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Abstract: The modernization of conventional distribution systems in smart grids leads us to
face new challenges when dealing with extremely large databases, commonly called Big Data.
The accuracy and volume of data have grown significantly with the introduction of Advanced
Measurement Infrastructure (AMI). This generates a data tsunami used in different applications
of power systems creating great computational efforts, as is the case with the use of a large
database of load curves. Due to the patterns that are repeated annually in the demand for active
and reactive power in distribution systems, it is necessary to use load clustering methodologies.
Based on historical load data, this paper represents a comprehensive approach that uses data
mining based on the K-Means clustering method in time-series data for the characterization of
real load curves. Besides, a comparative analysis will be presented considering three different
distance measurements. This data mining process is presented as a promising method for the
recognition of patterns allowing to reduce large databases to some characteristic curves to reduce
the computational burden in various applications of power systems. This clustering method is
tested using a real database of distribution transformers at UNICAMP.
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1. INTRODUCTION

The integration of new technologies and the modernization
of the measurement and communication systems provide
a data tsunami to utilities, allowing the state of the elec-
trical system to be known at all levels and optimizing
the operation of its services and products. The big data
challenges in distribution systems are related to different
sources, such as the information obtained from the differ-
ent measurement equipment, the patterns of load curves,
energy market prices, data management, among others
(Ghorbanian et al., 2019).

However, to gain a deep understanding of user energy
demand, it is necessary to identify the various patterns
that characterize their load curves. In other words, the
data must be organized and classified to convert it into
easily interpretable information (Restrepo et al., 2018).
Due to this, various clustering methods in time series are
used to achieve these objectives, allowing better planning
of public services and improving their policies.
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Clustering is a data mining technique in which data with
similar features are grouped without advanced knowledge
of the definitions of the clusters (Rai and Singh, 2010).
Some conventional time-series clustering algorithms are
discussed in Aghabozorgi et al. (2015) such as K-Means,
K-medoids, or Hierarchical clustering, highlighting the K-
Means algorithm as a promising technique for this type of
analysis.

In recent years, there have been considerable research
efforts to determine typical load curves using clustering
algorithms. A clustering technique based on three stages is
proposed in Panapakidis et al. (2013). This approach uses
the hierarchical algorithm in order to cluster the daily load
curves, highlighting that the clustering is done according
to the similarity of their shapes, not the energy demand. A
diffuse two-stage clustering is proposed in Zakaria and Lo
(2009). This technique applied to load curves in different
feeders previously used a Principal Component Analysis
(PCA) to identify the most predominant features of load
curves. The identification of the days for the load curves
has been carried out in Benabbas et al. (2008). Visual iden-
tification was performed using Kohenen maps. K-Means
was used as a complementary method of precision for the
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class identification. In Pan et al. (2011), the identification
of load curves based on Fuzzy clustering algorithm was
used to predict the load of a particular day. As a comple-
ment, the Wavelet decomposition was used to decompose
the similar-day load into high and low-frequency compo-
nents to identify the feature of each component. Proclus,
a clustering technique based on subspace projection was
used for creating load curves (Piao et al., 2014). One of the
strengths of this algorithm is that it reduces the influence
of noise during the grouping process.

In this context, UNICAMP is currently developing two
projects of great impact on the Brazilian community,
namely, the Sustainable Campus and Electric Mobil-
ity. Both projects have monitoring and control systems
through various meters and sensors installed throughout
the campus and bus fleet creating great challenges for data
analysis and knowledge discovery (Ugarte et al., 2019).
This document presents a data analysis based on the ex-
amination, cleaning, transformation and modeling of data
to draw conclusions about the information inherent in the
data and, consequently, to make decisions based on the
knowledge discovery.

This paper aims to derive the load profiles of a real
distribution system located at UNICAMP by clustering
characteristic load curves using the K-Means algorithm
to minimize the burden and computational time of the
various analyzes performed by the utilities. Besides, a com-
parative analysis will be carried out considering different
types of metrics in order to better characterize electrical
demand. Finally, these characteristic clusters will be used
in studies of technical losses based on power flows carried
out in Open Distribution System Simulator (OpenDSS).

The rest of the paper is organized as follows. Section 2
shows the implementation of the data mining method-
ology. Section 3 demonstrates the load curve clustering
process using K-Means algorithm considering different
metrics. Section 4 and 5 shows a result analysis and a
application of the clusters to estimate the technical losses
in distribution transformers. Finally, the conclusions are
drawn in Section 6.

2. METHODOLOGY

The methodology used in this paper was the Knowledge
Discovery in Databases (KDD), which is considered a
non-trivial procedure to identify patterns that are useful,
valid, novel, and understandable in the data (Fayyad
et al., 1996). This process has several stages that will be
described based on the study carried out.

2.1 Selection

Currently, there are around 330 smart meters deployed
in distribution transformers, these perform measurements
every 30 seconds, a previous classification by transformer
was made to this large database making this study feasible.

The smart meters collected a total of 12 electrical features,
however, most of these were classified by phase, which
generated datasets of 27 features for each register. A
summary is shown in Table 1.

Table 1. Electrical features.

activePowerA currentA reactivePowerA
activePowerB currentB reactivePowerB
activePowerC currentC reactivePowerC

angleA frequencyA threephaseActivePower
angleB frequencyB threephaseApparentPower
angleC frequencyC threephaseReactivePower

apparentPowerA powerFactorA voltageA
apparentPowerB powerFactorB voltageB
apparentPowerC powerFactorC voltageC

Based on the objective of the study of characterizing load
curves, our focus variables were the active and reactive
powers of each distribution transformer. Due to load dis-
tribution in the transformers and for the sake of simpli-
fication, this paper considered the following parameters:
threephaseActivePower, threephaseReactivePower.

2.2 Preprocessing

Real databases generated by smart meters are normally
subject to communication and electricity source problems,
which leads to the presence of outliers. The detection
of these values was performed using the statistical z-
score technique, taking thresholds between 2.5 and 3,
according to the analysis of the data nature and a load of
each transformer, in addition to being recommended for
extensive databases according to Shiffler (1988); Hoaglin
(2013), retaining approximately 98% of the data. Although
it is true that the visualization of the boxplot in Fig. 1 still
shows the presence of outliers, this is because its mustache
configuration uses a threshold of 1.5, but that value is not
a good scenario when it comes to values obtained by real
measurements.

Figure 1. Boxplot for active and reactive power in the
meter of the Food Engineering Institute.

Each record was collected as a function of time, this
allowed an analysis of the number of records per month
and eliminated from the analysis those months that did
not meet a uniform number of records compared to the
other months, then the scenario is shown in Fig. 2 for
the transformer data with Id: 104, corresponding to the
Institute of Food Engineering.



Figure 2. Bar chart of data rate per month for the Food
Engineering Institute meter.

2.3 Transformation

So far, the database considered contains records with the
values of active and reactive three-phase power, depending
on the time in which said measurement was collected for
a certain distribution transformer. This makes the data
set have a great dimensionality in its number of rows and
consequently, it requires a more expensive computational
analysis (Aghabozorgi et al., 2015), therefore, a dimen-
sionality reduction technique was applied, which will be
described in the following steps:

(1) The raw time series were resampled at a time interval
of 30 minutes per measurement, where their grouping
was represented by the mean of their respective power
values.

(2) When performing this resampling, the presence of
missing data was inevitable, these were completed
using the interpolation technique.

(3) Each one of the powers created time-based pivots,
thus generating a data frame where each row repre-
sents a date and in each column, the time measure-
ment was made, in Fig. 3 a graphic representation is
presented.

Figure 3. Final transformation of the dataframe

2.4 Data Mining

The chosen methodology for data mining was the Whole
time-series clustering, with a features-based approach.

According to Aghabozorgi et al. (2015) this methodology
has four components:

• Dimensionality reduction
• Distance measurement
• Prototype
• Clustering algorithm
• Evaluation

Although the dimensionality reduction component was
treated in the previous stage, it is highlighted by its level
of impact on the performance of the algorithm, it should
control that the reduction maintains the balance between
quality and execution time. That is why several samples
were tested before making a decision.

The distance measurements chosen in this study were:
Euclidean, Dynamic Time Warping (DTW), and Soft-
DTW. These are considered the most popular and common
metrics to measure similarity in the time-series clustering
(Aghabozorgi et al., 2015; Cuturi and Blondel, 2017;
Salvador and Chan, 2007).

The Euclidean distance is considered the most basic,
however, the literature shows that it can be surprisingly
competitive (Aghabozorgi et al., 2015). Now we will detail
the behavior of this in time-series, Let A and B be two
time-series:
A = [a1 · · · ar · · · aR]
B = [b1 · · · br · · · bR]
It is defined as a cost function between two points of the
time series Squared of the Euclidean Distance δ:

δ(ar, bc) = (ar − bc)
2 (1)

From this cost function, a cost matrix is partially con-
structed between the points of the series, then the final
trajectory is obtained from the cost calculated between
each pair of points. The DTW distance is a metric that
uses the same cost function defined above, however, its
objective is to find the optimal alignment between two
series that achieves a minimum global cost at the time
and also guarantees the continuity of time (Zhang et al.,
2017). For a better understanding of these metrics, the
behavior is represented graphically in Fig. 4.

Figure 4. Central trajectory (T) between two series for
Euclidean and DTW distance measurements, where
T = [t1 · · · tr · · · tR].

Soft-DTW is a differentiable loss function that makes the
method more precise due to its learning fit, and that
both its value and its gradient can be calculated with a
quadratic complexity of time/space.

According to the literature, this regularization is adequate
for average time-series (Cuturi and Blondel, 2017). Before
applying the algorithm, a random scheme was chosen as a



Figure 6. Time-series data for each meter, applying the K-Means algorithm for active and reactive power.

prototype, however, this consideration may vary in future
works depending on the volume of data.

The clustering algorithm chosen was K-Means. This
algorithm is capable of grouping objects into a certain
number of groups (K) based on their attributes. Grouping
is performed by minimizing the sum of squares of the dis-
tances between the group’s centroid and its corresponding
data (Grigoras et al., 2010).

min (E) = min

(
K∑
i=1

∑
x∈Ci

d(x, zi)

)
(2)

K-Means has demonstrated its solidity with the large num-
ber of works that support its performance, and although in
the literature it shows to be sensitive to outliers, this prob-
lem was taken into consideration by improving the pre-
processing and transformation phases(Azad et al., 2014).

The K-Means algorithm is characterized by knowing the
number of clusters a priori, for this reason, some techniques
allow an optimal search for the K value, among the most
commonly used are the silhouette coefficient, the elbow
technique. For this particular study, a hybrid technique
was used between these two indicators, since the elbow was
not as pronounced in the different scenarios, the silhouette
coefficient was in charge of evaluating the best K value. An
application scenario of the elbow technique for the four
analysis meters using the Euclidean distance as a metric
is presented in Fig. 5.

Once the aforementioned techniques were applied, the
optimal value of K selected for this study was 3, for
the analysis transformers since the grouping behavior was
uniform. Fig. 6 shows the performance of the K-Means
algorithm for a (K = 3) from a graphical point of view
of the load curves of some of the transformers with which
this methodology was validated.

The KDD process has as its final stage the Interpreta-
tion and Evaluation of Knowledge, this will be shown
in the following chapters.

3. RESULT ANALYSIS

For the sake of simplification, the results will be presented
based on the meter with Id: 157, which represents the
demand consumed by the Institute of Biology.

Figure 5. Elbow technique for optimal K search for each
meter

The load curve patterns discovered by the K-Means algo-
rithm using the Euclidean distance showed an average
and smooth behavior in its centroids. The result is shown
in Fig. 7, where the centroids C0, C1, and C2 represented
a quantity of 53, 95, and 80 days respectively. It should be
noted that the greatest number of days were represented
by C1, which fits into the average power consumption
throughout the day.

The centroids identified using Soft-DTW had slight
changes concerning those previously obtained, adding
small variabilities in the curves of the centroids ending
with the smoothness of the curves, as shown in Fig. 8.
However, the trend in the number of days per group
remained at 55, 94, and 79 for C0, C1, and C2, respectively.

The characterization of the curves obtained using DTW
generated a very different knowledge from those shown
above, large variations were generated between the time
intervals in both active and reactive power. This resulted
in the superposition of the centroids at the certain times-
tamp, as shown in Fig. 9.

For the evaluation of the scenarios shown, a highly flexible
visualization algorithm called t-SNE was applied. Based



(a) (b)

Figure 7. Clustering of time-series data for Euclidean distance measurement.

(a) (b)

Figure 8. Clustering of time-series data for Soft-DTW distance measurement.

on the dimensionality reduction technique, it manages to
represent large datasets most optimally (Wattenberg et al.,
2016). In Fig. 10 we can visualize the application of the
algorithm that managed to reduce from 98 columns to just
2, each point represents a time series of our dataset.

Finally, the silhouette coefficient was calculated as a vali-
dation metric for each of the implemented models. Table 2
shows these values, where it is worth mentioning that the
best-performing model was K-Means using Soft-DTW

Table 2. Evaluation of Silhouette Coefficient.

Measurements Silhouette

Euclidean 0.421056
Soft-DTW 0.611914

DTW 0.436307

4. APPLICATIONS IN TECHNICAL LOSS
ESTIMATION

For the utilities, a deep knowledge of the behavior of elec-
tricity demand can provide an environment suitable to the
proper implementation of the Distribution Management
System (DMS). Among the various functions that DMS
performs such as contingency analysis, load prediction,
power flow, reactive power and voltage control, state esti-
mation, etc., power flow stands out as the principal tool
for many applications that the utilities carry out as the
loss estimation in the electrical system.

In the context of smart grids, carrying out this type of
analysis based on the load flow demands a high burden
and computational time. To outline this problem and,
in turn, make accurate decisions, this paper presented
in the previous sections the obtaining of characteristic
load curves that adequately represent the large database
obtained from smart meters.



(a) (b)

Figure 9. Clustering of time-series data for DTW distance measurement.

(a) (b) (c)

Figure 10. Visualization of time-series data based on the dimensionality reduction applied by the t-SNE algorithm.

To exemplify the aforementioned in the application of the
estimation of technical losses, a distribution transformer
of the feeder BGE-06 is connected to a conventional
load of the Biology Institute at UNICAMP as shown in
Figure 11. The load curves were obtained by using a
smart meter connected on the low voltage side considering
228 weekdays. On the other hand, the same process
is carried out considering only the characteristic load
curves obtained from the clustering process considering
the three distances presented in the previous chapters.
Considering the 228 real load curves, the energy losses in
the distribution transformer of 500 kVA are 7031.70 kWh.

Table 3 shows the estimated technical losses using the
three clusters obtained according to the Euclidean dis-
tance. When estimating losses considering the real load
curves, it was necessary to simulate the 228 days. However,
Table 2 shows that it was only necessary to simulate a
power flow for each cluster and consequently to estimate
the losses. That estimated value is multiplied by the day
number that each cluster represents. It can be seen that
the estimated losses considering the Euclidean distance are
7380.20 kWh. The percentage difference between the esti-
mated losses through clusters and the real curves is 4.95%.
The same procedure shown in Table 3 considering the

Euclidean distance was performed in Tables 4 and 5 for the

Feeder
BGE-06

Biology 
Institute

Figure 11. Distribution transformer connected to a con-
ventional load.

Table 3. Technical loss estimation using Eu-
clidean distance

Cluster Days
Energy Loss

per Cluster [kWh]
Total Energy
Loss [kWh]

1 53 33.75 1788.75
2 95 32.71 3107.45
3 80 31.05 2484.00

Total 228 97.51 7380.20

DTW and Soft-DTW distances respectively. It can be seen
that the estimated losses considering the DTW distance
are 7429.62 kWh with a percentage difference between the



losses estimated by means of clusters and the real load
curves is 5.65%. On the other hand, considering the Soft-
DTW distance, the estimated losses are 7378.91kWh with
a percentage difference between the losses estimated by
means of clusters and the real load curves is 4.93%.

Table 4. Technical loss estimation using DTW
distance

Cluster Days
Energy Loss

per Cluster [kWh]
Total Energy
Loss [kWh]

1 41 34.54 1416.14
2 88 30.85 2714.80
3 99 33.32 3298.68

Total 228 98.71 7429.62

Table 5. Technical loss estimation using Soft-
DTW distance

Cluster Days
Energy Loss

per Cluster [kWh]
Total Energy
Loss [kWh]

1 55 33.77 1857.35
2 94 32.67 3070.98
3 79 31.02 2450.58

Total 228 97.46 7378.91

In comparative terms, the K-Means algorithm using the
Soft-DTW distance presented a smaller percentage differ-
ence compared to the other two distances. On the other
hand, it should be noted that the burden and compu-
tational time decreased considerably since it was only
necessary to carry out three power flow simulations, one
for each characteristic cluster that represents the real load
curves.

5. CONCLUSIONS

Due to the high impact projects developed at UNICAMP,
Sustainable Campus and Electric Mobility, it is possible to
have large amounts of data obtained from various meters
and sensors installed throughout the campus. This paper
focused mainly on the load curves obtained by the smart
meters installed on the secondary side of the distribution
transformers at UNICAMP.

Among the various activities that the utilities carry out,
the estimation of technical losses in the electrical system
stands out. In the context of smart grids, the said process
requires great computational efforts due to a large amount
of data. To outline this problem, this paper presented
a comparative analysis of three metrics, the Euclidean,
DTW and Soft-DTW distance, applied to the K-Means
algorithm to characterize the load curves that best fit to
the real load curves.

The case study was carried out with data obtained from
the distribution transformer of the Biology Institute,
where the technical losses were compared considering the
real load curves and the clustered load curves. Although
the results of the metrics have found different patterns
from a geometric viewpoint, the technical losses presented
a similar behavior.

In addition to reducing the computational burden of vari-
ous utility applications, the deep knowledge of load curve
patterns allows the design of DSM strategies integrating
all possible entities in the energy sector.
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