAAM has got the
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attention of industry due its high capability of producing
large parts with moderate complexity having a relative
high deposition material rate, capability of decrease
material waste and consequently environmental friendly
characteristics (Wu et al., 2018). However, some
challenges rises when using wire as a feedstock, due to
the high input heat, deformation caused by residual
stress can occur and relative poor accuracy and surface
finish also is a problem because its “layer by layer” build
up characteristic (Ding et al., 2015b).

WAAM technology works by depositing molten metal layer
by layer, it can use different types of power source for
melting the wire. Some of the heat energy sources used
are Gas Metal Arc Welding (GMAW), Gas Tungsten Arc
Welding (GTAW), Plasma Arc Welding (PAW) and Laser
Additive manufacturing (Wu et al., 2018; Ding et al.,
2011). In Fig.1, a side view representation of the process
is shown, a three layers build up is demonstrated using
GMAW as the power source for melting the wire. In this
case, the material deposition trajectory is done using a
robot arm with a constant linear velocity, the image color
gradient “red to gray” is used to shown a simplified version
of the thermal dissipation considering only the last layer
single bead.
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Figure 1. Single wall layer build for a GMAW system.

The basic steps for producing a part using robotic
WAAM is shown in Fig.2. First the part is developed and
adapted with a CAD software, than 3D slicing is done.
The development of the trajectory strategy is done using
the layers information after the deposition parameters
are established, each layer is covered with a particular
designed trajectory. This code is transferred to a robot
that will fulfill the planned trajectory, and finally the
part is produced, being necessary most of time
post-processing to achieve the surface quality and
geometric precision specified (Ding et al., 2016).

Figure 2. Block diagram for WAAM stages, adapted from
Ding et al. (2016)

Currently, mostly of the parts quality assessment relies
completely on workers evaluation. To do the inspection
they need training and most of time the process
consumes a lot of time. Usually the measurements in this
step are done using gauges, scales and vision. Vision
based inspection methods are commonly used for
detecting external defects after welding, many
experiments based on vision were done in a lab
environment successfully to detect surface defects but not
in industry (Chu and Wang, 2016). One of the possible
application of Vision sensing and Computer Vision in
welding or metal deposition is the development of defect
detection system based on the part surface analysis, and
also seam tracking in joint welding (Yuan Li et al., 2010).

In Font comas et al. (2017) work, a passive vision system
for plasma arc deposition system was developed, tracking
the width of the deposited bead. Using a top view layout,
the authors also pointed out the possibility of acquiring
more information from the image, like the wire feeding
angle. Pinto-Lopera et al. (2016) used a single high
refresh rate camera to measure the bead height and
width, the second being done indirectly by the molten
pool measurement. Making a comparison between the
measurement done through the camera and a 3D scanner

of the bead, achieving good results in the proposed
measurement method. Xu et al. (2017) also used passive
vision for seam tracking with a GMAW process for
ensuring the correct position of the torch during welding.
It is possible to notice that passive vision in widely
during welding and material deposition. The present
work will use passive vision through the usage of a single
camera and filters implementation. The acquired raw
data is processed, focusing in the width characteristics of
the bead geometry, doing a comparison of different
methods as well as manual and automatic measurement.

The layer of layer characteristics of WAAM system creates
research and development opportunities beyond surface
defect inspection. Since the monitoring can be done in
every deposited layer, a detection algorithm could be
developed focusing on finding internal discontinuities in
the deposition, that might turn out to be defects after
proper analysis based on standards. In this work, a real-
time measurement method based on the combination of
passive vision and image processing algorithm will be
proposed to estimate the bead width. The accuracy of
the vision system will be tested through the deposition
of a single bead using a CMT (Cold Metal Transfer), a
GMAW variant, with the purpose of validating the weld
bead width measurement in a high noisy environment. The
proposed vision-based bead width measurement method
could be a relative low-cost alternative solution to the
conventional active vision equipment such as a 2D non-
contact profilometer. Was also noticed the presence of high
noise signal during the measurement using passive vision
mainly for process like GMAW, one of the application of
this work is test two common used filters for smoothing
the acquired data during the measurement and compare
its performance with a common manual measurement.

2. DEPOSITION SETUP

Cold Metal Transfer (CMT) provides improved stability
and lesser spattering, being both important features for
Additive Manufacturing. A great advantage of CMT is
the ability of providing a uniform bead profile and
consequently decrease surface waviness. It also has a
lower heat input decreasing part distortion during build
up and better mechanical property chances, producing a
higher string quality, which is expected for WAAM (Ding
et al., 2015b, 2011). Due to these properties the CMT
was chosen as the deposition process. The deposition
trajectory was done by as 6-DoF Motoman HP20 robot
arm (Fig.3) and the welding equipment as well as the
camera are both attached to the robot end-effector. The
specifications of the HP20 robot arm are: 20 kg payload;
±0.06mm Repeatability; 1, 717mm H-Reach; 3, 063mm
V-Reach; 280 kg Mass; NX100 controller providing
best-in-class path planning and collision avoidance/arm
interference prevention.

The planned reference path is covered using a constant
travel speed. The travel speed (TS) is the linear velocity
which the robot end-effector covers the designed path and
it is calculated using the x and y axes velocity information,
as shown below:

TS =
√
V 2
x + V 2

y . (1)



Figure 3. WAAM system: Motoman HP20 robot arm,
welding torch, camera and NX100 controller.

For monitoring and acquiring the images during
deposition, a regular welding camera from Xiris, model
XVC1000 was used (Fig.4) and configured at a distance
of 285mm from the substrate. The specification of the
camera are: up to 55 FPS at 1280 (H)× 1024 (V ) pixels;
lens with 16mm focal distance; 6.8 ρm square pixel;
998 ρm exposure time. However, any other camera with
proper specification for capturing welding and deposition
images by electric arc could be used.

Figure 4. Xiris XVC-1000 camera.

A schematic example of a wall being deposited by layers
can be seen in Fig.5. The color gradient used in the
last layer represents deposited bead glowing due to its
high temperature. The camera is focused in the material
being deposited, right after the metal pool in the opposite
direction of movement. The light emitted by the bead
in this area is high and this characteristic is used for
detecting the toe of the bead being deposited. The thermal
dissipation were also represented by this gradient only
in the last layer deposition for simplicity, with red and
gray representing the highest and lowest temperature
respectively. Both welding torch and camera are attached
to the robot arm, which guides them through the planned
path with a constant linear velocity of TS = 8 mms−1.
One set of single beads deposited during the deposition
step can be seen in Figure 6, being also used for the
development of the monitoring width algorithm.

3. WELD BEAD AND LAYER DESIGN

Finding a relation between the deposition parameters
and the single bead geometry is very important in a

Figure 5. Deposition and visual monitoring schematic.

Figure 6. Single bead sample

WAAM system. Many researches had gone towards this
subject, with different mathematical models being used
to describe the bead geometry. The three most commonly
used functions are the parabola, cosine and arc. Overall,
it has been concluded that the bead profile is largely
dependant of the wire feed rate and the travel speed (Ding
et al., 2015a).

The deposit bead profile can be seen in Fig.7 with its
main characteristics, wherein by using a suitable camera
mounted in the current configuration (i.e., facing the
substrate) is only possible to extract the width
information. However, it is also possible to estimate other
process features, such as the bead height and the weld
pool geometry mounting the camera respectively facing
the layer build up laterally and the weld pool directly.

The current work will focus on acquiring the bead width
information constantly and map its variation frame by
frame, during the single bead deposition.

Figure 7. Cross-section profile of the bead.

Information about the bead width being deposited can
be considered one of the most important variables on the
weld bead geometry when the surface quality of the layer
deposited is being the focus. Its dimension depends on
other variables such as travel speed and wire feed speed.



A constant bead width within the design planning during
all layer deposition, results in lesser waste of material and
a better fit and finish of the deposition (Cruz et al., 2015).

3.1 Surface layer quality

In AM, a layer can be built by depositing many single weld
beads side by side (Ding et al., 2015a). In Fig.1 and Fig.5
it can be seen that the current layer is deposited over the
previous deposited layer surface. As the previous layer is
used as base for a new layer, the surface quality of every
layer becomes very important to increase the precision and
avoid possible defects.

Surface quality, in other words, can be considered how
smooth is the surface of each layer. In multi-side beads
scenario, the cross-section overlapped between single bead
has great influence on the surface quality and dimension
accuracy Xiong et al. (2013a). Two overlapping models
have been used to show the interaction of side beads and
ensure a better surface quality in a multi-bead overlapping
process: the Flat Overlapping Model (FOM) (Xiong et al.,
2013a) and Tangent Overlapping Model (TOM) (Ding
et al., 2015a), represented in Fig.8 and Fig.9, respectively.

Figure 8. Flat overlapping model, adapted from Xiong
et al. (2013a).

Figure 9. Tangent overlapping model, adapted from Ding
et al. (2015a).

The aforementioned FOM and TOM overlapping models
proposed an optimum value for the distance between the
center of each adjacent bead, being described as center
distance (d) in Fig.8 and Fig.9, in which the “Area of
valley” will be equal to the “Overlapping area”, improving
the surface quality in layers manufacturing using arc. In
Xiong et al. (2013a), the authors propose that an optimal

distance between adjacent beads have a direct relation
with the width, achieving the relation: d = 0.667w. Ding
et al. (2015a) also proposed the same relation between
the center distance and the bead width arriving at a
similar linear relation d = 0.738w, with w being the
weld bead width. A comparison between both models in
a manufactured wall with five layers can also be found
in the work done by Ding et al. (2015a). Thus it is
possible to conclude that the bead width tracking is
very important for high-quality additive manufacturing
system, due to the fact that its layer surface finish is
directly related to the weld bead width. Being capable of
measuring constantly this characteristics highly improves
the capability if ensuring the quality and accuracy of the
deposition process. In Fig.10, it is possible to check how
a well planned distance between the centers influence the
quality of the surface as well as the geometry accuracy of
the material deposited. The overlapped area must be equal
to the area of the valley for achieving good results.

(a) d ≥ w, no overlapping

(b) d < w, overlapping area smaller than area of valley.

(c) d < w, overlapping equals to area of valley.

(d) d << w, overlapping area bigger than area of valley.

Figure 10. Overlapping area influence over surface quality,
adapted from Xiong et al. (2013a).

4. VISION IN WELDING AND WAAM

In welding, vision is used to gather information of the
molten pool and the weld bead. This information is used
for tracking, guiding and feed backing to the controller,
and it can be divided in two types, the passive and active
groups, which are classified according to the image light
source used (Chen et al., 2004; Wu and Chen, 2007).
A reliable monitoring system is a key aspect of quality
assurance during an additive manufacturing process. By
analyzing the characteristics of the deposition, if we can
guarantee that the buildup was done according to what
was planned, then it is possible to decrease the probability
of defects in the manufactured part. Moreover, mapping
the bead geometry, mainly the bead width along the



reference trajectory, can also help the inspection stage.
Deposited areas where the geometry is not according to
the specifications have bigger chance of presenting defects
and could be tracked during the inspection.

Active vision sensing requires an internal light source, for
example a laser or other assistance light for the process
to be monitored. In welding, active vision sensing is used
to restrain the welding arc interference, however it is
expensive to be applied in a common welding process. On
the other hand, passive vision works without the assistance
of a light source, using only the energy provided externally,
in this case by the self-arc welding region. It requires the
implementation of filters to wipe off disturbances the data
(image) which is gathered through the sensor – by using
light source from the arc is subject to a high level of noise.
Passive vision is considered a practical way of monitoring
weld pool characteristics and it is also cheaper than active
vision, being preferred for monitoring and control welding
processes (Wu and Chen, 2007). At the work published by
Xu et al. (2017), the authors also considered passive vision
a cheaper solution and it provides enough information
about the environment which can overcome the problem of
tracking systems based on laser sensors (Xu et al., 2014).

Most of the quality control procedures in welding
processes are done after the work is finished, however, in
WAAM processes this characteristics can be expanded.
Since the part is build up from scratch, it creates a
number of research and development opportunities for
monitoring the whole process, layer by layer. Indeed, as
mentioned before, the design and development of a
monitoring system suitable for WAAM processes has
proved to be very important. Enabling defect detection,
ensuring build up parameters and also enabling feedback
control of parts of the process are relevant assets for next
generation of WAAM systems. In this context, vision
sensing and computer vision have enabled the
development of surface defect detection applications.
Typical application examples come from circuit board
inspection, surface defect recognition and classification,
seam tracking, deposit bead profile monitoring and other
inspections stages (e.g., alignment, positioning) (Yuan Li
et al., 2010).

However, extracting and monitoring bead characteristics
using vision sensing is a challenging problem due to the
presence of uncertainties, external disturbances and
process noise. WAAM by nature is a very complex
process subject to many types of uncertainties and
disturbances that can be considered, such as surface
non-uniformity, the arc itself, the material used in the
substrate due its high reflexiveness, and the wire quality.
The working environment itself can also be considered as
a source of variations and some factors contribute to the
noise generation, such as the cable line, jigs and change
in light conditions. All of these factors increase the
difficulty for the computer vision system and must be
considered when developing processing image algorithms
with any robustness properties (Chen et al., 2007).

5. MONITORING SYSTEM FOR WAAM

Since the overlapping degree is directly impacted by the
step-over distance between side beads, monitoring the

weld bead width shows a very important task in this
technology. It allows a constant reading of the width
variation during the deposition and make possible to check
if the overlapping area in a defined position is according
with the specification planned. Improving the quality of
the layer deposited and also decreasing the probability of
internal defects, such as lack of fusion and voids.

However, as previously mentioned, the environment is
highly noisy and full of disturbances due to the process
characteristics and it cannot be easily attenuated. It is
possible to decrease the noise levels by the use of
standard welding screen protections, change in the
camera configuration and digital image processing filters.
All these details must be studied and configured during
the assembly, test and development of the algorithm. In
Fig. 11 it is possible to observe the example of two frames
captured by the monocular camera during the deposition
of the single bead.

Figure 11. First and second frames capture by the camera.

These frames represents well the dynamic change in the
contrast between distinct frames, being directly related
to the arc-generated light and also can be considered as
process noise. Other characteristics that increases the level
of difficulty of extracting information through vision can
be noticed in Fig. 11(b), the fumes, that creates another
challenge for the vision system handle.

In this scenario, the following steps will be used to treat
the CMOS camera data being captured and extract
features from it. The testing and development of the
image processing algorithm used in this work was done
using an Intel Core I5-6300HQ processor. The
development of the algorithm was done using ROS
(Robot Operating System) framework for better
integration with the robot.

Figure 12 describes the stages for the image processing
algorithm. At step 1, the camera used captures the image
in gray-scale format. However, the data is captured in a 3D

Figure 12. Image processing stages. ROI: Region of interest



array by the algorithm. Step 2 converts the data to a 2D
array using gray-scale conversion, for this specific camera
used selecting one of the three array would show the
same result, however, using gray-scale conversion makes
the algorithm more adapted to other types of camera that
might be used and could capture the image in RGB format.

The image captured comes with a lot of noise due to the
process characteristics and smoothing it is very important
to decrease the noise level creating a more uniform image.
Three noise reduction filters (step 3) were tested, gaussian,
median and non-local means (Buades et al., 2011), the
computational cost of the non-local means is a lot bigger
than the other two, it took 0.54 s to complete the operation
while the gaussian took 0.0008 s and median 0.0029 s.
The non-local means filter presented a better result when
compared with the median and gaussian, however, had
great impact on the algorithm performance even when
used under a small region. Therefore, for the filtering step
it was chosen to use the gaussian filter with a 5x5 mask
size. It had similar results removing noise when compared
to the median filter but maintained a good sharpness level
while having a lower computational cost.

To decrease computational costs the filter and all image
processing were applied inside the ROI (region of interest).
The region of interest was placed near the torch for better
identification due to deposit bead heat light intensity with
a 30 pixels x 110 pixels size . This configuration helps
the detection of the edges, guaranteeing a higher intensity
gradient transition in the edge detected pixels.

Step 5 is responsible for edge detection, edges are detected
by the intensity changes in the image, first or second order
derivative are used to accomplish the detection. The image
gradient (equation 2) is broadly used for edge detection,
it has the function of highlighting the transition between
different intensities in mapped pixels. The gradient, are the
representation of the image first derivative and are applied
on the image by using masks with specific dimension and
weight. The result is a vector pointing in the direction
of greatest rate of change. Magnitude operation (equation
3) is used to find the rate of change at every location
pixel analysed. It returns the rate of change value of
the intensity. Being constantly used for edge detection
algorithms (Gonzalez and Woods, 2007). Canny algorithm
(Canny, 1986), was used for edge detection in the present
work, it had a good result, retrieving sharp edges and
having low noise level. It presented a better result for
this application when compared with other edge detection
algorithms, such as Sobel, Laplacian and Scharr.

∇f = grad(f) =

[
gx
gy

]
=


∂f

∂x
∂f

∂y

 (2)

M(x, y) = mag(∇f) =
√
g2x + g2y (3)

After extracting the edge with Canny edge detector, the
data obtained is an image with a point cloud area. To
find out if a subset of these points lies in the same
line, the Hough line transform algorithm was used. A

Figure 13. Lines parallelism verification steps for width
measurement

polar representation (equation 4) is used, avoiding the
parameters approaching infinity in some particular cases.
The algorithm will test each point with a set of lines and
consider a valid line the one that has a certain amount
of points above its path. Hough transform has a strong
anti-noise ability and good detection with low signal to
noise ratio (Xiong et al., 2013b). The algorithm took
around 246 µs to complete the line detection, having a
low computational cost and also being feasible for usage
in a real-time detection system.

ρ = x cos θ + y sin θ (4)

The bead width is calculated using the distance between
both detected edges. Both edges are now represented
by the output of the Hough transform algorithm is line
represented as a vector in polar coordinate. Before finding
the distance between the lines the algorithm verifies the
parallelism between every line identified and calculate it
only if the angle difference is inside a defined threshold,
otherwise the operation is discarded. A simple flowchart
for this verification step can be seen in fig.13 representing
the verification logic.

However, not always the algorithm is capable of extracting
the features, as established previously, the image has a
lot of noise due the process used. The light intensity is
constantly changing due to arc’s short circuiting, making
detecting problematic for the algorithm on every received
frame. To work around this characteristic, filtering the
data was necessary with a “Buffer filter”, as called in this
paper, it was designed to do outlier rejection and handle
data loss.

This filter was designed as a vector with n positions, this
dimension is adjustable by the user. The filter optimum
dimension must be reached through testing, for reaching
a good balance in precision of the measurements and data
filtering. The data in the filter is organized in a queue
format, the newest message occupies the first position in
the vector and the last message is discarded. In this work
the dimension used in the buff filter was 15.

The Buffer Filter uses the vector’s mean value as a
threshold for new messages received, when the the data
received is above the threshold the data is considered
valid and when its below it is discarded and the first
position of the vector now will assume empty as value,



meaning that no width information was received. The
video is showed to the user with the edge detection
happening, see fig.14, it also represents two distinct
frames showed to the end user with the edge detection
running inside the region of interest.

Figure 14. Monitor video with edge detection

Both images are good to demonstrate the difference
between distinct captured frames during the material
deposition. In fig.14(a) it is possible to see a lot of fume
coming from the molten pool area, and in fig.14(b) a lot
of spatter. Both area considered noise in the system.

The information is mapped and recorded in every frame
during all deposition process. It was possible to gather
information of the width constantly and with low variance
as can be seen in Fig.15. However the raw data is obtained
with a lot of noise and two filters were added to smooth
the information. The median filter is represented by the
red line and the low-pass band filter is represented by the
blue lines. Both had adequate performance in filtering the
noise, with the low-pass having better signal-to-noise ratio
but a longer settling time when compared with the median
filter.
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Figure 15. Bead width monitoring plot

A comparison between the mean and low-pass algorithm
filtered measurements and a manual measurement by
software, shows a deviation of 1% from both
measurements. The mean measurement from both filters
output were 6.27mm and from the manually
measurements were 6.24mm when done in specific points
of the bead. The algorithm output data is much more
rich with information due to the fact that it monitors the

bead through all the planned deposition path. Figure 16
it is shown how the manually measurement was done
through an image software.

Figure 16. Manual measurements of the bead width

6. CONCLUSIONS

As showed in the present work monocular cameras are
capable of extracting important information of the
deposition, with a proper image processing algorithm,
and are also an important visual monitoring device for
the operator. It is a great option for development and
implementation in real-time monitoring system for a
WAAM system.

The width monitoring was done successfully, even under
a high noisy deposition process. In particular the short
circuit characteristic generates a lot of problems in the
acquired image, saturating and also decreases the
intensity rate between pixels. However, with the use of a
Buffer filter it was possible recording previous states and
rejecting outliers without taking them into account for
new measurements, this issue was solved and the weld
bead width could be monitored constantly.

With the possibility of doing reliable online measurement
of the bead width, some research and development
possibilities are created. Future works will be done
focusing on mapping the bead width online during and
entire layer builds, when adjacent beads will be presented
in the image. Also an algorithm for automatically
verifying the deviation, pointing areas where the presence
of defects would be higher with the support of deep
learning can be developed using this work as base.
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