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Abstract— In this paper, we propose a strategy for the robust stabilization of uncertain linear time-invariant
(LTI) systems considering sensors and actuators whose dynamics cannot be neglected. The control problem is
addressed by defining an augmented system encompassing the plant, sensor and actuator dynamics. The central
idea of the proposed method lies in the fact that the actual plant states, measured by sensors, are not available for
feedback, and thus, the problem can be regarded as a static output feedback (SOF) control design. Then, SOF
gain matrices are computed through a two-stage method, based on linear matrix inequalities (LMIs). Intending
to illustrate the efficacy and explore the main features of the proposed technique, some computational examples
are presented in an application of the method for the design of a robust controller for the classic benchmark
problem of the two-mass-spring problem. The examples cover the case of asymptotic stabilization of known and
uncertain system model, in addition to decay rate inclusion and incomplete system state information.
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1 Introduction

With the development of more sophisticated tech-
nology and equipment, it tends to become in-
creasingly relevant to consider the dynamics of
sensors and actuators in modern control prob-
lems. For instance, sensors, actuators, control
law, and control surfaces could affect the stability
and performance of modern lightweight aircraft
(Yang et al., 2018; Al-Jiboory et al., 2017; Stan-
ford, 2016), due to aeroservoelasticity, a design
characteristic inherent of such airplanes (Botez
et al., 2008). In fact, the negative impact of ne-
glecting of sensor and actuator dynamics has been
long known (Young and Kokotovic, 1982; Leit-
mann et al., 1986). However, considering such
additional dynamics in the control design often
leads to a problem of increased difficulty, which
may not be solvable by applying standard control
techniques.

This design issue can be approached by con-
sidering an augmented system in which the result-
ing state vector comprises plant, sensor and actua-
tor dynamics. However, the implementation of full
state feedback control laws would be hindered be-
cause: (1) the actual plant states measured by the
sensors would not be available for feedback and (2)
additional sensors (possibly with non-negligible
dynamics) would be required to measure the ac-
tuator states. Within this context, we show that
this control design problem can be cast into the
form of static output feedback (SOF), which can
be readily implemented without the need for ad-
ditional sensors or state estimators.

The SOF control technique has been object
of great interest, with several papers written in
the past decades, as seen in Sadabadi and Peau-
celle (2016), Syrmos et al. (1997), and references
therein. Among the available methods, strategies
based on linear matrix inequalities (LMIs) have
been proving to be an interesting approach for
SOF (Spagolla et al., 2019; Frezzatto et al., 2018).
In fact, the LMIs can be efficiently solved via con-
vex optimization tools, and have been widely ap-
plied in different control problems (Gahinet and
Apkarian, 1994; Teixeira et al., 2003; Oliveira and
Peres, 2006). However, the synthesis of output
feedback controllers is still an open problem, with
different approaches proposed in the literature. In
particular, the two-stage method, introduced in
Peaucelle and Arzelier (2001) and Mehdi et al.
(2004), has been receiving great attention in the
past decades, due to its simple yet effective ap-
proach (Agulhari et al., 2012; Sereni et al., 2020).

The present paper proposes the use of an LMI-
based two-stage SOF method to deal with linear
time-invariant (LTI) systems whose actuator and
sensor dynamics should not be neglected. System
performance is also taken into account, by con-
sidering a decay rate specification in the control
design. It is assumed that the dynamics models of
the plant, sensors and actuators may be subject
to parametric uncertainties. The effectiveness of
the proposed strategy is evaluated in numerical
examples involving the classic benchmark model
of a system with one rigid-body mode and one
flexible mode (Wie and Bernstein, 1992).
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2 Problem Description

Consider the linear time-invariant (LTI) system
described as

ẋ(t) = A(α)x(t) +B(α)z(t) (1)

where x(t) ∈ R
n and z(t) ∈ R

m are the state and
control vectors, respectively.

Moreover, A(α) ∈ R
n×n and B(α) ∈ R

n×m

are uncertain matrices which can be rep-
resented in a polytopic domain D =
{

(A,B)(α) : (A,B)(α)=
∑N

1
αr(Ar , Br), α∈∧N

}

,

where (Ar, Br) denotes the r-th poly-
tope vertex, and N is the number of ver-
tices of the polytope. D is parameter-
ized in terms of a vector α = (α1, ..., αN ),
whose parameters αr are unknown con-
stants belonging to the unitary simplex set

∧N =
{

α ∈ R
n:
∑N

r=1
αr=1;αr ≥ 0; r = 1, ..., N

}

.

In this paper, we assume the existence of q
sensors, with dynamics described by

v̇i(t) = av,ivi(t)− av,i





n
∑

j=1

ci,jxj(t)



 , (2)

where vi(t) are the sensor outputs, av,i < 0 are
time-invariant (but possibly uncertain) parame-
ters for i = 1, 2, ..., q, and ci,j are known constants
for j = 1, 2, ..., n.

Additionally, it is considered that the control
vector z(t) is applied through m actuators whose
dynamics are described by

żk(t) = az,kzk(t)− az,k

(

p
∑

l=1

dk,lul(t)

)

, (3)

where zk(t) are the actuator outputs, ul(t) are
the actuator commands, az,k < 0 are time-
invariant (but possibly uncertain) parameters for
k = 1, 2, ...,m, and dk,l are known constants for
l = 1, 2, ..., p.

The problem consists in designing a control
law u(t) = Lv(t) where v(t) ∈ R

q is the vector
of sensor outputs, u(t) ∈ R

p is the vector of ac-
tuator commands, and L ∈ R

p×q is a convenient
gain matrix to be determined in order to ensure
the closed-loop asymptotic stability of the overall

system. Figure 1 presents a block diagram that
illustrates the control system configuration.

3 Proposed Strategy

For dealing with this control problem, we pro-
pose the definition of the augmented state vector
w(t) ∈ R

n+q+m defined as

w(t) =
[

x′(t) v′(t) z′(t)
]′
,

such that one may describe the combined plant,
actuators, and sensors dynamics according to the
following augmented state-space model

ẇ(t) = Ā(α)w(t) + B̄(α)u(t), (4)

where

Ā(α) =





A(α) 0n×q B(α)
−Av(α)C(α) Av(α) 0q×m

0m×n 0m×q Az(α)



 ,

B̄(α) =





0n×p

0q×p

−Az(α)D



 ,

with

Av(α) = diag {av,1, av,2, . . . , av,q} ,

Az(α) = diag {az,1, az,2, . . . , az,m} ,

C =











c1,1 c1,2 . . . c1,n
c2,1 c2,2 . . . c2,n
...

...
. . .

...
cq,1 cq,2 . . . cq,n











, (5)

and

D =











d1,1 d1,2 . . . d1,p
d2,1 d2,2 . . . d2,p
...

...
. . .

...
dm,1 dm,2 . . . dm,p











.

Then, considering an output vector y(t) =
v(t), for the augmented system (4), we may write
y(t) = C̄w(t), where C̄ = [0q×n Iq×q 0q×m].
Now, the aforementioned problem may be ad-
dressed as a static output feedback control design
with u(t) = Ly(t).

u(t)
Actuators

z(t)

Plant

x(t)

Sensors

v(t)

Controller

L

Figure 1: Closed-loop block diagram.



3.1 SOF Control Design

In order to derive the desired SOF gain, L, that
will provide asymptotic stability to the closed-
loop augmented system (4), we apply the two-
stage LMI-based SOF design strategy presented
in Sereni et al. (2018), which was chosen due to
its capability of coping with system model uncer-
tainty and also ensuring enhanced performance in
terms of a minimum decay rate criterion.

The decay rate associates the convergence
rate of the system state to the origin with the
evolution of a time-dependent exponential func-
tion eσt. In what follows, σ will correspond to
either β (in the first design stage) or γ (in the
second design stage). For a formal and complete
description of the decay rate criterion, the reader
is referred to Boyd et al. (1994).

3.2 The Two-Stage Method

The two-stage method, originally introduced in
Peaucelle and Arzelier (2001) and Mehdi et al.
(2004), consists of first obtaining a robust state
feedback (SF) gain K, and then, using such gain
as an input information for the second stage, in
which the SOF gain is derived. A minimum de-
cay rate specification is imposed in both stages of
design, and they are defined as positive constants
β and γ, respectively.

• First Stage: State Feedback Design

In the first stage, we consider the control law as
u(t) = Kw(t), then system (4) in closed-loop is
represented by ẇ(t) =

[

Ā(α) + B̄(α)K
]

w(t).
As well known in the LMI literature (Boyd

et al., 1994), a sufficient condition for this un-
certain state-feedback system to be quadratically
stable, considering the inclusion of a decay rate
greater than or equal to β > 0, is the existence of
a symmetric matrix W > 0 and a matrix Z, such
that

ĀrW +WĀ′
r + B̄rZ + Z ′B̄′

r + 2βW < 0 (6)

holds for r = 1, 2, ..., N . A stabilizing gain is then
obtained as K = ZW−1.

• Second Stage: Output Feedback Design

In the second stage, the previously obtained ro-
bust state feedback gain K is used as an input
parameter for the design of the robust output feed-
back gain L ∈ R

p×q. Such gain may be obtained
by solving a set of sufficient LMI conditions stated
in Theorem 1.

Theorem 1 (Sereni et al., 2018) Assuming that
there exists a state feedback gain K such that
Ā(α)+ B̄(α)K is asymptotically stable, then there
exists a stabilizing static output feedback gain L

such that Ā(α)+B̄(α)LC̄(α) is asymptotically sta-
ble, considering a decay rate greater than or equal
to γ > 0, if there exist symmetric matrices Pr > 0,
and matrices Fr, Gr, H and J such that

[

Ā′

rF
′

r + FrĀr +K′B̄′

rF
′

r + FrB̄rK + 2γPr

Pr − F ′

r +GrĀr +GrB̄rK

B̄′

rF
′

r + JC̄r −HK

∗ ∗

−Gr −G′

r ∗

B̄′

rG
′

r −H −H ′

]

< 0, (7)

holds for r = 1, 2, ..., N , and

[

Υ11

ij

Υ21

ij

B̄′

rF
′

s + JC̄r + JC̄s + B̄′

sF
′

r − 2HK

[
∗ ∗

−Gr −G′

r −Gs −G′

s ∗

B̄′

rG
′

s + B̄′

sG
′

r −2H − 2H ′

]

< 0 (8)

holds for r = 1, 2, ..., N − 1, and s = r + 1, r +
2, ..., N , where Υ11

ij = Ā′
rF

′
s + FrĀs + K ′B̄′

rF
′
s +

FrB̄sK+Ā′
sF

′
r+FsĀr+K ′B̄′

sF
′
r+FsB̄rK+2γPr+

2γPs, and Pr +Ps − F ′
r − F ′

s +GrĀs +GrB̄sK +
GsĀr + GsB̄rK. In the synthesis condition, the
robust static output feedback gain is given by L =
H−1J .

Proof: See (Sereni et al., 2018). ✷

It is worth mentioning that in the particular
case where the control design does not require a
minimum decay rate specification, it is possible
to choose β = γ = 0 in (6) and in Theorem 1.
With this, only the asymptotic stabilization will
be guaranteed with the designed SOF controller.

Moreover, the minimum decay rate does not
have to be set to the same value in both de-
sign stages, since each stage is performed inde-
pendently (Sereni et al., 2018).

The aforementioned fact grants the two-stage
method the characteristic of being only a suffi-
cient condition for SOF design, since the choose
of a stabilizing first stage SF gain is not unique,
nor limited to the use of (6). In fact, there are
examples available in the literature, such as hit-
and-run methods (Arzelier et al., 2010), that ex-
ploit such feature by employing some heuristics on
the search for the stabilizing SF gain.

Indeed, particularly in our proposed method,
the closed-loop system guaranteed minimum de-
cay rate is solely related to γ in Theorem 1. Due
to that, the value specified for β in the first stage
represents an heuristic approach, since no guaran-
tees on the feasibility or associated performance in
the second stage are provided, although the SOF
design success for a particular γ is sensible to the
value defined for β in the earlier stage, as empiri-
cally verified during the performed experiments.



4 Examples

In order to illustrate the efficacy of the proposed
strategy, we present four computational examples
involving a two-mass-spring system, which can be
regarded as a simple model for the dynamics of a
system with one rigid-body mode and one flexi-
ble mode (Wie and Bernstein, 1992). In the fol-
lowing examples, the LMIs are programmed with
MATLAB software, and solved via YALMIP in-
terface (Lofberg, 2004), using the SDPT3 solver
(Toh et al., 1999).

4.1 Example 1: Stabilization

Consider a system of two bodies with masses m1

and m2, connected by a spring with stiffness con-
stant k, as in Wie and Bernstein (1992). The dy-
namics of the system, considering that a control
force z(t) is applied on body 1, can be represented
in the state-space form (1), as








ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)









=









0 0 1 0
0 0 0 1
−k

m1

k

m1

0 0
k

m2

−k

m2

0 0

















x1(t)
x2(t)
x3(t)
x4(t)









+









0
0
1

m1

0









z(t),

(9)

where x1(t) and x2(t) are the positions of body
1 and body 2, respectively; and x3(t) and x4(t)
are the corresponding velocities. Moreover, the
state is measured with sensors whose dynamics
are described as in (2) and the control signal is
applied by an actuator with dynamics described
as in (3).

The parameters m1, m2, and k, as well
as the matrices with the actuators and sensors
parameters in (5), are assumed to be m1 =
m2 = 1.0 kg, k = 1.0 N/m, Av =
diag{−5,−5,−5,−5}, Az = −5, C =
I4x4 and D = 1.

Before employing the proposed method, the
results of a simpler approach based on a decen-
tralized control design (Zecevic and Siljak, 2010)
are presented. The idea of this strategy is to im-
pose structure constrains on the problem variables
to apply a state-feedback technique using only the
available measurements. For this purpose, the fol-
lowing structure is imposed on the matrix vari-
ables W and Z in (6):

W̄ =





Wx 04×4 04×1

04×4 WF 04×1

01×4 01×4 Wz



 and Z̄ =
[

01×4 Z 0
]

.

(10)
In that way, a gain K̄ = [Kx KF Kz], with

Kx = Kz = 0, could be derived by making K̄ =
Z̄W̄−1. However, if these structural constraints
are imposed in LMIs (6), with β = 0, the problem
has no feasible solution.

Now, using the strategy proposed in this pa-
per, we address the issue as a SOF problem. For

that, an augmented system as in (4) is consid-
ered. Then, with β = 0 in (6), for the first stage
of design, the following state feedback gain K is
derived

K = [−2.3879 −0.4405 −4.3230 −1.6019

0.7126 0.3687 2.2717 0.4723 −0.2407] . (11)

By using this gain matrix in the second stage, via
Theorem 1, considering no decay rate specification
(i.e γ = 0), one may derive the SOF gain L as
follows

L =
[

−0.9959 −0.1793 −2.3679 −1.1066
]

.

(12)

The resulting control law stabilizes the aug-
mented system with the sensors and actua-
tor, since the eigenvalues of Ā + B̄LC̄ are
−0.4361,−5,−5,−5,−7.6867, −0.2089 ± 1.1490j
and −0.7297± 2.4277j .

4.2 Example 2: Decay Rate

In addition to stability, we show that improved
performance can also be enforced for the closed-
loop system. For that, we consider a minimum de-
cay rate in both first and second stages of project,
β and γ, respectively.

For illustration, consider the same system and
parameters used in Example 1. Then, a SOF gain
matrix L can be computed considering decay rates
β = 0.2 in (6), and γ = 0.2 in Theorem 1, LMIs
(7) and (8). As result, the following gain matrix
is obtained:

L =
[

−2.3217 0.6543 −3.3938 −1.9717
]

. (13)

Figure 2 presents the transient response of
the closed-loop system, obtained via simulation
with arbitrarily defined initial condition x(0) =
[

−0.1 0 −0.2 0 0 0 0 0 0
]

. For com-
parison purposes, the responses provided by both
controllers, with (13) and without decay rate spec-
ification (12), are presented. One may observe
that with the inclusion of a minimum decay rate a
faster transient response is obtained. Although, as
Figure 3 shows, this improvement comes at cost of
a higher amplitude in the control command, u(t).

4.3 Example 3: Polytopic Uncertainties

In this next example, we consider uncertainties
in the model of the two-mass-spring system. We
assume that the mass of body 1, the position
sensors parameters av,1 and av,2 in Av(α), and
the actuator parameter az,1 in Az(α) are uncer-
tain, laying within the intervals 0.9 kg ≤ m1 ≤
1.1 kg, −6 ≤ av,1, av,2, az,1 ≤ −4. The pa-
rameters av3, av4, m2 and k are known and have
the same values as in Example 2.

Therefore, having four uncertain parameters,
the uncertain augmented system may be repre-
sented as a convex combination of sixteen vertices,
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Figure 2: Transient response of the two-mass-
spring system with SOF control designed with
minimum decay rate γ = 0.2 (—) and without
decay rate restriction (- -).
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Figure 3: Control commands with minimum decay
rate γ = 0.2 (—) and without decay rate restric-
tion (- -).

which are generated by combining the maximum
and minimum values of m1, av,1, av,2, and az,1.
By applying the proposed strategy, and solving
(6) with β = 0.2 and the LMIs in (7) and (8),
considering γ = 0.2, one can derive the robust
SOF controller as

L =
[

−0.1856 −0.1642 −1.7503 −0.1197
]

.

(14)

Figure 4 presents the eigenvalues of all 16 ver-
tices of the resulting closed-loop system polytope,
as well as of the open-loop configuration. As one
can see, the designed robust SOF matrix gain (14)
managed to allocate all closed-loop eigenvalues to
the left of the dashed vertical line at s = −0.2
(see the inset in Figure 4). Therefore, the min-
imum decay rate constraint specified in the con-
troller design has been properly enforced. In fact,
note that some of the open-loop eigenvalues are
originally placed way out of the prescribed design
bounds.

4.4 Example 4: Partial State Vector Measure-
ment

In this final example, we address the case where
only a subset of the system state variables are
available for measurement, i.e. q < n. Consider
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g
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Figure 4: Eigenvalue placement of the open-loop
(◦) and closed-loop (×) system with the robust
SOF controller (14).

that the two-mass-spring system is fitted with only
q = 2 sensors, which are responsible for measuring
the position and velocity of the mass m1 (which
corresponds to the state variables x1 and x3, re-
spectively). Also, assume that the system parame-
ters values and uncertainties intervals are the same
as in Example 3.

Then, defining the augmented system accord-
ingly, a robust SOF gain

L =
[

−0.5014 −1.8308
]

(15)

is able to be obtained with γ = 0.2 in (7) and (8)
by using β = 0.15 in (6)1, following the proposed
method. Observe that, in this case, we have a
7th order augmented system, but the SOF gain
matrix is composed of only two entries, since we
considered only two state variable measurements
available for feedback.

In addition, with a simulation analysis with
the same initial condition considered in Example
2, the transient responses of all 16 vertices of the
closed-loop two-mass-spring system polytope with
robust SOF gain matrices (15) and (14) are ob-
tained and presented in Figure 5. As one may
observe, both closed-loop systems show very sim-
ilar dynamics responses. In fact, for the particu-
lar example addressed, no noticeable loss of per-
formance occurred by employing only two sensors
for state variable measurement. At this point, it
is crucial to emphasize that the transients repre-
sented by the red lines are achieved with a SOF
controller designed considering the absence of two
of state variable measurements. The presented re-
sults underline the main feature of the proposed
method, which consists in synthesizing a gain ma-
trix that is capable of providing robust stability
in the presence of model uncertainty and sen-
sor/actuator dynamics, even with incomplete in-
formation about the system state.

1After testing Theorem 1 for different values of β in the
first stage, β = 0.15 was the highest value found to lead
for feasibility success in the second stage with γ = 0.2.



Figure 5: Transient response of all 16 vertices of
the two-mass-spring system polytope with robust
SOF controller using four sensors (Example 3, - -)
and only two sensors (Example 4, —).

5 Conclusion

This paper proposed a robust control strategy that
takes into account sensor and actuator dynam-
ics through the use of a SOF synthesis method.
We showed with a two-mass-spring example that
it may not be possible to find a solution when
using a state-feedback decentralized control strat-
egy, whereas our method was able to provide a sta-
bilizing controller. Moreover, our technique can
also be applied in control designs that consider
improved dynamics performance and/or polytopic
uncertainties in the plant model. Furthermore,
incomplete state vector measurement can also be
coped with our method. It is also worth mention-
ing that the proposed strategy can be extended
to handle nonlinear system dynamics since the
adopted SOF method can be easily modified to
address gain-scheduled control problems. In fu-
ture works, the strategy can be adapted to con-
sider more complex actuators and sensors dynam-
ics, such as high order filters. The study about
how to exploit the particular structure of the aug-
mented system in the context of SOF design, spe-
cially involving the two-stage method could also
be investigated, along with the application of the
method on aircraft models. Extensions to opti-
mization problems regarding performance criteria
such as disturbance rejection can also be analyzed.

Acknowledgments

This study was financed in party by the “Co-
ordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brasil (CAPES) - Finance Code
001”, the “Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico - Brasil (CNPq) - (Re-
search Fellowships 303393/2018-1, 301227/2017-
9, 309872/2018-9)” and the “São Paulo Research
Foundation (FAPESP) - Grant #2018/20839-9”.

References

Agulhari, C. M., Oliveira, R. C. and Peres, P. L.
(2012). LMI relaxations for reduced-order ro-
bust H∞ control of continuous-time uncer-
tain linear systems, IEEE Transactions on
Automatic Control 57(6): 1532–1537.

Al-Jiboory, A. K., Zhu, G., Swei, S. S.-M., Su, W.
and Nguyen, N. T. (2017). LPV modeling of
a flexible wing aircraft using modal alignment
and adaptive gridding methods, Aerospace
Science and Technology 66: 92–102.

Arzelier, D., Gryazina, E. N., Peaucelle,
D. and Polyak, B. T. (2010). Mixed
LMI/randomized methods for static output
feedback control design, Proceedings of the
2010 American Control Conference, IEEE,
pp. 4683–4688.

Botez, R. M., Hiliuta, A. and Grigorie, L.
(2008). Rigid and control modes aerody-
namic unsteady forces aeroservoelastic mod-
eling, Journal of Guidance, Control, and Dy-
namics 31(5): 1372–1385.

Boyd, S., El Ghaoui, L., Feron, E. and Balakrish-
nan, V. (1994). Linear matrix inequalities in
system and control theory, SIAM.

Frezzatto, L., Oliveira, R. C. and Peres, P. L.
(2018). H∞ and H2 memory static
output-feedback control design for uncer-
tain discrete-time linear systems, IFAC-
PapersOnLine 51(25): 90–95.

Gahinet, P. and Apkarian, P. (1994). A linear ma-
trix inequality approach to H∞ control, In-
ternational Journal of Robust and Nonlinear
Control 4(4): 421–448.

Leitmann, G., Ryan, E. and Steinberg, A. (1986).
Feedback control of uncertain systems: ro-
bustness with respect to neglected actuator
and sensor dynamics, International Journal
of Control 43(4): 1243–1256.

Lofberg, J. (2004). YALMIP: A toolbox for
modeling and optimization in MATLAB,
2004 IEEE International Conference on
Robotics and Automation (IEEE Cat. No.
04CH37508), IEEE, pp. 284–289.

Mehdi, D., Boukas, E. and Bachelier, O. (2004).
Static output feedback design for uncertain
linear discrete time systems, IMA Journal
of Mathematical Control and Information
21(1): 1–13.

Oliveira, R. C. and Peres, P. L. (2006). LMI
conditions for robust stability analysis based
on polynomially parameter-dependent Lya-
punov functions, Systems & Control Letters
55(1): 52–61.



Peaucelle, D. and Arzelier, D. (2001). An efficient
numerical solution for H2 static output feed-
back synthesis, European Control Conference
(ECC), pp. 3800–3805.

Sadabadi, M. S. and Peaucelle, D. (2016). From
static output feedback to structured robust
static output feedback: A survey, Annual re-
views in control 42: 11–26.

Sereni, B., Assunção, E. and Teixeira, M. C. M.
(2020). New gain-scheduled static output
feedback controller design strategy for stabil-
ity and transient performance of LPV sys-
tems, IET Control Theory & Applications
14(5): 717–725.

Sereni, B., Manesco, R. M., Assunção, E.
and Teixeira, M. C. M. (2018). Relaxed
LMI conditions for the design of robust
static output feedback controllers, IFAC-
PapersOnLine 51(25): 428–433.

Spagolla, A., Morais, C. F., Oliveira, R. C.
and Peres, P. L. (2019). H∞ static
output-feedback control for positive uncer-
tain discrete-time linear systems, 2019 IEEE
58th Conference on Decision and Control
(CDC), IEEE, pp. 1–6.

Stanford, B. K. (2016). Static and dynamic aeroe-
lastic tailoring with variable-camber control,
Journal of Guidance, Control, and Dynamics
pp. 2522–2534.

Syrmos, V. L., Abdallah, C. T., Dorato, P. and
Grigoriadis, K. (1997). Static output feed-
back− A survey, Automatica 33(2): 125–137.

Teixeira, M. C. M., Assunção, E. and Avel-
lar, R. G. (2003). On relaxed LMI-based
designs for fuzzy regulators and fuzzy ob-
servers, IEEE Transactions on Fuzzy Systems
11(5): 613–623.

Toh, K.-C., Todd, M. J. and Tütüncü, R. H.
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