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Abstract: The use of Remaining Useful Life (RUL) predictions as a decision support tool has
increased in recent years. The RUL predictions can be obtained from Prognostics and Health
Management (PHM) systems that monitor the health status and estimate the failure instant
of components and systems. An example of a decision-making problem that can benefit from
RUL predictions is the load distribution problem, which is a common problem that appears
in many industrial applications. It consists in defining how to distribute a task among a set of
components. In this paper, a model to solve load distribution optimization problems is proposed.
The proposed model considers the RUL prediction of each component in its formulation. Also,
the proposed model assumes that the predicted RUL of each component is a function of the
load assigned to that component. Thus, it is possible to distribute the load to avoid multiple
components to fail in a short interval. An approach based on the MMKP (Multiple-choice
Multidimensional Knapsack Problem) is adopted. The proposed model finds a load distribution
that minimizes the operational cost subject to a maintenance personnel capacity constraint, i.e.
there is a maximum number of components that can be simultaneously on repair. A numerical
case study considering a gas compressor station is presented to illustrate the application of the
proposed model.
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1. INTRODUCTION

A decision-making problem that appears in many indus-
trial applications is the load distribution problem, which
consists in defining how to distribute a specific task among
a set of components (Mohammad et al., 2013). Most mod-
els available in the literature to solve the load distribution
problem based on a cost criterion only. In these models the
goal is to minimize total power consumption (Paparella
et al., 2013), fuel consumption (Kumar and Cortinovis,
2017), or the number of components that must be turned
on to accomplish the desired task (Mohammad et al.,
2013).

Maintenance activities may have a huge impact on op-
erational cost and system availability. Therefore, a load
distribution model should consider how a load distribution
solution affects maintenance activities. For this purpose,
Prognostics and Health Management (PHM) systems must
provide a Remaining Useful Life (RUL) prediction for each
component based on the load assigned to that component.
A reliability approach has been proposed to compute the
degradation rate of each component based on the load
distribution solution (Mohammad et al., 2013).

Each possible solution for a load distribution problem has
an associated set of RUL predictions that depends on the
load assigned to each component. If these predictions are
not considered, the solution may cause multiple failure
events in a short interval, and the demand for the mainte-
nance personnel may exceed its capacity. Also, if multiple
components are failed, the remaining components may not
be able to execute the task accordingly.

In this paper, a load distribution model based on RUL
predictions is proposed. The proposed model uses RUL
predictions based on the load assigned to each compo-
nent. An approach based on the MMKP (Multiple-choice
Multidimensional Knapsack Problem) is adopted. The pro-
posed model finds a load distribution to minimize total
power consumption subject to a maintenance personnel
constraint that limits the number of components that can
be simultaneously failed due to the capacity of mainte-
nance personnel. A numerical case study considering a gas
compressor station is presented to illustrate the applica-
tion of the proposed model. The results show that, with a
small increase in power consumption, the proposed model
finds a solution that results in a failure distribution that
does not violate the maintenance capacity constraint.
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The rest of this paper is organized as follows. Section 2
describes the load distribution problem. Section 3 provides
a basic theoretical background on Prognostics and Health
Management (PHM) techniques and the Multiple-choice
Multidimensional Knapsack Problem (MMKP). The pro-
posed model is presented in section 4. Section 5 shows a
case study considering a gas compressor station to illus-
trate the application of the proposed model. Concluding
remarks are presented in section 6.

2. PROBLEM DESCRIPTION

Consider a system composed of n components connected
in parallel that are used to execute a task. A maintenance
team with a limited repair capacity is responsible for
executing the maintenance interventions required by the
set of components. It is desired that the number of failed
components at any time does not exceed the maintenance
team capacity, denoted by k.

A PHM system provides a RUL prediction for each compo-
nent Ci, with i = {1, . . . , n}. The RUL prediction for each
component Ci, denoted by RULi, is a function of the load
Li assigned to the component. The power consumption of

each component Ci, denoted by P
(i)
C , can also be expressed

as a function of load Li.

Figure 1 shows the estimated maintenance demand ob-
tained with two different load distribution solutions. A
system with 3 components is considered. The maintenance
capacity k is 1. In Figure 1(a), the load distribution caused
components C2 and C3 to have the same RUL predictions.
In this case, maintenance demand would exceed the main-
tenance capacity k = 1.

Fig. 1. Impact of load distribution on maintenance de-
mand. (a) Load distribution that causes a simulta-
neous failure of components C2 and C3. (b) New
distribution in which only one component needs a
maintenance intervention at a time.

Figure 1(b) shows the estimated maintenance demand ob-
tained with another load distribution. In this new solution,
a higher load L2 is assigned to component C2, which
reduces its predicted RUL. A lower load L3 is assigned to
component C3, which increases its predicted RUL. In the
constrained load distribution problem addressed in this pa-
per, the solution used in Figure 1(a) is unfeasible because

it violates the maintenance capacity constraint. Thus, the
problem addressed in this paper consists in finding a load
distribution that minimizes power consumption subject to
a maintenance capacity constraint. Formally, the optimiza-
tion problem can be defined according to Equations (1) to
(4).

min J =

n∑
i=1

P
(i)
C (1)

s.t.

n∑
i=1

Li ≥LT (2)

Li ∈ {L(i)
lb ,L

(i)
ub},∀i ∈ {1, . . . ,n} (3)

m(t)≤ k, ∀t ∈ {t0, . . . ,tH} (4)

where m(t) is the expected number of failed components
in time t, tH is the maintenance planning horizon, LT is

the total load, and L
(i)
lb and L

(i)
ub are the minimum and the

maximum load that can be assigned to each component
Ci, respectively.

3. THEORETICAL BACKGROUND

3.1 Prognostics and Health Management

Prognostics and Health Management (PHM) techniques
are algorithms and methods used to assess the health sta-
tus and the degradation level of a monitored system. PHM
techniques are also used to estimate the Remaining Useful
Life (RUL) of monitored systems (Goebel et al., 2007),
(Rodrigues, 2018), (El Mejdoubi et al., 2018). The health
status is assessed based on a set of sensor measurements
that describes the operational behavior of the component.
Low degradation levels are associated with new compo-
nents, while high degradation levels are associated with
degraded components. A failure event occurs as soon as
the maximum allowed degradation value is reached. By
extrapolating the degradation level evolution curve, the
RUL prediction is obtained (Eleftheroglou et al., 2019).

Due to measurement uncertainties, RUL predictions are
commonly given as a probability distribution. Different
distributions can be used to represent RUL probabilities
such as Gaussian (Celaya et al., 2012), (Boškoski and
Juričić, 2013) or Weibull (Cassity et al., 2012), (Louen
et al., 2013).

Figure 2 illustrates the RUL prediction process. Each
symbol (+) in Figure 2 represents the degradation index
computed at a certain time. The current time is denoted by
t0. The failure threshold represents the maximum allowed
value for the degradation index. i.e. a failure event oc-
curs whenever the degradation level reaches the threshold
value. The predicted RUL distribution is obtained by esti-
mating when the degradation index will reach the failure
threshold. The expected value for the failure instant is
denoted by tf . The difference tf − t0 is the predicted RUL.

The literature on PHM techniques contains algorithms for
monitoring the health status and predicting the RUL of a
wide variety of components such as engines (Babbar et al.,
2009), hydraulic pumps (Gomes et al., 2012), and batteries



(Penna et al., 2012). In the last decade, the use of RUL pre-
dictions obtained from PHM systems as a decision support
tool has been investigated by many researchers. Solutions
that incorporate RUL predictions have been proposed for
different optimization problems such as preventive mainte-
nance scheduling (Gebraeel, 2010), spare parts inventory
management (Lin et al., 2017), and resource assignment
optimization problems (Rodrigues et al., 2018).

Fig. 2. RUL prediction process.

3.2 MMKP (Multiple-choice Multidimensional Knapsack
Problem)

The Multiple-choice Multidimensional Knapsack Prob-
lem (MMKP) is a generalization of the well-studied
single knapsack problem (Moser et al., 1997). In the
MMKP, a group of items is divided into n distinct classes
{K1, . . . ,Kn}. Each class Ki contains mi items. The j-th
item in class Ki has a non-negative value vij and a weight
vector Wij = (w1

ij , . . . ,w
u
ij). Each element wz

ij of vector
Wij , with z = {1, · · · ,u}, is also a non-negative value.
The capacity of the knapsack is defined by the capacity
vector C = (c1, . . . ,cu). The goal of the MMKP is to
choose exactly one item from each classKi to maximize the
total value of the selected items, subject to the knapsack
capacity constraints. The MMKP can be formally defined
according to Equations (5) to (8) (Sbihi, 2007).

max J =

n∑
i=1

mi∑
j=1

vijxij (5)

s.t.

n∑
i=1

mi∑
j=1

wz
ijxij ≤ cz,∀z ∈ {1, · · · ,u} (6)

mi∑
j=1

xij = 1,∀i ∈ {1, · · · ,n} (7)

xij ∈ {0,1}, (8)

∀i ∈ {1, · · · ,n},
∀j ∈ {1, · · · ,mi}

where xij , with i = {1, · · · ,n} and j = {1, · · · ,mi}, are
binary decision variables that assume value 1 if the j-th
item of class Ki is selected and zero otherwise.

Different algorithms to solve the MMKP have been pro-
posed. Any algorithm can be used in our proposed model.
When computational time is restricted, an approximated
algorithm can be used. Approximated algorithms provide
fast response, however, optimality is not guaranteed (Ak-
bar et al., 2006). In this paper, we use an exact algorithm
to solve the MMKP (Sbihi, 2007).

4. PROPOSED MODEL

In this section, the proposed model to solve the constrained
version of the load distribution problem is presented.
Figure 3 shows a block diagram describing the proposed
solution.

Fig. 3. Block diagram of the proposed model.

As mentioned earlier, the RUL prediction for each compo-
nent Ci is a function of load Li. An approach based on the
MMKP is used to model the constrained load distribution
optimization problem. This approach transforms the prob-
lem into a combinatorial optimization problem that has a
known procedure to find the optimal solution.

In the proposed model, each component Ci corresponds
to a class of the MMKP, and each possible load that
can be assigned to component Ci corresponds to an item
belonging to class Ki. The cost of operating component
Ci with load Li is associated with the value of the item,
and the RUL predictions are associated with the capacity
of the knapsack in the MMKP.

Operational measurements are collected from each moni-
tored component and sent to the PHM system. The PHM
system computes the predicted RUL for the components
as a function of the load assigned to them. The load
distribution optimization block in Figure 3 receives the
RUL predictions from the PHM system. It also receives the
total load that must be distributed among the components
and the maintenance personnel constraint. Based on these
data, the set of candidate solutions is created and the
MMKP is solved to define the best load distribution.

Although the optimal solution for the MMKP can be
found, the quality of the final solution depends on the set
of items generated in the load distribution optimization
block. Some components and systems have a limited num-
ber of discrete operation modes such as an EAF (Electric
Arc Furnace) in a steel plant (Dalle Ave et al., 2019), or a
processor in a computational system (Kong et al., 2010).
For these components, it is possible to list all possible
operation modes (and the corresponding loads) during



the candidate solution generation process for the MMKP.
Other components and systems, however, allow their load
to vary continuously within a range. For these components,
it is impossible to list all possible operation modes. In
order to generate the list of items (candidate loads) for the
MMKP, it is necessary to choose a set of possible loads.
The higher the number of candidate loads, the higher
the probability of finding better solutions. However, the
computational time required to solve the MMPK increases
with the number of items. The set of items must cover the
whole range of load values that can be assigned to the
component.

5. CASE STUDY

This section presents a numerical case study to illustrate
the application of the proposed model in a gas compressor
station.

5.1 System Description

The gas compressor station considered in this example
consists of a suction tank and a set of variable speed
compressors in parallel. Figure 4 shows a schematic of a
gas compressor station with two compressors (Zagorowska
et al., 2018).

Fig. 4. Schematic of a gas compressor station with two
compressors.

The pressure in the suction tank, Pin, is controlled by the
inlet valve and it is assumed to be constant. A detailed
description of the dynamic behavior of the system can be
found in the literature (Paparella et al., 2013), (Cortinovis
et al., 2016). The station must provide a mass flow rate q
at pressure Pout. The goal is to assign a mass flow rate
to each compressor to provide the desired output with
minimum power consumption. A PHM system monitors
the health status of compressors and provides a RUL
prediction for each compressor as a function of the mass
flow rate assigned to it.

Let qi be the mass flow rate assigned to the i-th com-
pressor. The power consumption of the i-th compressor,

denoted by P
(i)
C , is computed according to Equation (9).

P
(i)
C =

k · qi
ηi

(9)

where k is a compressor coefficient, and ηi is the compres-
sor efficiency that can be approximated by Equation (10)
(Cortinovis et al., 2016).

ηi(q,ρ) = α1q
2 + α2ρ

2 + α3qρ+ α4q + α5ρ+ α6 (10)

where ρ is the pressure ratio Pout/Pin, and α1 to α6 are
model coefficients.

5.2 Simulation Data

In this case study. a gas compressor station with seven
compressors in parallel is considered. Table 1 shows the
parameters used in the simulations.

Table 1. Simulation Data

Parameter Description Value

q Total flow rate [kg/s] 1.1
k Model coefficient 30
α1 Model coefficient −0.050
α2 Model coefficient −0.200
α3 Model coefficient 0.168
α4 Model coefficient −0.166
α5 Model coefficient 0.580
α6 Model coefficient 0.180
ρ Pressure ratio 2.5

Figure 5 presents the efficiency map of each compressor
that shows the compressor efficiency η as a function of
pressure ratio ρ and mass flow rate q. The maximum mass
flow rate of each compressor is 0.2 kg/s. Also, Figure
5 shows the operating envelope of the compressors that
limits the range of operating conditions. The operating
envelope is limited by the surge line (SL), which defines the
minimum flow that avoids instability for a specific pressure
ratio. The operating envelope is also limited by the choking
line (CL), which is related to the maximum allowed flow.
Finally, the operating envelope is limited by two lines that
are associated with the maximum and minimum angular
speed ωmax and ωmin.

Fig. 5. Compressor efficiency map.



In this case study, the lines that limit the operating
envelope are approximated by Equations (11) to (14).

SL= 30.75q2 + 9.45q + 1.00 (11)

CL= 7.50q + 0.40 (12)

ωmax =−242.50q2 + 69.00q − 1.90 (13)

ωmin =−112.50q2 + 7.50q + 1.300 (14)

The PHM system updates the RUL prediction of each com-
pressor at the end of each operation cycle. We assume that
the increment in the degradation level of each compressor
in each operation cycle is a random variable that follows
a Gamma distribution with scale parameter θ and shape
parameter β. Gamma distributions have been adopted in
many works to model degradation processes (Van et al.,
2012), (Schirru et al., 2010), (Rodrigues, 2018). Table 2
shows the scale and the shape parameters used to model
the degradation increment of each compressor. Table 3
shows the current degradation level of each compressor,
which were arbitrarily chosen for this example. A failure
threshold FT = 100 is considered, i.e. a compressor fails
whenever its degradation level reaches the failure thresh-
old. A safety level of S = 5% is adopted, i.e. the RUL
prediction corresponds to the operation cycle in which the
failure probability is equal to or higher than S.

Table 2. Compressor Degradation Parameters

Parameter Description Value

θ Scale Parameter 1.0
β Shape Parameter 4.0

Table 3. Current Degradation Levels

Compressor Degradation

1 54.32
2 25.08
3 80.83
4 27.84
5 52.61
6 50.01
7 65.79

According to Table 1, the compressors must operate at
a pressure ratio of 2.5 and provide a total mass flow
rate of 1.1 kg/s. Finally, it is assumed that the duration
of a maintenance intervention in each compressor is two
operation cycles.

A stress effect approach is used to model the influence of
load distribution in RUL predictions. A stress model that
includes the effect of the mass flow rate q assigned to each
compressor in the scale parameter θ is adopted (Duan and
Wang, 2019). The variable scale parameter is computed
according to Equation (15).

θ(qi) = θref · exp

[
γ ·
(

1− qi
qnom

)]
(15)

where θref is the scale parameter of the gamma distri-
bution for nominal load (see Table 2), and γ is a model
coefficient. In this paper, a γ = −1.3 is used.

5.3 Cost Minimization without Considering RUL
Predictions

As mentioned earlier, in this load distribution optimization
problem, each compressor represents a class of the MMKP,
each candidate operation point (q, ρ) represents one item,
and each future operation cycle t represents one dimension
of the capacity vector C. Therefore, the goal is to find
the mass flow rate (item) that will be assigned to each
compressor (class) to minimize total power consumption,
subject to the maintenance capability constraint.

For comparison purposes, we first solve the load optimiza-
tion problem without considering the maintenance capa-
bility constraint. This result shows the minimum power
consumption that can be obtained to meet the gas com-
pressor station output requirements. For each compressor,
13 candidate values for q were used. It can be seen from
Figure 5 that, for a pressure ratio of 2.5, the range of values
that q can assume is limited by the surge line (SL) and the
maximum speed line (ωmax). Based on Equations (11) and
(13), the range of q is [0.115,0.188].

Table 4 shows the mass flow rate assigned to each com-
pressor and corresponding power consumption. It can be
seen that the desired mass flow rate is obtained with a
total power consumption of 275.13 kW.

Table 4. Load Distribution without Consider-
ing RUL Predictions

Compressor qi [kg/s] P
(i)
C [kW]

1 0.152 36.93
2 0.158 39.70
3 0.158 39.70
4 0.158 39.70
5 0.158 39.70
6 0.158 39.70
7 0.158 39.70

Figure 6 shows the expected number of compressors need-
ing a repair intervention in each operation cycle for the
solution obtained without considering RUL predictions in
the optimization model. It can be seen that in some op-
eration cycles the maintenance personnel capacity would
be exceeded. Also, it can be noticed that compressors 1,
5, and 6 would be simultaneously out of service during
operational cycle 18. In this situation, the remaining com-
pressors could not provide the desired mass flow rate.

5.4 Cost Minimization Considering RUL Predictions

Now, the proposed MMKP approach is used to solve
the same load distribution problem. However, in this
new experiment, the expected number of compressors
needing a repair intervention is limited to one. Table 5
shows the mass flow rate assigned to each compressor and
corresponding power consumption. It can be seen that
the desired mass flow rate is obtained with a total power
consumption of 276.53 kW.

Figure 7 shows the expected number of compressors need-
ing a repair intervention in each operation cycle for the



Fig. 6. RUL predictions for each compressor for the load
distribution obtained without considering RUL pre-
dictions in the optimization model. (a) Expected
maintenance interval for each compressor. (b) Num-
ber of compressors needing a repair intervention in
each operation cycle exceeds maintenance personnel
capacity.

Table 5. Load Distribution Considering RUL
Predictions

Compressor qi [kg/s] P
(i)
C [kW]

1 0.164 42.84
2 0.152 36.93
3 0.158 39.70
4 0.164 42.84
5 0.152 36.93
6 0.146 34.45
7 0.164 42.84

solution obtained with the proposed model that takes
RUL predictions into account. When compared with the
previous solution, the solution obtained with the proposed
model presented a small increase of 0.508% in power con-
sumption. However, the maintenance personnel capacity is
not violated.

6. CONCLUSIONS

In this paper, we presented a model to solve the load
distribution optimization problem that takes into account
the RUL predictions obtained from a PHM system to limit
the number of components that will be simultaneously on
repair. The proposed model uses an approach based on
the MMKP (Multiple-choice Multidimensional Knapsack
Problem) to find a solution with minimum cost that does
not violate the maintenance personnel repair capacity.

A case study considering a gas compressor station with
seven compressors was used to illustrate the application
of the proposed model. The results show that the use
of RUL predictions to define the load distribution allows
the proposed model to find solutions that do not violate
the maintenance personnel capacity constraint. Although
a small increase in power consumption is observed, the
proposed model distributes the repair demand and avoids
the situation in which multiple components are failed and

Fig. 7. RUL predictions for each compressor for the load
distribution obtained with the proposed model. (a)
Expected maintenance interval for each compressor.
(b) Number of compressors needing a repair inter-
vention in each operation cycle does not violate the
maintenance personnel capacity constraint.

the remaining components do not provide the desired mass
flow rate.

Future works may extend the scope of this paper by
investigating the impact of uncertainties in maintenance
duration and RUL predictions. Another opportunity for
future research is to investigate the use of approximated
algorithms to solve the MMKP.
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