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Abstract: This work presents the control of a magnetic levitation system. The system is
constituted by a Y shape metal plate that must be levitated by electromagnetic attractive forces.
The system is nonlinear, open loop unstable and Multiple-Input/Multiple-Output (MIMO),
whose inputs are represented by attractive forces generated from three electromagnets and
outputs are represented by three plate positions. The proposed control structure uses Quadratic
Programming (QP) to combine performance/stability objectives, represented by an arbitrary
nominal control law, and safety constraints, represented by Control Barrier Functions (CBFs).
The arbitrary nominal control law applied is determined by feedback linearization. Multiple
safety constraints with relative-degree greater than one were applied. One way to deal with this
is to use Exponential Control Barrier Functions (ECBFs). The results of this control structure
applied to the magnetic levitation system are obtained through numerical simulations and
indicate that performance/stability objectives are reached and safety constraints are respected.
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1. INTRODUCTION

Magnetic levitation systems can be used in several en-
gineering applications such as magnetic bearings, high
precision positioning platform, aerospace shuttles, maglev
trains, steel and semiconductor manufacturing plants and
educational purposes (Yu and Li (2014)). The most popu-
lar and widely used scheme for the magnetic levitation
system consists of a metal body, such as a ball, plate
or disk suspended by a voltage-controlled magnetic field
obtained from an electromagnet (Hajjaji and Ouladsine
(2001)). The objective is to keep the metal body at a
prescribed reference level. The electromagnet current may
be increased until the magnetic force produced compen-
sate the gravitational force acting on the metal body.
This system is nonlinear, open loop unstable and Single-
Input/Single-Output (SISO) (Barie and Chiasson (1996)).

The magnetic levitation system scheme analyzed in this
work is based on the experimental apparatus described in
Fujii et al. (1994) and Tsujino et al. (1999). The system
is constituted by a Y shape metal plate that must be
levitated by electromagnetic attractive forces. The system
is also nonlinear and open loop unstable, however, it is
a Multiple-Input/Multiple-Output (MIMO) system. The
inputs are represented by attractive forces generated from
three electromagnets and the outputs are represented by
three plate positions. A controller must be designed so that
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the plate positions track reference inputs with adequate
performance.

The works related to control of magnetic levitation sys-
tems typically are proposed to satisfy performance/stability
objectives, i.e., tracking a desired reference input. Several
control techniques are proposed and applied in the litera-
ture, such as sliding mode (Al-Muthairi and Zribi (2004)),
fuzzy logic (Benomair and Tokhi (2015)), model predictive
control (Karampoorian and Mohseni (2010)), backstep-
ping (Liu and Zhou (2013)), neural network (M. Alias-
ghary and Teshnehlab (2008)) and H∞ control (Tsujino
et al. (1999)). However, this work uses a control structure
that simultaneously satisfy performance/stability objec-
tives and safety constraints.

The first study related to safety of dynamical systems was
done by Nagumo in the 1940s. This study provided neces-
sary and sufficient conditions for set invariance (Nagumo
(1942)). In the 2000s, barrier certificates were introduced
to prove safety of nonlinear and hybrid systems (Prajna
and Jadbabaie (2004), Prajna (2006), Prajna and Rantzer
(2005)). The term ”barrier” is related to barrier functions,
which, in optimization problems, are added to cost func-
tions to avoid undesirable regions. In Tee et al. (2009), the
concept of barrier Lyapunov function was presented, which
guarantees set invariance or safety using a ”Lyapunov-like”
approach. The notion of a barrier certificate was extended
to a “control” version to yield the first definition of a Con-
trol Barrier Function (CBF), as presented in Wieland and
Allgower (2007). In Romdlony and Jayawardhana (2016),
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barrier functions were combined with Control Lyapunov
Function (CLF), creating control Lyapunov barrier func-
tion, that guarantees simultaneously safety and stability.

The most recent formulation related to CBF is presented in
details in Ames et al. (2019) and Ames et al. (2017). This
methodology imposes new conditions on CBF, making the
problem less restrictive. It combines CLF or an arbitrary
nominal control law, related to performance/stability ob-
jectives and CBF, related to safety conditions represented
by a safe set. These objectives can be integrated with
Quadratic Programming (QP). Several applications using
this formulation are proposed in the literature, such as
adaptive cruise control (Xu et al. (2017), Mehra et al.
(2015)), bipedal walking robot (Hsu et al. (2015)), robotic
manipulator (Rauscher et al. (2016)), two-wheeled in-
verted pendulum (Gurriet et al. (2018)), quadrotors (Wu
and Sreenath (2016)) and multi-robot systems (Wang et al.
(2017)).

The control structure proposed in this work for the MIMO
magnetic levitation system follows the formulation de-
scribed above. The performance/stability objectives are
that the plate positions track the reference inputs. To
satisfy this, it is applied feedback linearization to generate
an arbitrary nominal control law. The safety conditions are
considered to guarantee that the plate positions never ex-
ceed predetermined values. To satisfy this, multiple safety
conditions with relative-degree greater than one are ap-
plied. One way to deal with this is to use Exponential Con-
trol Barrier Functions (ECBFs) as described in Nguyen
and Sreenath (2016) and Ames et al. (2019). The results
of this control structure applied to the magnetic levitation
system are obtained through numerical simulations.

In section 2, the modeling of MIMO magnetic levitation
system is described. The nominal control law, the concepts
of CBF and ECBF, and the final control structure are
presented in section 3. Simulation results and conclusions
are presented in sections 4 and 5, respectively.

2. SYSTEM MODELING

The schematic diagram of the magnetic levitation system
is presented in Fig. 1. The system is constituted by a
Y shape plate made of aluminum with small pieces of
iron mounted at the edges and that must be levitated
by electromagnetic forces. The inputs are represented by
attractive forces generated from three electromagnets. The
controller provides voltage command signals V1, V2 and
V3 that are converted to proportional current signals i1,
i2 and i3 by power amplifiers in order to generate the
corresponding attractive forces F1, F2 and F3. The outputs
are represented by three plate positions r1, r2 and r3,
measured by gap sensors mounted below the edges of the
plate.

The coordinate axis of the plate XV , Xp and Xr are
presented in Fig. 2. xv is the vertical gap length between
the electromagnet and the plate at the origin O, right
above the center of gravity G, while θp and θr are the
pitching and rotating angles, respectively. The parameters
of the magnetic levitation system are presented in Fig. 3.
M is the mass of the plate, Jp and Jr are the moments of
inertia around the origin O in pitching Xp and rolling Xr

Fig. 1. Schematic diagram of the magnetic levitation
system (Tsujino et al. (1999))

Fig. 2. Coordinate axis of the plate (Tsujino et al. (1999))

Fig. 3. Parameters of the magnetic levitation system
(Tsujino et al. (1999))

directions, respectively, g is the gravitational acceleration
and k1, k2 and k3 are the constants related to each
electromagnet (Tsujino et al. (1999)). Other parameters
can be seen directly in the Fig. 3.

Under several idealized assumptions, the equations of
vertical, pitching and rotating motions can be described
respectively as

Mẍv = Mg − (F1 + F2 + F3), (1)

Jpθ̈p = F1l1g − (F2 + F3)l2g −Mgd sin θp, (2)

Jr θ̈r = (F2 − F3)l3g −Mgd sin θr, (3)

where d is the distance between the origin O and the center
of gravity G.

The plate positions r1, r2 and r3 have the same directions
as xv and are given by

r1 = xv − l1g tan θp, (4)



r2 = xv + l2g tan θp − l3g tan θr, (5)

r3 = xv + l2g tan θp + l3g tan θr, (6)

and the electromagnets attractive forces can be written
as a nonlinear function of the input voltages Vj and plate
positions rj , such that:

Fj := kj

(
Vj
rj

)2

j = 1, 2, 3. (7)

The system can be represented by:

ẋ = f(x) + g(x)u, (8)

y = o(x), (9)

where x =
[
xv θp θr ẋv θ̇p θ̇r

]T
∈ D ⊂ Rn is the state

vector, u = [F1 F2 F3]
T ∈ U ⊂ Rm is the input vector,

y = [r1 r2 r3]
T ∈ D ⊂ Rno is the output vector,

f(x) =

[
ẋv θ̇p θ̇r g

−Mgd sin θp
Jp

−Mgd sin θr
Jr

]T
,

(10)

g(x) =



0 0 0
0 0 0
0 0 0

− 1

M
− 1

M
− 1

M
l1g
Jp
− l2g
Jp
− l2g
Jp

0
l3g
Jr
− l3g
Jr


, (11)

and

o(x) =

[
xv − l1g tan θp
xv + l2g tan θp − l3g tan θr
xv + l2g tan θp + l3g tan θr

]
. (12)

3. CONTROL STRUCTURE

This section presents the concepts of CBF, ECBF and the
final control structure that integrates the nominal control
law and the ECBFs through QP.

3.1 Nominal Control Law - Feedback Linearization

As previously mentioned, a nominal control law must
be designed so that the plate positions r1, r2 and r3
track reference inputs r1d, r2d and r3d to satisfy perfor-
mance/stability objectives. It is applied a feedback lin-
earization.

The central idea of feedback linearization is to alge-
braically transform a nonlinear system dynamics into a
(fully or partly) linear one, so that a linear control tech-
niques can be applied. It amounts to canceling the non-
linearities in a nonlinear system so that the closed-loop
dynamics becomes a linear form, and a desired linear
dynamics can be imposed (Slotine and Li (1991)).

The system modeling is represented in (8) and (9). A
nominal control input uno ∈ R3 must be designed to
make the output y ∈ R3 tracks a desired trajectory
yd ∈ R3, while keeping the whole state x ∈ R6 bounded,

where yd = [r1d r2d r3d]
T

, and its time derivatives up
to a sufficiently high order are assumed to be known and
bounded. In the model described, the output is not directly
related to the control input, so it is applied the input-
output linearization approach (Slotine and Li (1991)).

To generate a direct relationship between the output y and
the input uno, the output must be differentiated twice,
such that:

ÿ = fy(x) + gy(x)uno, (13)

where fy(x) ∈ R3 and gy(x) ∈ R3×3 are nonlinear
functions of the state.

The control input uno is determined to cancel the nonlin-
earities. To do this, we have:

uno = gy(x)−1 [v − fy(x)] , (14)

where v ∈ R3 is a new input to be determined using a
linear control technique. Letting e = y−yd be the tracking
error, we choose:

v = ÿd − kc1e− kc2ė, (15)

with kc1 and kc2 being positive constants.

3.2 Control Barrier Function

As previously mentioned, safety conditions must be im-
posed in the system such that the plate positions r1, r2
and r3 never exceeds predetermined values.

Safety requires that ”bad” things do not happen, such as
invariance of a set C. Any trajectory starting inside an
invariant set will never reach the complement of the set
(Ames et al. (2019)). Safety can be mathematically related
to CBFs.

A barrier function h(x) vanishes on the set C boundary,
i.e., h(x) → 0 as x → ∂C. If h(x) satisfy Lyapunov-like
conditions, then forward invariance of C is guaranteed
(Ames et al. (2019)). The natural extension of a barrier
function to a system with control inputs is a CBF (Wieland
and Allgower (2007)). In CBFs, we impose inequality
constraints on the derivative to obtain entire classes of
controllers that render a given set forward invariant.

In particular, we consider a set C defined as the superlevel
safe set of a continuously differentiable function h(x) : D ⊂
Rn → R yielding (Ames et al. (2019)):

C = {x ∈ D ⊂ Rn : h (x) ≥ 0} ,
∂C = {x ∈ D ⊂ Rn : h (x) = 0} ,
Int(C) = {x ∈ D ⊂ Rn : h (x) > 0} .

(16)

The definition of safety is given by:

Definition 1. Let u = k(x) be a feedback controller such
that (8) is locally Lipschitz. For any initial condition



x0 ∈ D there exists a maximum interval of existence I(x0)
such that x(t) is the unique solution to (8) on I(x0). The
set C is forward invariant if for every x0 ∈ C, x(t) ∈ C
for x(0) = x0 and all t ∈ I(x0). The system (8) is safe
with respect to the set C if the set C is forward invariant
(Ames et al. (2019)).

Considering Lfh = ∇h(x) · f(x) and Lgh = ∇h(x) · g(x),
the formal definition of CBF is given by:

Definition 2. Consider the control system (8) and the set
C ⊂ Rn defined by (16) for a continuously differentiable
function h(x) : Rn → R. The function h(x) is called a CBF
defined on the set D with C ⊆ D ⊂ Rn, if there exists an
extended class κ functions α such that (Ames et al. (2017))

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0,∀x ∈ D. (17)

Given a CBF h(x), for all x ∈ D, define the set (Ames
et al. (2017))

Kcbf (x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0} .
(18)

With this definition, we have the following corollary:

Corollary 1. Consider a set C ⊂ Rn defined by (16) and
let h(x) be an associated CBF for the system (8). Then
any locally Lipschitz continuous controller u : D → U
such that u(x) ∈ Kcbf (x) will render the set C forward
invariant (Ames et al. (2017)).

Equation (18) shows that the input u only influences
the system for Lgh(x) 6= 0, so h(x) has to be designed

such that ḣ(x) depends directly on u, i.e., relative-degree
one. However, in several systems, such as robotics, the
constraints have relative-degree greater than one, i.e.,
Lgh(x) = 0. In this work, the constraints have relative-
degree two. To deal with this, it is necessary to apply
ECBFs.

3.3 Exponential Control Barrier Function

CBFs for high-relative degree safety constraints were
studied in Hsu et al. (2015), Wu and Sreenath (2015)
and Nguyen and Sreenath (2016). The results in Wu
and Sreenath (2015) only extended to position-based
safety constraints with relative-degree two. In Hsu et al.
(2015), a backstepping-based method is applied to ar-
bitrary high relative-degree safety constraints. However,
backstepping-based CBF design for higher relative-degree
systems (greater than two) is challenging and has not been
attempted. In Nguyen and Sreenath (2016), the concept of
ECBFs was first introduced as a way to easily enforce high
relative-degree safety constraints.

Consider the system (8) with initial condition x0 with
the goal to enforce the forward invariance of the safe set
C defined in (16) and supposing that h(x) has arbitrar-
ily high relative-degree r ≥ 1. Considering Lrfh(x) =

LfL
r−1
f h(x) = ∇(Lr−1f h(x)) · f(x) and LgL

r−1
f h(x) =

∇(Lr−1f h(x))·g(x), the r-th time-derivative of h(x) is given

by (Ames et al. (2019)):

h(r)(x, u) = Lrfh(x) + LgL
r−1
f h(x)u, (19)

with LgL
r−1
f h(x) 6= 0 and LgLfh(x) = LgL

2
fh(x) = · · · =

LgL
r−2
f h(x) = 0,∀x ∈ D. Next, we define,

ηb(x) :=


h(x)

ḣ(x)

ḧ(x)
...

h(r−1)(x)

 =


h(x)
Lfh(x)
L2
fh(x)

...

L
(r−1)
f h(x)

 , (20)

and assume that, for a given µ ∈ Uµ ⊂ R, u can be chosen

such that Lrfh(x) + LgL
r−1
f h(x)u = µ. This choice of u

is possible since by the relative-degree of h(x) we have
LgL

r−1
f h(x) 6= 0,∀x and moreover µ is a scalar (while

u ∈ U ⊂ Rm). With this, the above dynamics of h(x) can
be written as the linear system (Ames et al. (2019)),

η̇b(x) = Fηb(x) +Gµ,
h(x) = Hηb(x),

(21)

where

F =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , G =


0
0
...
0
1

 , H = [ 1 0 · · · 0 ] .

(22)

Clearly, if we choose a state feedback style µ = −Kαηb(x)
then h(x(t)) = He(F−GKα)tηb(x0).

We now have everything setup to define ECBF (Ames et al.
(2019)).

Definition 3. Given a set C ⊂ D ⊂ Rn defined as
the superlevel set of a r-times continuously differentiable
function h : D → R, then h is an ECBF if there exists a
row vector Kα ∈ Rr such that for the control system (8),

sup
u∈U

[
Lrfh(x) + LgL

r−1
f h(x)u

]
≥ −Kαηb(x) (23)

∀x ∈ Int(C) results in h(x(t)) ≥ Ce(F−GKα)tηb(x0) ≥ 0
whenever h(x0) ≥ 0.

3.4 Integrating Nominal Control Law and ECBF Through
QP

The final control structure integrates the nominal control
law and the ECBFs through QP.

The aim of the combined control law is to apply the
nominal control whenever possible, which is formulated as
an optimization problem, minimizing the error (Rauscher
et al. (2016))

eu = uno − u (24)

between the nominal control uno, shown in (14), and the
applied control u. The squared norm of the error



‖eu‖2 = uTu− 2uTnou+ uTnouno (25)

is used as objective function. We neglect the last term of
(25), since it is constant in a minimization with respect
to u. As the problem is MIMO and we impose safety
conditions in all plate positions r1, r2 and r3, it is applied
multiple ECBFs. So we consider the following QP based
controller (Rauscher et al. (2016), Ames et al. (2019)):

u∗(x) = arg min
(u,µ)∈Rm+l

uTu− 2uTnou

s.t. Lrfh1(x) + LgL
r−1
f h1(x)u = µ1

...
Lrfhl(x) + LgL

r−1
f hl(x)u = µl

µ1 ≥ −Kα1
ηb1(x)

...
µl ≥ −Kαlηbl(x)

(26)

where m is the number of control inputs, l is the number
of safety constraints or ECBFs and µj , ηbj (x) and Kαj are
defined in (20) and (21), for j = 1, 2, ..., l. It is important
to highlight that the constraints in the QP enforces the
condition given by (23) for ECBF.

4. SIMULATION RESULTS

The behaviour of the magnetic levitation system with
the proposed control structure was verified through nu-
merical simulations with Matlab/Simulink. We consider
two simulation experiments. The parameters of the mag-
netic levitation system, described in Tsujino et al. (1999),
are l1g = 0.306 m, l2g = 0.203 m, l3g = 0.120 m,
M = 1.93 Kg, g = 9.81 m/s2, Jp = 6.43 × 10−2 kgm2,
Jr = 1.82 × 10−2 kgm2, k1 = 3.70 × 10−4 Nm2/V ,
k2 = 1.03 × 10−4 Nm2/V , k3 = 1.36 × 10−4 Nm2/V
and d = 3.24× 10−3 m.

In the simulation 1, the parameters for the nominal control
law were kc1 = 1 and kc2 = 1. The plate starts at r10 = 0m,
r20 = 0m and r30 = 0m and must be levitated above this
point according to the input references rd1 = −0.050m,
rd2 = −0.070m and rd3 = −0.090m. It is important
to highlight that this values are negative because the
positive direction of XV coordinate axis, shown in Fig.
2, is down, so a levitation above the initial condition will
be represented by a negative value.

Initially, only the nominal control law was applied, i.e.,
the safety conditions or ECBFs were not considered,
and input disturbances were applied periodically. The
simulation results are shown in Fig. 4. In Fig. 4a, the
input references are presented in red. It can be observed
that the system outputs track the references, according
to performance/stability objectives, however the periodic
input disturbances generate high amplitude errors. The
input voltages, shown in Fig. 4d, can be obtained using
(7).

The amplitude of errors in system outputs due to distur-
bances must be limited. This can be solved applying three
safety constraints (l = 3) given by

h1(x) = (r1max)2 − (r1 − rd1)2, (27)

(a) System outputs y.

(b) System states x.

(c) System control inputs u.

(d) System input voltages V .

Fig. 4. Simulation 1 - results for the nominal control law
without safety conditions.



(a) System outputs y.

(b) System states x.

(c) System control inputs u.

(d) System input voltages V .

Fig. 5. Simulation 1 - results for the nominal control law
with safety conditions.

(a) System outputs y.

(b) System states x.

(c) System control inputs u.

(d) System input voltages V .

Fig. 6. Simulation 2 - results for the nominal control law
without safety conditions.



(a) System outputs y.

(b) System states x.

(c) System control inputs u.

(d) System input voltages V .

Fig. 7. Simulation 2 - results for the nominal control law
with safety conditions.

h2(x) = (r2max)2 − (r2 − rd2)2, (28)

h3(x) = (r3max)2 − (r3 − rd3)2, (29)

where r1max, r2max and r3max are arbitrary maximum
range of the plate positions relative to the input refer-
ences rd1, rd2 and rd3. However, the CBFs h1(x), h2(x)
and h3(x) have relative-degree two, i.e., only the second
derivative depends on the control input u and Lgh(x) = 0.
So the safety conditions must be solved using ECBFs as
described anteriorly.

Therefore, the QP-based controller defined in (26) was
applied to satisfy the safety constraints. The QP was
solved recursively using Matlab function quadprog. In the
simulation experiment, the parameters for the ECBFs
and QP were r1max = r2max = r3max = 0.005m and
Kα1

= Kα2
= Kα3

= [100 100]. The parameters for the
nominal control law were the same applied in Fig. 4. The
simulation results are shown in Fig. 5. In Fig. 5a, the
input references are presented in red and the maximum
ranges of the plate positions are presented in green. It can
be observed that the system outputs track the references,
according to performance/stability objectives and respect
the safety constraints due to ECBFs. As the amplitudes of
the system outputs are limited, the control inputs are less
aggressive and present lower amplitudes when ECBFs are
applied. It is important to highlight that the ECBFs are
only applied after the system outputs track the reference
input for the first time.

In the simulation 2, the plate starts at r10 = 0m, r20 = 0m
and r30 = 0m and must be levitated according to si-
nusoidal input references rd1 = 0.02 sin(0.3t) − 0.05[m],
rd2 = 0.03 sin(0.3t) − 0.07[m] and rd3 = 0.04 sin(0.3t) −
0.09[m], where t represents time. The parameters for the
ECBFs and QP were r1max = 0.01m related to −0.05,
r2max = 0.01m related to −0.07, r3max = 0.01m related to
−0.09 and Kα1

and Kα2
, Kα3

were the same used in simu-
lation 1. The parameters for the nominal control law were
the same applied in Fig. 4. The simulation results for only
nominal control law and with safety conditions are shown,
respectively, in Figs. 6 and 7. Again, the outputs are
tracked accordingly, respecting the performance/stability
specifications and the safety constraints due to ECBFs.

5. CONCLUSIONS

This work presents the control of a magnetic levitation
system, constituted by a Y shape metal plate that must
be levitated by electromagnetic attractive forces. The
control structure proposed uses QP to combine perfor-
mance/stability objectives, represented by an arbitrary
nominal control law, and safety constraints, represented
by CBFs. The arbitrary nominal control law applied is
determined by feedback linearization. Multiple safety con-
straints with relative-degree greater than one were applied.
To deal with this, it was applied ECBFs. The numerical
simulations demonstrate that the proposed control struc-
ture reach performance/stability objectives and respect
safety constraints. In all simulation experiments, the plate
positions track the reference inputs with adequate perfor-
mance and when ECBFs are applied, the maximum ranges
of the plate positions are not exceeded.
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