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Abstract: This article explores the challenging problem of scanning historical data in order to find useful 

intervals for system identification. A review of the main works related to the subject is presented and two 

methodologies are described in detail. A single algorithm structure is then presented based on the analyzed 

methods and practical examples are given, allowing one to understand how to apply the algorithm to 

massive data. 

Resumo: Este artigo aborda o desafiador problema de realizar uma varredura em dados históricos com o 

objetivo de encontrar intervalos adequados para a realização de uma identificação de sistema. Uma revisão 

dos principais trabalhos sobre o assunto é inicialmente apresentada e, então, duas metodologias são 

descritas detalhadamente. Em seguida, uma estrutura de algoritmo é apresentada com base nos métodos 

analisados e exemplos práticos são fornecidos, permitindo o entendimento de como o algoritmo pode ser 

aplicado em dados históricos massivos. 
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1. INTRODUCTION 

System Identification is a set of techniques used to 

mathematically model the dynamics of a system. The ability to 

create industrial process models is extremely relevant for 

industry, once it allows the development of different activities 

that aggregate value to companies, such as designing advanced 

controllers (like Model Predictive Controllers), providing 

optimal tuning of Proportional Integral Derivative (PID) 

controllers, developing training simulators, detecting possible 

system failures, checking for process quality and performing 

predictive maintenance. 

Although System Identification is entirely dependent on data, 

it does not take advantage of the data management 

infrastructure available in many companies. This is because, 

most of the time, the data used to model an industrial process 

is collected by physical experiments that excite the process 

variables and create a dynamic response. The execution of 

these experiments is usually undesirable, since there is a cost 

to deviate the process from its production operating condition 

and the fact that experiments can take a long time to be 

successfully completed. It is quite natural, therefore, the idea 

to use the large amount of historical process data available in 

many companies to accomplish this task. 

Using historical measured data to automatically find useful 

models of an industrial process is not a trivial task and few 

works in the literature directly address this problem. 

The problem was explicitly introduced by the first time in 

(Peretzki et al., 2011), where an approach based on the 

Laguerre Model structure was used to find suitable intervals 

for system identification in closed-loop systems. A more 

detailed version of this work was published in (Bittencourt et 

al., 2015). A similar approach can be found in (Shardt; Huang, 

2013a), but using an Autoregressive Moving Average with 

Exogenous Inputs (ARX) model structure. 

In (Shardt; Huang, 2013b), statistical properties of the 

discrete-time signal entropy were studied and a change 

detection index was proposed to perform the segmentation of 

time series data. This work was used in (Shardt; Shah, 2014) 

as an additional step to the method proposed in (Peretzki et al., 

2011), where a differential entropy between the input and the 

output is used to find similar segments of excitation. In 

(Ribeiro; Aguirre, 2015), a method based on the 

Autoregressive (AR) structure was proposed using routine 

operating data. 

The multivariable problem was introduced in (Patel, 2016), 

where an extension of the works in (Peretzki et al., 2011) and 

in (Bittencourt et al., 2015) is proposed to include Multiple 
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Input Multiple Output (MIMO) systems in the analysis of the 

open-loop identification scenario. The multivariable problem 

for closed-loop systems was addressed in (Arengas; Kroll, 

2017a). Moreover, in (Arengas; Kroll, 2017b), an open-loop 

analysis was also presented using the ARX structure. 

In (Wang et al., 2018), a new method to search data segments 

suitable for system identification was presented, totally based 

on statistical methods, in which the authors applied a top-down 

approach to detect change-points in the data. 

Finally, in (Shardt; Brooks, 2018), the problem of searching 

intervals for MIMO systems in closed-loop mode and using 

operating data was addressed. 

Herein, two methods are compared based on the reviewed 

literature. More specifically, the works published in (Peretzki 

et al., 2011), (Shardt; Huang, 2013a), (Bittencourt et al., 

2015), (Ribeiro; Aguirre, 2015) and (Arengas; Kroll, 2017a) 

are summarized in two methods, both using numerical 

conditioning as the basis to validate adequate time intervals to 

obtain a process model operating in closed-loop control. 

Moreover, the top-down change-point detection presented in 

(Wang et al., 2018) is proposed as an optional first step of the 

explained methods. Finally, a generic algorithm structure is 

presented and its use is exemplified through data from the step 

response of a pH neutralization process. 

This paper is organized as follows: the mathematical 

background necessary to understand the methods that are 

compared is described in Section 2; then, two different 

segmentation methods are presented in Section 3 based on the 

reviewed literature, where they are combined into a single 

algorithm; finally, examples of application are given in Section 

4, with conclusions being drawn on Section 5. 

2. MATHEMATICAL BACKGROUND 

2.1  Open-loop and Closed-loop Identification 

Consider a closed-loop system as in Fig. 1. Notice that 𝐶(𝑞) is 
the controller transfer function; 𝐺(𝑞) is the process model; 

𝐻(𝑞) is the disturbance model; 𝑟(𝑘) is the process set point; 

𝑢(𝑘) is the output of the controller (manipulated variable); 

𝑑(𝑘) is a measured disturbance; 𝜈(𝑘) is measurement white 

noise and 𝑦(𝑘) is the process output (controlled variable). 

 

Fig. 1. Closed-loop system (Adapted from Wang et al., 

2018). 

A closed-loop identification is commonly known as the 

process to obtain the model 𝐺(𝑞) when the system contains a 

feedback control loop, as in Fig. 1. Different identification 

approaches can be used in this scenario, some of them are 

described in (Ljung, 1999), such as the “Direct Approach” and 

the “Indirect Approach”. However, one could also obtain a 

model of the system considering the set point and the output 

variable, in which case the resulting model includes the 

controller transfer function 𝐶(𝑞). In this work, a model of the 

process 𝐺(𝑞) is the ultimate goal. 

Notice that to identify a model with the process operating in 

closed-loop, if the control algorithm is complex enough, a 

process model can be obtained in the presence of disturbances, 

as detailed in (Bittencourt et al., 2015). 

The necessary conditions to obtain a process model using an 

ARX structure for systems operating in closed-loop control are 

studied in (Shardt; Huang, 2013a). This problem is also 

addressed in (Bittencourt et al., 2015) and it is shown, in a 

general manner, that if the set point signal is persistently 

exciting, one has enough information to obtain a model 

through closed-loop identification. For this reason, in this 

paper, potential intervals with meaningful excitation in both 

the set point and in the output variables are first found. Then, 

the manipulated variable and the output variable are used to 

evaluate the numerical properties of these intervals. 

2.2  Least Squares Problem 

Industrial processes are usually modeled through time series 

regression models. A common approach to estimate the 

parameter vector of a particular regression model is through 

the prediction error methods. Let us assume a generic Linear 

Regression model structure as follows (Aguirre, 2015): 

𝑦(𝑘) =  𝜓𝑦𝑢
𝑇 (𝑘 − 1)�̂� +  𝜉(𝑘). (1) 

The prediction error in this case is defined as: 

𝜉(𝑘, �̂�) = 𝑦(𝑘) − 𝜓𝑦𝑢
𝑇 (𝑘 − 1)�̂�. (2) 

where 𝜓𝑦𝑢
𝑇 (𝑘 − 1)�̂� is the regression prediction using 

information available until the discrete-time instant 𝑘 − 1. 

One can also represent this prediction as �̂�(𝑘|𝑘 − 1) =  
𝜓𝑦𝑢
𝑇 (𝑘 − 1)�̂�, which is called the one step ahead prediction 

(Aguirre, 2015). 

Because the objective of this work is to find intervals of data 

suitable for system identification, let us consider a data sample 

of length 𝑁𝑠. So, for this sample, an estimation �̂�𝑁𝑠 of the 

regression parameter vector can be obtained through the 

solution of the Least Squares Problem, defined as (Aguirre, 

2015): 

�̂�𝑁𝑠 = argmin�̂� 
∑ [𝑦(𝑘) − 𝜓𝑦𝑢

𝑇 (𝑘 − 1)�̂� ]
2𝑁𝑠

𝑘=1 . (3) 

A closed solution for Equation (3), considering this data 

sample, can be obtained as (Aguirre, 2015): 

�̂�𝑁𝑠 = [
1

𝑁𝑠
∑ 𝜓𝑦𝑢(𝑘 − 1) 𝜓𝑦𝑢

𝑇 (𝑘 − 1)

𝑁𝑠

𝑘=1

]

−1

× 

[
1

𝑁𝑠
∑  𝜓𝑦𝑢(𝑘 − 1) 𝑦(𝑘)
𝑁𝑠
𝑘=1 ] . 

(4) 



 

 

     

 

It is important to say that the solution to the Least Squares 

Problem is only feasible if the inverse of matrix �̂�𝑁𝑠 =

 
1

𝑁𝑠
∑ 𝜓𝑦𝑢(𝑘 − 1) 𝜓𝑦𝑢

𝑇 (𝑘 − 1)
𝑁𝑠
𝑘=1  exists. This is a symmetric 

and positive definite matrix, frequently called the Information 

Matrix. 

2.3  Laguerre and Autoregressive (AR) Model Structures 

2.3.1  Autoregressive (AR) Structure 

The autoregressive model is a linear structure composed of 

delayed observations of the output variable. The difference 

equation for this structure is 𝑦(𝑘) − 𝑎1𝑦(𝑘 − 1) − ⋯−
𝑎𝑛𝑦𝑦(𝑘 − 𝑛𝑦) =  𝜈(𝑘), where 𝑛𝑦 is the model order (Aguirre, 

2015). The regressor vector and the parameter vector for this 

model are: 

𝜓𝑦𝑢
𝑇 (𝑘 − 1) = [𝑦(𝑘 − 1)…𝑦(𝑘 − 𝑛𝑦)]. (5) 

�̂� = [�̂�1… �̂�𝑛𝑦]
𝑇
. (6) 

2.3.2  Laguerre Structure 

The Laguerre structure was first proposed for system 

identification in (Wahlberg, 1991). While the AR structure 

only considers delayed versions of the output, the Laguerre 

structure only considers filtered versions of the input variable 

𝑢(𝑘), as follows: 

𝑦(𝑘) =  ∑ �̅�𝑖𝐿𝑖(𝑞, 𝛼)𝑢(𝑘)

𝑛𝑏

𝑖=1

. (7) 

where 𝐿𝑖(𝑞, 𝛼) =  
√(1− 𝛼2 )

𝑞− 𝛼
(
1−𝛼𝑞

𝑞− 𝛼
)
𝑖−1

 is the Laguerre Filter, 𝛼 

is the Laguerre filter pole and �̅�𝑖  are the regressor parameters. 

It is interesting to mention that the Laguerre Structure is 

implicitly capable of estimating the time delay of the system. 

As explained in (Peretzki et al., 2011), the maximum delay �̅� 

that can be incorporated in this model structure is �̅� =

 
−2(𝑛𝑏−1)𝑇𝑠

log (𝛼)
, with 𝑛𝑏 being the model order and 𝑇𝑠 the sampling 

period. 

Based on the reviewed literature and on the experiments 

performed by the authors when mining historical data, typical 

values for the Laguerre Filter order and pole are chosen in the 

following ranges: 𝑛𝑏  ∈ [8, 10] and 𝛼 ∈ [0.8, 0.95]. 
Moreover, Laguerre poles too close to 1 produce information 

matrices with very large condition numbers, as well shown in 

(Patel, 2016). 

The regressor vector and the parameters vector for this 

structure are defined bellow: 

𝜓𝑦𝑢
𝑇 (𝑘) = [𝐿1(𝑞, 𝛼)𝑢(𝑘)… 𝐿𝑛𝑏(𝑞, 𝛼)𝑢(𝑘) ]. (8) 

�̂� = [�̅�1… �̅�𝑛𝑏]
𝑇
. (9) 

2.3.3  Regressor Matrix 

Given a regression structure such as the AR or the Laguerre, a 

regressor matrix for an interval of data of length 𝑁𝑠 can be 

defined as (Aguirre, 2015): 

ψNs = [

𝜓1(𝑘) 𝜓2(𝑘) ⋯ 𝜓𝑛𝜃(𝑘)

⋮ ⋮ ⋱ ⋮
𝜓1(𝑘 + 𝑁𝑠) 𝜓2(𝑘 + 𝑁𝑠) ⋯ 𝜓𝑛𝜃(𝑘 + 𝑁𝑠)

]. (10) 

where ψNs  ∈  ℝ
𝑁𝑠  × 𝑛𝜃 . In this case, Equation (4) can be 

rewritten as: 

�̂�𝑁𝑠 = [ψNs
T ψNs]

−1
ψNs
T 𝑦. (11) 

2.4  QR-Decomposition 

A numerically more stable solution to the Least Squares 

Problem is obtained in (Peretzki et al., 2011) through the so-

called QR-decomposition, which consists of decomposing a 

matrix 𝐴 ∈  ℝ𝑚 × 𝑛 in the form 𝐴 = 𝑄𝑅, with matrix 𝑄 ∈
ℝ𝑚 × 𝑚 being orthogonal and matrix 𝑅 ∈  ℝ𝑚 × 𝑛 being upper 

triangular (Verhaegen; Verdult, 2007). 

As explained in (Peretzki, et al. 2011), the Least Squares 

Problem can be solved through the QR-decomposition of 

matrix 𝐴 = [ψNs   𝑌], with 𝑌 ∈  ℝ𝑁𝑠  being the output sample 

and ψNs  ∈  ℝ
𝑁𝑠  × 𝑛𝜃  being the regressor matrix for a data 

sample of length 𝑁𝑠 and for a given model structure of order 

𝑛𝜃. Matrix 𝑅 can then be written as follows (Peretzki, et al. 

2011): 

𝑅 = [
𝑅0
⋮
0
] ,      𝑅0 = [

𝑅1 𝑅2
0 𝑅3

]. (12) 

with 𝑅0  ∈  ℝ
𝑁𝑠 × (𝑛𝜃+1), 𝑅1  ∈  ℝ

𝑛𝜃 × 𝑛𝜃 , 𝑅2  ∈  ℝ
𝑛𝜃 × 1 and 

𝑅3 being a scalar value. 

As shown in (Peretzki, et al. 2011), the Least Squares Problem 

can be solved using the QR-decomposition through 𝑅1�̂� = 𝑅2, 

being the Information Matrix rewritten as: 

�̂�𝑁𝑠 =  
1

𝑁𝑠
ψ𝑇ψ = 

1

𝑁𝑠
𝑅1
𝑇𝑅1. (13) 

2.5  Singular Value Decomposition 

The Singular Value Decomposition consists of transforming a 

matrix 𝐴 ∈  ℝ𝑚 × 𝑛 into the form 𝐴 = 𝑈Σ𝑉𝑇, with 𝑈 ∈
 ℝ𝑚 × 𝑚 and 𝑉 ∈  ℝ𝑛 × 𝑛 being orthogonal matrices. The 

elements of matrix Σ ∈  ℝ𝑚 × 𝑛 are all zero, except for the 

diagonal elements 𝜎𝑖 , which are ordered as 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥
 𝜎𝑟 > 𝜎𝑟+1 = ⋯ = 𝜎𝑘 = 0. (Verhaegen; Verdult, 2007). 

Notice that 𝑟 = rank(𝐴) and that 𝑘 =  𝑚𝑖𝑛(𝑚,𝑛). The 

singular values of matrix 𝐴 can be defined as the diagonal 

elements 𝜎𝑖  of matrix Σ. As will be clear in this paper, singular 

values can be very handful for numerically computing the rank 

of a matrix. 

3. SEGMENTATION METHODS 

3.1  Method 1: A Condition Number Approach 



 

 

     

 

The method presented in this subsection is based on (Peretzki 

et al., 2011), (Shardt; Huang, 2013a), (Bittencourt et al., 2015) 
and (Arengas; Kroll, 2017a). In this paper, the method is 

broken down into three main steps, following a structure 

similar to the one proposed in (Patel, 2016). 

3.1.1 Step 1: Finding potential intervals through the search of 

meaningful excitations 

When one is looking at historical process data, most of the data 

are not useful for system identification. In fact, the majority of 

the data are in steady state or disturbed by noise. This is why 

the first step of the method is to find moments where the signal 

was significantly “active” and so, could be useful to find a 

dynamic model of the system. In order to find these initial 

intervals of excitation, an Exponentially Weighted Moving 

Average (EWMA) filter is applied in (Peretzki, et al. 2011), as 

shown below: 

𝜇𝑥(𝑘) =  𝜆𝜇 × 𝑥(𝑘) + (1 − 𝜆𝜇) × 𝜇𝑥(𝑘 − 1). (14) 

𝑆𝑥(𝑘) =
2−𝜆𝜇

2
− (𝜆𝑆 × (𝑥(𝑘) − 𝜇𝑥(𝑘))

2 + (1−

 𝜆𝑆) × 𝑆𝑥(𝑘 − 1)). 
(15) 

where 𝜇𝑥(𝑘) is an estimate of the signal average and 𝑆𝑥(𝑘) is 

an estimate of the signal variance. Moreover, 𝜆𝜇 and 𝜆𝑆 are, 

respectively, the mean and the variance exponential forgetting 

factors. 

Potential intervals can then be found setting a threshold to the 

estimated variance, such that every point that satisfies 𝑆𝑥(𝑘) >
𝑙𝑠 is marked as useful. In this work, the set point and the output 

variables are the ones investigated. In fact, the existence of 

excitation in the set point is considered a requirement, once the 

closed-loop identification case is being considered. 

3.1.2 Step 2: Assessing the Numerical Conditioning of the 

Potential Intervals 

The second natural step of the algorithm consists of evaluating 

if the potential intervals obtained by Step 1 are valid 

candidates for system identification. A given interval of length 

𝑁𝑠 is considered useful for system identification if the 

Information Matrix �̂�𝑁𝑠 , defined in Equation (13), for this 

interval is numerically well conditioned and, thus, could be 

inverted to solve the least squares problem in Equation (11) 

(Bittencourt et al., 2015). 

In this method, the regressor matrix is obtained by the 

Laguerre Filter structure as defined in Equations (7) - (9). To 

assess the numerical conditioning of the information matrix, it 

is proposed in (Peretzki, et al. 2011) the computation of its 

Condition Number. 

The 2 − 𝑛𝑜𝑟𝑚 condition number is considered in this method, 

being defined as follows: 

𝜅2(�̂�𝑁𝑠) =  
𝜎𝑚𝑎𝑥(�̂�𝑁𝑠) 

𝜎𝑚𝑖𝑛(�̂�𝑁𝑠  )
. (16) 

where 𝜎𝑚𝑎𝑥(�̂�𝑁𝑠) and 𝜎𝑚𝑖𝑛(�̂�𝑁𝑠) are, respectively, the 

maximum and the minimum singular values of �̂�𝑁𝑠 , as defined 

in Subsection 2.5. The closer is the 2 − 𝑛𝑜𝑟𝑚 condition 

number to 1, the better is the numerical conditioning of �̂�𝑁𝑠 . 

On the contrary, the greater is the condition number, more 

poorly conditioned is the matrix and less reliable is the solution 

of the least squares problem (Bittencourt et al., 2015). 

Therefore, 𝜅2(�̂�𝑁𝑠) must be compared to a given threshold, 

such that if a particular segment satisfies the criterion 

𝜅2(�̂�𝑁𝑠) < 𝑙𝜅, the interval is still a potential interval and the 

algorithm can move to Step 3. 

3.1.3 Step 3: Checking if the Input and the Output are 

Correlated 

The final step of this method is to verify, for every interval that 

met the criteria in Steps 1 and 2, if the input and the output 

signals are correlated. The way this test is proposed in the 

reviewed works is through the computation of an estimate �̂�𝑁𝑠 

of the parameter vector, followed by a statistical validation if 

it is sufficiently different from zero. This is done through a chi-

squared statistical test. 

An estimate �̂�𝑁𝑠 of the parameters vector can be obtained using 

the QR-decomposition as follows (Peretzki, et al. 2011): 

�̂�𝑁𝑠 = 𝑅1
−1𝑅2. (17) 

The chi-squared critical value is then computed as in (LJUNG, 

1999): 

�̂�𝑁𝑠 = �̂�𝑁𝑠
𝑇 �̂�𝑁𝑠

−1�̂�𝑁𝑠  ∈  𝜒𝑑 . (18) 

where �̂�𝑁𝑠  is the covariance matrix and 𝑑 = 𝑛𝜃  is the degree 

of freedom of the statistical test. Using the QR-decomposition, 

Equation (18) can be rewritten as (Peretzki, et al. 2011): 

�̂�𝑁𝑠 = ‖
𝑅2√𝑁𝑠

|𝑅3|
‖
2

2

. (19) 

Therefore, for a given statistical significance level 𝛼, if the 

computed statistic �̂�𝑁𝑠  is greater than its critical value 𝜒𝑑,𝛼 

(�̂�𝑁𝑠 >  𝜒𝑑,𝛼), the interval is finally considered suitable for 

system identification. 

3.2  Method 2: An Effective Ranking Method 

An alternative approach can be found in (Ribeiro; Aguirre, 

2015) and it is used as the basis of this method, where the AR 

structure is used instead. Although, in this paper, this method 

is also divided into three steps, Step 1 is considered the same 

as the one in the previous subsection and only Steps 2 and 3 

are elucidated. 

3.2.1 Step 2: Assessing the Numerical Conditioning of the 

Potential Intervals 

As an alternative to compute the condition number of the 

information matrix, this method computes the effective rank. 

One can understand the effective rank as a numerical 

estimation for the actual rank of a matrix. Therefore, for a 

matrix 𝐴 ∈  ℝ𝑚 × 𝑛, the maximum value of the effective rank 

is 𝑚𝑖𝑛(𝑚, 𝑛), in which case the matrix is considered full 

effective rank (Ribeiro; Aguirre, 2015). 



 

 

     

 

Two different ways to compute the effective rank are proposed 

in (Ribeiro; Aguirre, 2015). The first way is through the 

normalized singular values 𝑝𝑖: 

𝑝𝑖 =
𝜎𝑖
‖𝜎‖1

 ‖𝜎‖1 = ∑ |𝜎𝑖|
𝑘
𝑖=1 . (20) 

𝑟1
𝑒𝑓 =  ∑ 𝐻[𝑝𝑖 − 𝑙1]

𝑘
𝑖=1 . (21) 

where 𝐻(∙) is the Heaviside Function and 𝑙1 is the singular 

value tolerance. Here, 𝑝𝑖 is computed as in (Roy; Vetterli, 

2007). 

The second proposed way of computing the effective rank is 

by the difference of two consecutives singular values, as 

shown below: 

𝑟2
𝑒𝑓 =  ∑ 𝐻[(𝜎𝑖−1 − 𝜎𝑖) − 𝑙2]

𝑘
𝑖=2 . (22) 

Notice that the effective rank 𝑟𝑒𝑓 is an integer value that 

corresponds to the numerical estimate of the actual rank of a 

matrix. 

As in the previous method, for each potential interval, the 

effective rank of the Information Matrix can be computed and 

associated with a threshold, such that if 𝑟𝑒𝑓(�̂�𝑁𝑠) > 𝑙𝑒𝑓𝑟  for a 

particular interval, one can move to Step 3. 

3.2.2 Step 3: Checking if the Input and the Output are 

Correlated 

Because the cross-correlation of two signals is a function of 

the lag 𝜏 between them, in (Ribeiro; Aguirre, 2015) it is 

proposed a singular scalar metric for verifying if the input and 

the output are actually correlated, which is computed as 

follows: 

𝑠 =  ∑ 𝑔(𝜌(𝜏), 𝜏, 𝑝)
𝜏= 𝜏𝑚𝑎𝑥
𝜏= −𝜏𝑚𝑎𝑥

. (23) 

𝑔(𝜌(𝜏), 𝜏, 𝑝) =  

{
 

 
0,                  if |𝜌| ≤ 𝑝

|𝜌(𝜏) − 𝑝|

|𝜏|
, if |𝜌| > 𝑝 and 𝜏 ≠ 0  

|𝜌(𝜏)| − 𝑝, if |𝜌| > 𝑝 and 𝜏 = 0

. (24) 

where 𝜌(𝜏) is the normalized cross-correlation function for a 

particular lag 𝜏, 𝜏𝑚𝑎𝑥  is the maximum lag of interest and 

[−𝑝, +𝑝] defines the 95% confidence interval, with 𝑝 =

1.96 √𝑁𝑠⁄  (Ribeiro; Aguirre, 2015). 

Notice that 𝑠 is a measurement of how greater the normalized 

cross-correlation is from the limits of a 95% confidence 

interval in the lag range [−𝜏𝑚𝑎𝑥 , 𝜏𝑚𝑎𝑥]. Naturally, the greater 

is 𝑠, the greater is the correlation between the two signals. 

Again, 𝑠 can be associated with a threshold 𝑙𝑠 such that if 𝑠 >
𝑙𝑐𝑐, the signals can be assumed to be enough correlated. As in 

the previous method, if a particular interval meets the criteria 

in the three steps, it is considered adequate to obtain a dynamic 

model of the system under study. 

3.3  A Change-point Algorithm 

Another way to find the potential intervals in Step 1 of the 

previous methods is proposed in (Wang et al., 2018 apud 

Pettitt, 1979) through a top-down, non-parametric change-

point detection algorithm. A top-down algorithm is one that 

starts with the entire dataset and divides it until no further 

divisions can be found. 

As explained in (Wang et al., 2018), let us initially consider a 

data segment of length 𝑁𝑠 as 𝑥(𝑘: 𝑘 + 𝑁𝑠 − 1) =
(𝑥(𝑘), 𝑥(𝑘 + 1), … , 𝑥(𝑘 + 𝑁𝑠 − 1)). Therefore, in this 

method, the initial segment begins with the entire data: 

(𝑥(0), 𝑥(1),… , 𝑥(𝑁)), being 𝑁 its length. Notice that the 

segment of length 𝑁𝑠 is a subset of the entire dataset of length 

𝑁. 

Then, the relative position of all points in a particular segment 

of length 𝑁𝑠 can be calculated as (Wang et al., 2018): 

𝐷(𝑡) =  ∑ sign(𝑥(𝑡) − 𝑥(𝑗)) for 𝑡 =
𝑘+𝑁𝑠−1
𝑗=𝑘

𝑘, … , 𝑘 + 𝑁𝑠 − 1. 
(25) 

with sign(∙) being the signal function. The cumulative sum of 

𝐷(𝑡) is then calculated as 𝐶(𝑡) = 𝐶(𝑡 − 1) + 𝐷(𝑡), for 𝑡 =
𝑘,… , 𝑘 + 𝑁𝑠 − 1, considering the initial value 𝐶(𝑘 − 1) = 0 

(Wang et al., 2018). 

Finally, a change-point 𝜏∗ is defined as a time index that 

maximizes the absolute value of 𝐶(𝑡). A hypothesis test is 

formulated in (Wang et al., 2018) assuming the following null 

hypothesis: 

𝐻0: arg max
𝑘 ≤ 𝜏∗≤ 𝑘+𝑁𝑠−1

|𝐶(𝑡)|  is not a change point. 

The 𝑝 − value associated with this hypothesis test is defined 

as (Wang et al., 2018 apud Pettitt, 1979): 

𝑝 = 2𝑒
(
−6|𝐶(𝜏∗)|2

𝑁𝑠
2+𝑁𝑠

3 )
. 

(26) 

Therefore, for a given significance level 𝛼, 𝜏∗ is considered a 

change-point index if 𝑝 <  𝛼. If a change-point is found, the 

current data segment must be split into two new segments 

divided by this change-point (Wang et al., 2018): 

{
𝑥(𝑘: 𝜏∗) = (𝑥(𝑘), . . , 𝑥(𝜏∗))

𝑥(𝜏∗ + 1:𝑁) = (𝑥(𝜏∗ + 1), … , 𝑥(𝑁))
 

This process is then iterated and the data is further divided until 

no more change-points can be found within the significance 

level 𝛼. 

3.4 Outline of the Algorithms 

Based on the methods explained in the previous subsections 

and in the referenced works, an algorithm to automatically 

detect intervals suitable for system identification for the 

closed-loop scenario is formulated as in Fig. 2, which contains 

elements of the algorithms proposed in (Peretzki, et al. 2011), 

(Ribeiro; Aguirre, 2015), (Patel, 2016) and (Wang et al., 

2018).  

An alternative implementation of this method would be to 

allow the initial intervals to be incremented in time. In a 

similar way to what is done in (Arengas; Kroll, 2017a), instead 

of only checking if the intervals from Step 1 meet the Steps 2 

and 3 criteria, these initial intervals could be incremented in 

time until the criteria in Steps 2 and 3 are still being met. 



 

 

     

 

Notice that this algorithm could be easily adapted to the open-

loop identification scenario. The modification would be to 

look for “active” manipulated variables instead of looking for 

“active” set points in Step 1. 

 

Fig. 2. Algorithm structure to find intervals suitable for system 

identification. 

4. EXAMPLES 

In order to exemplify how the presented algorithm works and 

how it can be applied to massive data, a pH Neutralization 

Plant from the Industrial Process Control Laboratory from 

University of São Paulo is used. A simplified P&ID of the 

system can be seen in Fig. 3. Basically, the process consists of 

two circuits: one for the acid solution and another for the base 

solution. The two solutions are mixed in a reaction tank, where 

the chemical reaction occurs. In this plant, only the flow rate 

of the base solution is manipulated to control the pH value. 

The temperature, the pH and the level variables are strongly 

decoupled, such that only the pH variable will be used as a 

SISO closed-loop system. 

The data that are used consists of two consecutive step changes 

in the pH set point around the operating value of 2.8 pH. 

Moreover, before applying the algorithms, the data are 

normalized around the range [−0.5, +0.5] and a low-pass 

filter is applied to reduce high frequency noise. 

 

Fig. 3. Simplified P&ID of the pH Neutralization Process. 

4.1  Finding Initial Intervals 

As shown in Fig. 2, the first step of the algorithm is to find 

initial intervals to be evaluated as adequate to perform system 

identification. If one uses the change-point method described 

in Subsection 3.3, two values must be chosen: the statistical 

significance value and the minimum length accepted for each 

interval. Assuming a significance level 𝛼 = 0.01 and a 

minimum interval length of 1500 data points, the data would 

be divided according to Fig. 4, where the dots are the change-

point positions, the blue curve is the output variable and the 

orange curve is the set-point variable. 

 
Fig. 4. Change-point detection algorithm. (a) Iteration 1, (b) 

Iteration 2, (c) Iteration 3, (d) Iteration 4. 

Because this is a top-down algorithm, one can notice that the 

entire dataset is divided, where the final intervals are those in 

Fig. 4 (d). This implies that all intervals must be evaluated 

through Steps 2 and 3 of the algorithm. Moreover, the 

computational complexity of this algorithm is about 𝑂(𝑁2) for 

a dataset of length 𝑁 (Wang et al., 2018), which is very heavy 

for massive data. 

If one now applies the EWMA filter described in Subsection 

3.1 for different values of the forgetting factors 𝜆𝜇  and 𝜆𝑆, the 

filtered set point and output signals in Fig. 5 could be obtained. 



 

 

     

 

 

Fig. 5. (a) pH set point variance for 𝝀𝑺, 𝝀𝝁 = 𝟎. 𝟎𝟎𝟐, (b) output 

pH variance for 𝝀𝑺, 𝝀𝝁 = 𝟎. 𝟎𝟎𝟐, (c) pH set point variance for 

𝝀𝑺, 𝝀𝝁 = 𝟎. 𝟎𝟎𝟑, (d) output pH variance for 𝝀𝑺, 𝝀𝝁 = 𝟎.𝟎𝟎𝟑, 

(e) pH set point variance for 𝝀𝑺, 𝝀𝝁 = 𝟎. 𝟎𝟎𝟓, (f) output pH 

variance for 𝝀𝑺, 𝝀𝝁 = 𝟎. 𝟎𝟎𝟓. 

It is interesting to notice how sensitive the algorithm is to the 

choice of the forgetting factors, as well as to the choice of the 

associated thresholds. If the threshold of 0.001 is chosen for 

the forgetting factors 𝝀𝑺, 𝝀𝝁 = 𝟎. 𝟎𝟎𝟐, one can notice that the 

entire step response is considered. On the other hand, using the 

same threshold for forgetting factors 𝝀𝑺, 𝝀𝝁 = 𝟎. 𝟎𝟎𝟓 results 

in the initial intervals of Fig. 6. 

Notice that 𝜆𝑆 and 𝜆𝜇 were chosen with the same values to 

simplify their choices. However, individual values could be 

provided to each forgetting factor, although the authors have 

not found advantages in doing so in a practical context. 

 

Fig. 6. Initial intervals obtained with 𝝀𝑺, 𝝀𝝁 = 𝟎.𝟎𝟎𝟓. 

Finally, it is interesting to point out that the EWMA filter only 

selects “active” signals, while the change-point method returns 

the entire partitioned dataset. 

4.2  Assessing the Numerical Conditioning of the Initial 

Intervals 

To understand how each interval would be evaluated against 

its numerical conditioning, let us consider the four intervals 

from Fig. 6. Let us now apply a Laguerre Filter with pole 𝛼 =
0.95 and order 𝑁𝑏 = 10 to each interval to compute the 

condition number and the chi-squared test. In the same fashion, 

let us consider an AR structure of order 𝑛𝑦 = 100 to compute 

the effective rank and the scalar cross-correlation metric. For 

the effective rank, a tolerance of 𝑙1 = 1𝐸 − 9 is used; for the 

scalar cross-correlation metric, the delay range considered is 

[−20, 20]. 

Table 1 summarizes the resulting Condition Number and 

Effective Rank values for each potential interval. 

Table 1. Condition number and effective rank values for 

each potential interval. 

  Intervals 

Method Structure 1 2 3 4 

Condition 

Number 
Laguerre 7.2𝐸4 2.6𝐸4 3.1𝐸4 1.0𝐸5 

Effective 

Rank 
AR 37 50 42 61 

In the same way, Table 2 summarizes the resulting Chi-

squared and scalar cross-correlation values. 

Table 2. Chi-squared and scalar cross-correlation values 

for each potential interval. 

  Intervals 

Method Structure 1 2 3 4 

Chi-

squared 
Laguerre 80.4 158.9 176.9 33.9 

Cross-

Correlation 
AR 7.96 7.75 6.82 4.78 

The chi-squared critical value for a significance level of 𝛼 =
0.00001 and degree of freedom 𝑑 = 𝑁𝑏 = 10 is 41.3, which 

is higher than the value obtained for Interval 4. Moreover, 

clearly Intervals 2 and 3 have the highest chi-squared value, 

which suggests the highest cross-correlation value. 

If one considers the thresholds for the condition number, 

effective rank and cross-correlation values, respectively, as 

𝑙𝜅 = 35000, 𝑙𝑒𝑓𝑟 = 45, 𝑙𝑠 = 6.5, only Intervals 2 and 3 would 

be considered through both the condition number and the 

effective rank methods. 

In order to verify if the results above are consistent, an ARX 

structure of input order 𝑁𝑢 = 6, output order 𝑁𝑦 = 14 and 

dead time order 𝑁𝑘 = 4 was used to model all intervals, 

considering Interval 2 and Interval 3 alternately as the 

validation data. To compare the results, MATLAB FIT 

metric is used, which can be defined as: 

FIT =  100 (1 − 
‖𝑦−�̂�‖

‖𝑦−�̅�‖
). (27) 

Considering a 100 steps-ahead prediction, results in Table 3 

are obtained. Notice that training intervals are never validated 

with themselves. As expected, Interval 1 had the worst 

performance and could not result in a model at all. Intervals 2 

and 3, which had the lowest condition number and the highest 

chi-squared values, had a positive fit value, with Interval 3 

having the best performance of all. It is also interesting to point 



 

 

     

 

out that, although Interval 4 had the highest condition number, 

it also had the highest effective rank computed with the AR 

structure. If one looks at the FIT value of Interval 4, it was also 

positive. However, for both validation scenarios, this interval 

had lower performances compared to Intervals 2 and 3, which 

can probably be explained by its low cross-correlation and chi-

squared values. 

Table 3. Comparison of the cross-validation FIT values 

for each potential interval. 

 Training Intervals 

Validation 

Intervals 
1 2 3 4 

2 -126.1 ---------- 61.57 56.3 

3 -489.7 35.14 ----------- 27.78 

5. CONCLUSIONS 

Different works concerning the problem of searching intervals 

suitable for system identification in historical data are 

introduced. A few of these works are then explained in detail 

and used to present two methodologies based on numerical 

conditioning. 

From the examples presented, one can notice that the proposed 

algorithm is very susceptible to the parameter’s choice. In a 

first moment, different choices of forgetting factors 𝜆𝜇 and 𝜆𝑆 

and its associated thresholds, or different values of 𝛼 for the 

change-point detection algorithm, can lead to completely 

different results, both in the number of intervals and in their 

sizes. 

The choice of the condition number or the effective rank 

thresholds is also very delicate, since these values may not 

vary much for similar intervals. Moreover, the threshold for 

determining acceptable cross-correlation values must also be 

provided, which result in a large set of parameters to be 

chosen. In fact, the choice of parameters becomes especially 

hard in massive data, where visualization of the data is not 

possible. 

However, the presented algorithm is clearly able to find 

sufficiently “active” data and evaluate whether this data can be 

useful to estimate models. In addition, if multiple intervals are 

obtained, one can take advantage of this fact to choose the ones 

that result in better models. 
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