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Abstract— Getting the attitude of drones, underwater vehicles or other six degree of freedom (DoF) devices
is one of the most challenging tasks in the project of navigation control systems. For this reason, many projects
use proprietary software or are limited to simulations. This work presents a complete system for attitude deter-
mination capable of provide estimated attitude and calibrated measurements using MEMS, with a low-cost and
low-power microcontroller. The accelerometer and magnetometer are calibrated online on the embedded system
using least squares method without any external devices. The states estimation is computed with a fast algebraic
quaternion algorithm (less than 1.5s) using an additive linear Kalman Filter and model measurements.
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1 Introduction

One of the biggest challenges when implementing
a closed-loop control law is to estimate the system
states with precision. Frequently this task could
be even more complex than the control itself. In
mechanical applications, the states that define the
body orientation with respect to a reference sys-
tem are essential for any control system project.
In most cases, the system orientation is described
by the Euler’s angles. For example, in aeronau-
tics (Castillo et al., 2005; Voos, 2006; Oliveira
et al., 2020), quite often the controlled systems
is described using six degree of freedom (DoF),
three translational and three rotational. Typ-
ically, the translational DoF are solved using
GPS data, however, the rotational DoF, most of
time, requires inertial sensors information, and
in some cases another sensor, like optical, ultra-
sonic or video cameras (Kim et al., 2009; Spinka
et al., 2007).

Inertial sensors, which in the past were mostly
mechanical, complex and expensive, nowadays are
cheaper, smaller and faster. The microelectrome-
chanical systems (MEMS) technology have made
the inertial data acquisition become more avail-
able at increasingly cheaper prices and also low-
weight, low-power consumption and with sim-
ple functionality. Today, MEMS are present in
many consumer devices, like drones, video games,
smartphones and others, and are usually avail-
able in modules with three axes magnetometer,
gyroscope and accelerometer. This module set is
usually known as MARG (magnetic, angular rate
and gravity) (Sabatini, 2006). The main drawback
of these sensors is the noisy and time-varying bi-
ased data they produce. However, most of the
literature related to MARG sensors is devoted to
address these issues, mainly because the massive

range of MEMS inertial sensor applications. Dif-
ferent from the mechanical devices, the MEMS
sensors compensate the errors with computational
operations. The process to obtain the corrected
data, given an specified tolerance and precision,
from the sensors output along with a known ref-
erence is called calibration. Once calibrations is
completed, the next step the attitude calculation.

This work proposes a complete open source,
low-cost and low-power platform for attitude de-
termination with focusing on dynamic systems re-
search centers.

This paper is structured as follows: Sec-
tions 2.1.1 to 2.1.3 introduce briefly the cali-
brations methods for each sensor. Section 2.2
show the AQUA algorithm to obtain the measure-
ment model from accelerometer and magnetome-
ter. The sensor fusion with the Kalman filter is
presented in section 2.3. The experimental results
of calibrations and estimation are in the section 3.
Section 4 contains the concluding remarks.

2 Methodology

2.1 Calibration Methods

Each of the MARG sensors can have its mea-
surements degraded by particular factors, how-
ever, the common errors are (Titterton and We-
ston, 2004):

• Bias: constant signal with low changes, often
different in each initialization;

• Scale factor: commonly considered as a linear
value proportional to the input;

• Misalignment: due to the assembly;

• Thermal drift: additional value occasioned by
temperature changes; and
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• Quantization: white noise added by the dis-
cretization, usually proportional to the quan-
tization.

Titterton and Weston (2004) define an integrated
inertial sensors system with a dedicated computer,
assembled in a fixed base coinciding with a body
base as a strapdown platform. This configuration
is used for testing the calibration methods and for
attitude determination, mainly because the body
dynamics can be neglected (Groves, 2015). It is
well-know that each sensor has a particular cali-
bration procedure, however, roughly speaking, it
can be said that all of them use the same principle:
a reference field vector, which allows to: a) explore
the fact that the sum of the square triaxial sensor
output is equal to the reference vector inner prod-
uct; b) directly compare the reference vector to
sensors output. For example: the accelerometer is
a sensor that measures a specific force, if it is pos-
sible to rotate the platform without adding trans-
lational acceleration, the approach a) can be used.
If the strapdown platform has a parallelepiped
shape, it is possible to found a normal plane to
the gravity field for collecting data in a static po-
sition, so the principle b) can be used.

The principle a), explored in several works,
has as main difficulty the solution of nonlinear
equations. In the literature, this disadvantage is
addressed using iterative methods (Frosio et al.,
2009; Won and Golnaraghi, 2010) and nonlinear
optimization algorithms (Kuncar et al., 2017). In
this sense, Zhong et al. (2018) compute the cal-
ibration parameters applying a damped Gauss-
Newton algorithm called Levenberg-Marquardt ,
reducing the noise in the measures using a smooth-
ing filter. The approach b) provides more informa-
tion because of the usage of a vector instead of its
norm, considering the misalignment between the
body and the MARG axes (Kuncar et al., 2016).

In order to apply the same concepts to the
magnetometer, the magnitude of the magnetic
vector field as well the inclination value are both
needed, this information could be found on the
internet1. However, aligning each of the axis to
the direction of the local magnetic field is not an
easy task and furthermore, it requires additional
equipment. Therefore, the approach a) is more
common in the literature, the standard procedure,
found in many works, uses measurements collected
during full rotations, which exposes each axis to
maximum and minimum values, therewith, scale
factor and biases can be estimated (Kuncar et al.,
2016), non-orthogonality can also be considered
in the computations (Merayo et al., 2000; Bonnet
et al., 2009; Schiffler et al., 2014).

Due to the limited computational capacity in-
herent to the embedded systems, the simplifica-

1National Geophysical Data Center on website
www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml

tions made in the project are important for the
succeed of the implementation. In this sense,
special attention has to be pay to the non-
orthogonality nature of the homogeneous equa-
tion that needs to be solved either using singular
values decomposition (Schiffler et al., 2014; Bon-
net et al., 2009), adjusted least squares estimation
(Merayo et al., 2000; Markovsky et al., 2004), or
eigenvector solution (Pedley and Stanley, 2014).
The experimental results show that the simplified
model presented in the section 2.1.3 is sufficiently
accurate for the purpose of this work.

2.1.1 Accelerometer:

The method proposed by Kuncar et al. (2016),
consider misalignment between the global and
body systems, scale factor and bias, respectively
modeled by matrices Md ∈ R3×3, MFS ∈ R3×3

and b ∈ R3. Arranging the three component
of the accelerometer into the R3 vector am =[
ax ay az

]ᵀ
, the relationship between com-

pensate acceleration ac with the MARG measure-
ments is given by:

ac = Md MFS [am − b] (1)

For convenience is set R3×3 matrix M = Md MFS

and R3 vector aoffset = −Md MFSb, then
Eq. (1) can be rewrite like Eq. (2):

ac = Mam + aoffset (2)

The accelerometer calibration consist in find-
ing 12 parameters (nine of M matrix and three
of the offset vector aoffset). The Eq. (2) can be
appropriately rewritten as:

aᵀ
c =

[
aᵀ
m 1

] [ Mᵀ

aᵀ
offset

]
(3)

In an ideal scenario, with the MARG module
steady and one of the axes pointing downward, on
the gravity direction, for example, x-axes down,
Eq. (3) should read[

9.81 0 0
]

=
[
aᵀ
m 1

] [ Mᵀ

aᵀ
offset

]
(4)

and, y-axes up, the Eq. (3) is:[
0 −9.81 0

]
=
[
aᵀ
m 1

] [ Mᵀ

aᵀ
offset

]
(5)

It is possible to compute the calibration pa-
rameters proceeding similarly with the other
axes, collecting N non-calibrated accelerometer
measurements and arranged the i-th measure-
ments on i-th row of matrix W ∈ RN×4 like[
ax ay az 1

]
, and simultaneously, each row

of the matrix Y ∈ RN×3 are completed with cor-
rected value that sensor should present. With N
samples, the system are formed:

YN×3 = WN×4

[
Mᵀ

aᵀ
offset

]
4×3

(6)



The parameters are then obtained using the last
squared method by solving Eq. (7)[

Mᵀ

aᵀ
offset

]
= (WᵀW)

−1
WᵀY (7)

2.1.2 Gyroscope

The gyroscope measures angular rate, then for a
precise calibration is required a device that pro-
vides know rotations, thus, the calibration method
introduced insection 2.1.1 can be applied and the
calibration parameters can be found. If the non-
linearity and misalignment are neglected, a prac-
tical solution can be found by compensating only
the systematic error as follows:

bgiro =

∑N
i=0 ωm

N × fgiro
(8)

where fgiro is the scale factor provided by the
manufacturer and N is the number of data sam-
ples. The compensated measurements of the gy-
roscope bωc is given by Eq. (9)

ωc = fgiro · (ωm − bgiro) (9)

2.1.3 Magnetometer:

The magnetometer generally is used to measure
magnetic field direction of Earth. So, for the at-
titude, the additional magnetic influence can be
eliminated from magnetometer output, given by
vector mm ∈ R3. Considering an attitude matrix
R ∈ R3×3, the relationship between measure mm

and the local Earth magnetic field vector me ∈ R3

(Pedley and Stanley, 2014) is given by

mc = R me (10)

Although the same errors present on the ac-
celerometer calibration can be found in magne-
tometers, there are two particular characteristics
called soft-iron and hard-iron that should be con-
sider on the magnetometer calibration method.
Soft-iron is an electromagnetic interference gen-
erate by elements of the device itself and can be
time-dependent. In practical approaches, soft-iron
effects change the scale factor. We represent this
effects with the matrix S ∈ R3×3. Hard-iron er-
rors are generated by ferromagnetic devices close
to the sensor, which may add time invariant con-
stant values to the sensor’s output. The hard-iron
errors are denoted by the vector b ∈ R3. The
magnetometer’s measurements degraded by these
two interference mm can be modeled as Eq. (11)

mm = Smc + b (11)

where mc = Rme. With the measurements mm,
we can, by geometric approach, obtain the com-
pensated measurements mc – which is the same
as Rme – then:

Rme = S−1 (mm − b) (12)

where S = diag
(
xsf ysf zsf

)
. Note that

mᵀ
eR

ᵀ Rme = mᵀ
e me represent the module of lo-

cal magnetic field, which is assumed to be con-
stant.

mᵀ
eme = (mm − b)

ᵀ
S−ᵀS−1 (mm − b) (13)

Expanding the terms of the Eq. (13) we have:

mᵀ
eme =

(
mx − bx
xsf

)2

+

(
my − by
ysf

)2

+

(
mz − bz
zsf

)2

(14)
From the geometric perspective, if we rotate

the MARG module, the constant field should gen-
erate an ellipsoid. Mathematically this is verified
in Eq. (14). In an ideal setting, the surface gen-
erated by the rotations should be a perfect sphere
with center on origin, but the hard-iron effects
shifts the center locus and the soft-iron deforms
the perfect sphere into an ellipsoid. The geomet-
ric method can be considered as the procedure
of the shifted ellipsoid parameterization in a cen-
tered sphere with radius R that should be equal
to the local magnetic field module. Therefore, the
magnetometer calibration consists in estimate the
scale factor and bias that make the transformation
possible.

m2
x−2mxbx+b2x+

(
xsf
ysf

)2 (
m2
y − 2myby + b2y

)
+(

xsf
zsf

)2 (
m2
z − 2mzbz + b2z

)
= x2

sf
R2 (15)

We can rewrite Eq. (15) on matrix form:

m2
x =


mx

my

mz

−m2
y

−m2
z

1



ᵀ



2bx

2
(
xsf

ysf

)2

by

2
(
xsf

zsf

)2

bz(
xsf

ysf

)2(
xsf

zsf

)2

ξ


(16)

where ξ = x2
sf
R2 − b2x −

(
xsf

ysf

)2

b2y −
(
xsf

zsf

)2

b2z.

Eq. (16) associates the measurements in linear
form, and can be rewrite as

w = Hx (17)

For the i-th measurements of the N
samples, mx

2 is allocated on i-th vec-
tor element w ∈ RN and simultaneously,[
mx my mz −m2

y −m2
z 1

]
on i-th

matrix row H ∈ RN×3 are function of the
magnetometer measurements. The vector x ∈ R3

contain all the parameters that compensate the
sensors measurements obtained by the least
squared method

x = (HᵀH)
−1

Hᵀw (18)



The vector x = [x0, . . . , x5]ᵀ is the Eq. (18)
solution and makes it possible to obtain the cali-
bration parameters

bx =
x0

2
ysf =

√
x2
sf

x3

by =
x1

2 · x3
zsf =

√
x2
sf

x4

by =
x2

2 · x4

xsf =

√
x5 + b2x + x3b2y + x4b2z

R

(19)

where xi as i-th component from vector x. The
compensated magnetometer data it is obtained
with Eqs. (10) and (12).

2.2 Measurement model

In Valenti et al. (2016) is introduced the Algebraic
Quaternion Algorithm (AQUA), where the orien-
tation quaternion is obtained algebraically. The
body and inertial frames are denoted by b and i
respectively. We assume the Earth it is an iner-
tial frame. The ix and iz coinciding with mag-
netometer north and gravitational direction. The
accelerometer, gyroscope and magnetometer mea-
surements are arranged into the ba, bω and bm

ba =
[
ax ay az

]ᵀ
(20a)

bω =
[
ωx ωy ωz

]ᵀ
(20b)

bm =
[
mx my mz

]ᵀ
(20c)

The measurement is a quaternion that is
function of the accelerometer and magnetometer
reads, denoted in this work as qobs and is obtained
with the quaternion product

b
iqobs =b

Π qaccel ⊗Π
i qmag (21)

where :

b
Πqacel =


√

2
2

[
κ1 −ayκ1

ax
κ1

0
]ᵀ

, az ≥ 0
√

2
2

[
−ayκ2

κ2 0 ax
κ2

]ᵀ
, az < 0

(22a)

and

κ1 =
√

1 + az (22b) κ2 =
√

1− az (22c)

With the qaccel, the magnetometer measure-
ment in body reference is rotated to intermediate
frame Π with:

Πlq =b
Π qacel ⊗ bmq ⊗ b

Πq∗acel (23)

where bmq the magnetometer measurement write
as pure quaternion, then to find the quaternion

that rotate the magnetometer in intermediate
frame to inertial frame we are using the follow-
ing system:

Πlq =Π
i qmag ⊗ ilq ⊗ Π

i q∗mag (24)

qmag rotated from the inertial frame to the
intermediate one is given by:

Π
i qmag =


√

2
2

[
β1√

Γ
0 0

ly
β1

]ᵀ
lx ≥ 0

√
2

2

[
ly
β2

0 0 β2√
Γ

]ᵀ
lx < 0

(25a)
where Γ = l2x + l2y and

β1 =

√
Γ + lx

√
Γ

(25b)
β2 =

√
Γ− lx

√
Γ

(25c)

2.3 Estimation

It is well known that through integration it is pos-
sible to obtain the attitude using the gyroscope
measurements exclusively, but as will be see in
the results, the angular-rate integral can diverge
very quickly. In the literature some practical solu-
tions include sensor fusion, for example, the com-
plementary filters with constant gain presented
in (Madgwick et al., 2011) and the adaptive gain
in (Valenti et al., 2015), also the well known lin-
ear Kalman filter (KF) (Valenti et al., 2016; Guo
et al., 2017; Feng et al., 2017) and the ex-
tended Kalman filter (EKF) (Sabatini, 2006; Ba-
roni, 2017). Complementary Filters can be com-
putationally more efficient, however, they rely on
experimental results for tuning the gains and it
can work well only in specific cases. On the other
hand, the Kalman filter is an optimal estimator
with respect to the minimal mean-squared error.
In this section will present the Kalman filter from
the perspective of sensor fusion.

With the initial conditions

q+
k=0

= q0 (26) P+
k=0

= P0 (27)

The quaternion q−k and the covariance matrix
of the linear prediction P−k are propagated with
the previously estimated quaternion q+

k−1 and the
last angular rate from the gyroscope measurement
bωk. Mathematically,

q−k = Ak

(
bωk

)
q+
k−1 (28)

P−k = AkP
+
k−1A

ᵀ
k

(
bωk

)
+ Qk (29)

Qk represent the process noise covariance and
Ak is the transition matrix

Qk =

(
∆t

2

)2

Gk

∑
g
Gᵀ
k (30)

Ak

(
bωk

)
= I4 +

∆t

2
Ω
(
bωk

)
(31)



To compute process noise covariance it is nec-
essary the covariance matrix R3×3

∑
g =

diag
(
σx σy σz

)
, where σx, σy and σz are

standard deviation of the gyroscope axes on body
frame. The Gk and Ω

(
bωk

)
are

Gk

(
q+
k−1

)
=


q1 q2 q3

−q0 q3 −q2

−q3 −q0 q1

q2 −q1 −q0

 (32)

Ω
(
bωk

)
=


0 ωx ωy ωz
−ωx 0 ωz −ωy
−ωy −ωz 0 ωx
−ωz ωy −ωx 0

 (33)

With the quaternion measurement
qobsk

(
bak,

b mk

)
and covariance matrix mea-

surement Rk

(
bak,

b mk

)
, the updating process

for the Kalman gain Kk, the estimated state q+
k

and a posteriori covariance matrix P+
k is:

Kk = P−k
(
P−k + Rk

)−1
(34)

q+
k = q−k + Kk

(
qobsk − q−k

)
(35)

P+
k = (IN −Kk) P−k (36)

Rk is the covariance matrix of the additive
noise of the measurement. To compute this ma-
trix we need the standard deviation of the ac-
celerometer and the magnetometer measurements
and also the Jacobian matrix J = ∂qobs

u , where

u =
[
ba bm

]ᵀ
. This matrix is omitted here

but can be consulted in Valenti et al. (2016).

3 Experimental Results

The platform consists of two modules: an
open-source microcontroller ESP32 with Tensilica
Xtensa LX6 240 MHz with 4 MiB flash memory;
nine Dof MARG MPU-9250 — both low-cost and
low-power. For telemetry, the ESPNOW proto-
col was used that support 250 B of payload trans-
fer. The ESPNOW and ESP32 was developed by
the Chinese Espressif and the MPU-9250 by In-
venSense (InvenSense, 2016; Espressif, 2020). The
internal components and the platform itself can
be seen in Figs. 1a and 1b respectively. The par-
allelepiped shape of the platform is essential for
calibrating the accelerometer.

3.1 Calibration methods results

In the performance evaluation stage of the cali-
bration methods, the implementation sends un-
compensated and compensated MARG data to a
PC at 50 Hz. When the actual calibration pro-
cess starts 100 measurements are collected from
six different positions and the procedure presented
in sections 2.1.1 and 2.1.2 is applied and the cal-
ibration parameters computation take place. In

ESP32

Battery pack

MPU–9250

(a) Internal parts

150mm10
0m

m

60
m

m

(b) Platform case

Figure 1: Platform used for the experiments. The
internal components are shown at the top and the
platform itself is shown at the bottom.

a second stage, the platform is rotated around
all three axes and 1000 samples are collected,
then, the magnetometer calibrated parameters
are computed following the procedure described
in section 2.1.3. The gravitational and mag-
netic field used as reference were 9.80 m s−2 and
|me|=22.8968 µT respectively.

0 500 1000 1500 2000 2500 3000
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9.4

9.6

9.8

10.0

10.2

|a
|,

m
s−

2

bam: 9.8353±0.2181, m s−2

bac: 9.8004±0.0723, m s−2

Figure 2: Norm of bam and bac. The gravity ref-
erence value is g = 9.80 m s−2

Fig. 2 shows the accelerations norm bam and
bac for 3000 samples collected with the platform
steady in six different positions. The calibration
methods keep the bac norm very close to the ref-
erence and reduces up to 66% the standard de-
viation with respect to bam. Fig. 3 shows 600
samples for the three gyroscope axes with plat-
form stopped. Different from the accelerometer,
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Figure 3: Systematic error compensation results
related to the angular velocities ωx, ωx and ωz.
The methods does not change the measurements
standard deviation.

the calibration method do not affect the standard
deviation, but only the measurements mean. To
assess the effect of having disregarded the scale
factor, an external reference velocity device would
be needed. Nevertheless, according to the manu-
facturer, gyroscope non-linearity is around 0.1%,
which is five times smaller than the accelerometer
non-linearity. Thus, for typical mechanical device
we have good results.
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Figure 4: bmm and bmc measurements from the
magnetometer. Misalignment from the reference
is shown in blue and deformation is shown in or-
ange.

Fig. 4 show the state space and the three-
dimensional representation of the magnetometer
measurements. The curves in black on state space

representations have radius equal to |me|, it can
be see that the non-centralized distribution is
more significant than the deformation, in other
words, the hard-iron interference is more distin-
guishable than soft-iron influence, given this, it
can be said that, disregard the axis misalignment
could be an adequate simplification.

3.2 Estimation method results

For the performance evaluation of the online es-
timator, the platform is manually rotated dur-
ing 12 s while it sends the nine compensated
data of the three MARG sensors, along with four
estimated quaternion components, three Euler’s
angles and the time ∆t elapsed since the last
data sent. Note that 17 floats amount to 68 B,
which represents just 26,67% of maximum pay-
load. Fig. 5 shows the normalized bac,

bmc, and
bωc in rad s−1. The curves smoothness for the
accelerometer and the gyroscope, in the first and
the third plots, is due to the 20 Hz digital low-
pass filter (DLPF), available for these sensors in
the MPU-9250.
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Figure 5: Acceleration, magnetic field and angular
rate for the three access, collected from the MARG
during the performance evaluation.

With the compensated measurements and ∆t
aldeary computed, it is possible to construct the
four quaternions: qobs and q− obtained from
Eqs. (21) and (28), qgiro which results of pure inte-
gration with initial condition qgiro|

k=0
= q+|

k=0
,

and the estimated quaternion q+ can be computed
using Eq. (35).

Fig. 8 shows the quaternions time evolution.
Note that these are online computations, which
are obtained and transmitted by the platform in
real time.

The Euler’s angles shown in Fig. 6 are com-
puted from the quaternions shown in Fig. 8. If
the accelerometer and the magnetometer mea-
surements were used exclusively in the compu-
tations, we would expect more noisy estima-
tions. Similarly, if just the gyroscope measure-



ment were used, then a fast deviation would be
obtained. Sensor fusion with Kalman filter pro-
vides a smoother result without deviations. The
results obtained seems not to be affected whether
float or double variables are used in the compu-
tations, nevertheless, the time consumption using
double type is ≈2.5 times bigger than when using
float type, as shown figure Fig. 7.

The computational implementation uses the
open-source Eigen library C++ 3.3.7 and com-
piled with -Ofast (Guennebaud et al., 2010).
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4 Conclusions

This work shows that is possible to obtain the at-
titude with a low-cost and low-power microcon-
troller and a MARG unit. The simplifications on
the calibration methods were justified by the good
experimental results obtained, given the embed-
ded hardware limitations. The estimation using
algebraic quaternion does not require any opti-
mization or iterative methods, providing a fast
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Figure 8: qobs, q+, q− and qgyro quaternion com-
ponents. q+ was estimated online. qobs, q− and
qgiro it was constructed from the data seen in
Fig. 5

response in a relative simple project. This con-
tribution provides a tested and easily mounted
platform that can be used for research purposes
on drones or any another mechanical devices for
research on dynamics and control laws implemen-
tations.

Data Access

The source code of the proposed algorithm
is upload on https://gitlab.com/roneydua/

plataformastrapdown.git.
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