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Abstract: This paper proposes a novel state estimator for discrete-time linear systems with
Gaussian noise. The proposed algorithm is a fixed-gain filter, whose observer structure is more
general than Kalman one for linear time-invariant systems. Therefore, the steady-state variance
of the estimation error is minimized. For white noise stochastic processes, this performance
criterion is reduced to the square H2 norm of a given linear time-invariant system. Then, the
proposed algorithm is called observer H2 filter (OH2F). This is the standard Wiener-Hopf or
Kalman-Bucy filtering problem. As the Kalman predictor and Kalman filter are well-known
solutions for such a problem, they are revisited.
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1. INTRODUCTION

Under Gaussian and linear assumptions, the Kalman filter
(KF) (Kalman, 1960) is the minimum-variance state esti-
mator. Its observer structure corrects the state forecasts
according to the measurement error, called innovation,
which is weighted by the Kalman gain. The KF assumes
that all uncertainties are characterized by Gaussian ran-
dom variables (GRVs), whose probability density functions
(PDFs) are completely defined by the two first moments
of a random variable. In turn, the Kalman predictor (KP)
is an algorithm derived from a modification on the KF
structure. The difference between them is the time instant
in which the measurement information is acquired and
assimilated in the estimator; the time instant affects both
measurement sequence and measurement model. The KF
uses the past and current measurements, while the KP
uses only the past measurements (Teixeira, 2008; de Paula
et al., 2019).

Time-varying gain algorithms, as the KF, are suitable to
follow the linear time-varying (LTV) system evolution,
since its dynamics change over time. When a system is
linear time invariant (LTI), its dynamics are composed by
two parcels, namely transient and steady state. Initially, a
varying gain algorithm should be used due to the transient.
After the transient, the varying gain converges to the
constant gain. In this case, a fixed gain could be used
instead. Moreover, if the transient is not significant for a
given application, as the examples reviewed in Tang et al.
(2019a,b), then a fixed-gain algorithm can be employed
during all time. The main advantage of fixed-gain algo-
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rithms is to reduce the computational burden of varying
gain algorithms, since the observer gain is obtained only
once.

In this paper, we propose a fixed-gain filter for discrete-
time LTI state-space uncertain systems, called OH2F. This
algorithm is inspired in Tang et al. (2019b), whose observer
structure is more general than the KP one. The filter
proposed in Tang et al. (2019b) assumes that the uncer-
tainties are characterized by zonotopes, which are centrally
symmetric polytopes defined by center and generator ma-
trix. In such work, the observer is built introducing two
unknown matrices in the KP observer structure. Moreover,
the constant design matrices, including the observer gain,
are computed via bounded real lemma (Boyd et al., 1994;
Xu and Lam, 2006), that is, computing the H∞ norm of the
error system based on linear matrix inequalities (LMIs).

Unlike Tang et al. (2019b), the OH2F assumes that the
uncertainties are characterized by GRVs. In this case,
we are interested in representing uncertainties by means
of probability regions. In addition, the constant design
matrices are computed by solving the H2 norm of the
error system based on LMIs. To achieve that, we relate
GRVs to white noise, which is a special case of wide-sense
stationary (WSS) stochastic processes (Kay, 1993). For
white noise inputs, minimizing the H2 norm corresponds to
minimizing the steady-state variance of the estimation er-
ror (Khargonekar et al., 1996). Thereby, the state variance
is assumed bounded instead of the noise realizations; this
enables the usage of GRVs. Due to significant similarities,
we also discuss the KP, KF, and their stationary version,
here called H2P and H2F, respectively. We show that the
H2P is a special case of the OH2F. At the end, we use a
numerical example to compare their performance.
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2. PRELIMINARIES

2.1 Stochastic Processes

A random variable is a mapping from the sample space
Ω into the measurable set S. If S ⊂ N, then the random
variable is said to be discrete. If S ⊂ R, then the random
variable is said to be continuous. Such classifications do
not change if any random variables are related to discrete-
time or continuous-time systems.

Let X be an n-dimensional random variable with real-
izations x ∈ Rn. The mean and covariance matrix of X
are given by x̂ = E[X] and P xx = cov(X,X) , E[(X −
x̂)(X− x̂)T], respectively, where E[•] is the expected value
operator. A GRV X is defined by its Gaussian PDF, p(x),
and can be completely characterized by its mean and
covariance, X ∼ N (x̂, P xx).

The affine transformation and summation of uncorrelated
GRVs are computed as

LX +m ∼ N
(
Lx̂+m,LP xxLT

)
, (1)

X +W ∼ N (x̂+ ŵ, P xx + Pww) , (2)

where L ∈ Rb×n, m ∈ Rb, and W ∼ N (ŵ, Pww).

Without loss of generality, a stochastic process (SP) is
defined to be an infinite sequence of random variables
{X} = {X0, X1, . . . , Xk, . . .}, with one random variable
Xk for each time instant k ∈ N, and each realization of
the SP takes on a value that is represented as an infinite
sequence of numbers, that is, {x} = {x0, x1, . . . , xk, . . .}
(Kay, 1993). An SP is called stationary if its probabilistic
description does not change with respect to the time origin.
An SP is called WSS if: (i) its mean E[Xk] is constant over
time k, and (ii) its covariance cov (Xk1 , Xk2) depends only
upon the time difference, that is, k2−k1. Then, a WSS SP
is ergodic in the mean.

Here, a white noise is defined as a WSS SP with:
(i) zero mean E[Xk] = 0, (ii) constant covariance
cov (Xk, Xk+τ ) = Q for τ = 0, and (iii) uncorrelated
samples cov (Xk, Xk+τ ) = 0n×n for τ 6= 0, where 0n×n
represents the null matrix.

The power spectral density (PSD) quantifies the distribu-
tion of power of a given SP over the frequency. Here, we
are interested in discrete-time signals. The PSD matrix of
a zero mean WSS SP {W} is given by

Sw(ω) =

+∞∑
τ=−∞

Qτe−jωτ , (3)

where Qτ = cov(Wτ ,W0) is the autocorrelation matrix,
ω ∈ [−π, π] is the angular frequency, and k = 0 is the time
origin of the SP.

If the SP {W} is a white noise with Q = Ib×b, where Ib×b
is the identity matrix, then, its PSD is Sw(ω) = Ib×b. That
is, the PSD of the white noise is constant over its frequency
spectrum.

2.2 Linear Matrix Inequalities

In the following lemma, the procedure to compute the H2

norm of a given LTI system via LMIs is revisited.

Lemma 1. (Boyd et al., 1994) Consider the discrete-time
state-space system described by

xk = Axk−1 + Bwk−1, (4)

zk = Cxk, (5)

where wk−1 ∈ Rb is the disturbance input, A ∈ Ra×a,
B ∈ Ra×b, and C ∈ Rc×a. If there exists the symmetric
and positive-definite matrix P = PT � 0a×a, then the
square H2 norm of (4)-(5), ψ > 0, satisfies

min ψ

s.t. ATPA− P + CTC ≺ 0a×a, tr
(
BTPB

)
< ψ, (6)

where tr(•) is the trace of a square matrix, and “≺” means
a negative-definite matrix. 2

The following lemma uses the PSD of {W} to minimize
the steady-state variance of the estimation error. In Khar-
gonekar et al. (1996), a similar result is formulated for
continuous-time SPs, but here it is formulated for discrete-
time SPs.

Lemma 2. Consider the discrete-time error system de-
scribed as (4)-(5), where wk−1 ∈ Rb is a realization of
the white noise {W} at time k − 1.

Assume that the PSD of {W} is Sw = Ib×b, and denote
G ∈ Rc×b the transfer matrix from the noise input w to
the error output z, that is, z = Gw. Then, the steady-state
variance of the estimation error is given by

lim
k→∞

E
[
zTk zk

]
=

1

2π

∫ π

−π
tr (GSwG∗) dω

= ||G||2H2
, (7)

where (•)∗ is the complex conjugate transpose, and ||• ||H2

is the H2 norm of system. 2

Note that the covariance matrix of the white noise is
assumed to be Q = Ib×b in Lemma 2. In order to consider
cases where this assumption is not true, the positive
semidefinite matrix Q � 0b×b can be decomposed as
Q = LLT, where L is the square root of Q. After, the
matrix L is merged with B, to yield B̄ = BL. Then, without
loss of generality, the matrix Q used in Lemma 2 is seen
as an identity matrix.

The following lemma allows to find the general solution for
linear systems.

Lemma 3. (Wang et al., 2018) Consider the matrices A,
B, and C, where rank (B) = c, and A is unknown. The
general solution of AB = C is given by

A = CB† + S
(
Ib×b − BB†

)
, (8)

where S ∈ Ra×b is an arbitrary matrix, and (•)† is the
pseudo-inverse operator, that is,

B† =
(
BTB

)−1 BT. (9)

2

3. PROBLEM FORMULATION

Consider the discrete-time LTI system as

xk = Axk−1 +Buk−1 + Ewk−1, (10)

yk = Cxk + Fvk, (11)

where A ∈ Rn×n, B ∈ Rn×p, E ∈ Rn×nw , C ∈ Rm×n,
and F ∈ Rm×nv are constant matrices, uk−1 ∈ Rp is the



input vector, yk ∈ Rm is the output vector, and xk ∈ Rn
is the state vector to be estimated. We assume that the
input and output vectors, as well as the constant matrices,
are known. In turn, wk−1 ∈ Rnw and vk ∈ Rnv are the
process and measurement noise terms, respectively. We
assume that the noise terms wk−1 and vk are characterized
by the WSS SPs {Wk} and {Vk} with autocorrelation
matrices Q � 0nw×nw

and R � 0nv×nv
, respectively. Also,

the initial state x0 is characterized by the GRV X0 ∼
N (x̂0, P

xx
0 ), such that X0, Wk−1, and Vk are uncorrelated.

The main idea of observers is to correct the state forecast
x̂k|k−1, given by the process model (10), based on mea-

surement error
(
yk − ŷk|k−1

)
, where yk is the measurement

and ŷk|k−1 is given by the measurement model (11). Such
correction is weighted by a gain matrix Kk. To obtain
the state estimates, the unknown noise terms wk−1 and
vk are replaced by their uncertainty representation. The
KF aims to provide the Kalman gain Kk that minimizes
tr (P xx

k ). The OH2F aims at providing the constant design
matrices T , N , and K (to be defined) such that the steady-
state variance of the state estimation error is minimized.
Each state estimator provides a posteriori mean x̂k and
covariance P xx

k estimates. The GRV Xk ∼ N (0n×1, P
xx
k )

characterizes the estimation error ek , (xk − x̂k), where
xk is the true state.

For the KP, the following observer is considered (Kalman,
1960):

x̂k|k−1 = Ax̂k−1 +Buk−1, (12)

x̂k = x̂k|k−1 +Kk−1 (yk−1 − Cx̂k−1) , (13)

whose estimation error is given by

ek = Aek−1 + Ewk−1 −Kk−1 (Cek−1 + Fvk−1) . (14)

For the KF, the following observer is considered (Kalman,
1960):

x̂k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1

)
, (15)

whose estimation error is given by

ek = Aek−1 + Ewk−1
−Kk (C (Aek−1 + Ewk−1) + Fvk) . (16)

The OH2F structure is formulated by further steps as in
Tang et al. (2019b). Consider a full-rank matrix [T N ] such
that

T +NC = In×n, (17)

where T ∈ Rn×n and N ∈ Rn×m.

Combining (10) and (11) with (17), we can rewrite the
process model (10) as follows:

xk = (T +NC)xk
= Txk +N (yk − Fvk)

= TAxk−1 + TBuk−1 + TEwk−1 −NFvk +Nyk.
(18)

Applying the usual observer idea to (18) and (11), we
obtain the following observer:

x̂k = TAx̂k−1 + TBuk−1 +K (yk−1 − Cx̂k−1) +Nyk,
(19)

whose estimation error is given by

ek = (TA−KC)ek−1 + TEwk−1 −KFvk−1 −NFvk
(20)

and K ∈ Rn×m is defined as the constant observer gain
matrix. Note that both past and current measurements
are incorporated, in order to combine all acquired data.

For the special case in which T = In×n and N = 0n×m,
the OH2F is reduced to the H2P. This fixed-gain predictor
is equivalently formulated from (13) at steady state, that
is, it represents the stationary gain KP. Analogously, the
H2F is a fixed-gain filter formulated from (15) at steady
state. We highlight that the H2F is not a special case of the
OH2F. However, as the OH2F is also a filter, and it offers
additional degrees of freedom to yield the design matrices
T , N , and K, we may reach a smaller H2 norm.

4. MINIMUM-VARIANCE ESTIMATORS

In this section, both KP and KF algorithms are reviewed.
Without loss of generality, the Kalman estimators can be
derived for correlated SPs with non-null mean. Here, we
consider SPs {Wk} and {Vk} whose random variables Wk

and Vk are uncorrelated and with zero mean.

4.1 The KP for Discrete-Time Linear Systems

Retake the error parcel (14). The term ek is characterized
by the GRV Xk ∼ N (0n×1, P

xx
k ) as

Xk = (A−Kk−1C)Xk−1 + EWk−1 −Kk−1FVk−1. (21)

Applying operations (1)-(2) to Xk, we obtain

P xx
k = (A−Kk−1C)P xx

k−1 (A−Kk−1C)
T

+ EQET

+Kk−1FRF
TKT

k−1. (22)

To find the Kalman gain Kk−1, we solve

∂tr (P xx
k (Kk−1)) /∂Kk−1 = 0.

In so doing, we obtain

Kk−1 = AP xx
k−1C

T
(
CP xx

k−1C
T + FRFT

)−1
. (23)

Next, we present the KP algorithm to estimate x̂k and Xk,
which characterize the state vector xk.

Algorithm 1. (Kalman, 1960) The KP algorithm is sum-
marized as

[x̂k, P
xx
k ] = KP

(
x̂k−1, P

xx
k−1, A,B,E,

Q,C, F,R, uk−1, yk−1

)
. (24)

1: Compute the Kalman gain Kk−1 (23).
2: Compute the a posteriori estimates x̂k (13) and P xx

k
(22). 2

4.2 The KF for Discrete-Time Linear Systems

Retake the error parcel (16). The term ek is characterized
by the GRV Xk ∼ N (0n×1, P

xx
k ) as

Xk = (In×n −KkC) (AXk−1 + EWk−1)−KkFVk. (25)

Applying operations (1)-(2) to Xk, we obtain

P xx
k = (In×n −KkC)

(
AP xx

k−1A
T + EQET

)
× (In×n −KkC)

T
+KkFRF

TKT
k . (26)

To find the Kalman gain Kk, we carry out

∂tr (P xx
k (Kk)) /∂Kk = 0,

obtaining

Kk =
(
AP xx

k−1A
T + EQET

)
CT

×
(
C
(
AP xx

k−1A
T + EQET

)
CT + FRFT

)−1
. (27)



Next, we present the KF algorithm to estimate x̂k and Xk,
which characterize the state vector xk.

Algorithm 2. (Kalman, 1960) The KF algorithm is sum-
marized as

[x̂k, P
xx
k ] = KF

(
x̂k−1, P

xx
k−1, A,B,E,

Q,C, F,R, uk−1, yk

)
. (28)

1: Compute the Kalman gain Kk (27).
2: Compute the a posteriori estimates x̂k (15) and P xx

k
(26). 2

5. STEADY-STATE MINIMUM-VARIANCE
ESTIMATORS

To derive the OH2F, the SPs are assumed to be white
noise. This is necessary to use Lemma 2. In order to
cover the cases in which the noise is colored, we augment
the state vector xk with some noise terms, such that the
remaining noise is seen as white noise.

5.1 The OH2F for Discrete-Time Linear Systems

Consider the error ek given by (20). The term ek is
characterized by the GRV Xk ∼ N (0n×1, P

xx
k ) as

Xk = (TA−KC)Xk−1 + TEW −KFV −NFV. (29)

Applying operations (1)-(2) to Xk, we obtain

P xx
k = (TA−KC)P xx

k−1 (TA−KC)
T

+ TEQ(TE)T

+KFR(KF )T +NFR(NF )T. (30)

By convenience, we rewrite (20) as

ek = Ãek−1 + B̃dk−1, (31)

where

Ã = TA−KC, (32)

B̃ = [TE −KF −NF ] , (33)

dk−1 =
[
wT
k−1 v

T
k−1 v

T
k

]T
. (34)

In order to compute the design matrices T , N , and K,
we formulate a constrained optimization problem from
Lemma 1. Since the matrices T and N are related by (17),
we use Lemma 3 to make explicit such relation in terms of
S ∈ Rn×(n+m). Thereby, we note two nonlinear products
involving PS and PK, then we define the linearizing
transformations Y1 = PS and Y2 = PK. As tr

(
BTPB

)
in

Lemma 1 yields the nonlinear products STPS andKTPK,
we define the upper bounds

STPS = Y T
1 P

−1Y1 ≺ Y3, (35)

KTPK = Y T
2 P

−1Y2 ≺ Y4. (36)

The prior procedures transform the original optimization
problem in a constrained optimization problem based on
LMIs, whose outputs are the desired matrices T , N , and
K. This result is presented in the following theorem.

Theorem 1. Consider a parameter ψ > 0 and matrices P ∈
Rn×n, Y1 ∈ Rn×(n+m), Y2 ∈ Rn×m, Y3 ∈ R(n+m)×(n+m),
and Y4 ∈ Rm×m, where P = PT � 0n×n, Y3 = Y T

3 �
0(n+m)×(n+m), and Y4 = Y T

4 � 0m×m. Given the LMIs

tr (Ω1) + tr (Ω2) + tr
(
FTY4F

)
< ψ, (37)[

In×n − P ΩT
3

Ω3 −P

]
≺ 02n×2n, (38)[

−Y3 Y T
1

Y1 −P

]
≺ 0(2n+m)×(2n+m), (39)[

−Y4 Y T
2

Y2 −P

]
≺ 0(n+m)×(n+m), (40)

where

Ω1 , ETαT
1 (Θ†)T

(
PΘ†α1 + Y1Ψα1

)
E

+ ETαT
1 ΨT

(
Y T
1 Θ†α1 + Y3Ψα1

)
E, (41)

Ω2 , FTαT
2 (Θ†)T

(
PΘ†α2 + Y1Ψα2

)
F

+ FTαT
2 ΨT

(
Y T
1 Θ†α2 + Y3Ψα2

)
F, (42)

Ω3 , PΘ†α1A+ Y1Ψα1A− Y2C, (43)

Θ ,

[
In×n
C

]
, α1 ,

[
In×n
0m×n

]
, α2 ,

[
0n×m
Im×m

]
, (44)

Ψ , I(n+m)×(n+m) −ΘΘ†, (45)

by solving the constrained optimization problem

min ψ

s.t. (37)−(40), (46)

the matrices T , N , and K are obtained from

T = Θ†α1 + P−1Y1Ψα1, (47)

N = Θ†α2 + P−1Y1Ψα2, (48)

K = P−1Y2. (49)

2

Proof. First, we relate (31) to Lemma 1. Doing A = Ã,

B = B̃, and C = In×n, we obtain

B̃TPB̃ = ETTTPTE −ETTTPKF −ETTTPNF
−FTKTPTE FTKTPKF FTKTPNF
−FTNTPTE FTNTPKF FTNTPNF

 , (50)

(TA−KC)
T
P (TA−KC)− P + In×n ≺ 0n×n. (51)

Next, Schur’s complement is applied to obtain[
In×n − P (TA−KC)

T
P

P (TA−KC) −P

]
≺ 02n×2n. (52)

Now, we apply Lemma 3 to (17) to relate T and N by
means of a same variable S. Doing A = [T N ], B =
[In×n C

T]T, and C = In×n, we obtain

[T N ] =[
In×n
C

]†
+ S

(
I(n+m)×(n+m) −

[
In×n
C

] [
In×n
C

]†)
= Θ† + SΨ. (53)

From (53), the matrices T and N can be written as

T = Θ†α1 + SΨα1, (54)

N = Θ†α2 + SΨα2, (55)

where α1 and α2 are given by (44).

Given the linearizing transformations Y1 = PS and Y2 =
PK, (54) substituted in P (TA −KC) yields (43). Then,
(52) becomes the LMI (38). Now, retake the upper bounds
Y3 (35) and Y4 (36). Applying Schur’s complement, LMIs



(39) and (40) are obtained. Also, substituting (54) and
(55) in (50) yields a block-diagonal matrix given by

H =
{

Ω1, F
TY4F, Ω2

}
.

Take the trace of each matrix within H and bound their
summation by ψ. By minimizing ψ > 0, the constrained
optimization problem is finished. 2

Since the constrained optimization problem (46) is solved
only once, and it may be complex, we consider that it will
be solved offline. Next, we present the OH2F algorithm to
estimate x̂k and Xk, which characterize the state vector
xk.

Algorithm 3. The OH2F algorithm is summarized as

[x̂k, P
xx
k ] = OH2F

(
x̂k−1, P

xx
k−1, A,B,E,Q,

C, F,R, T,N,K, uk−1, yk−1, yk

)
. (56)

1: Compute the a posteriori estimates x̂k (19) and P xx
k

(30). 2

Remark 1. Here, the optimization problems based on
LMIs are solved via semidefinite programming with the
CVX toolbox (Grant and Boyd, 2014). 2

5.2 The H2P for Discrete-Time Linear Systems

According to the observer (19), consider that T = In×n
and N = 0n×m. Therefore, the OH2F is reduced to the
H2P, whose mean and error estimates are given by (13) and
(14), respectively, with the constant gain K to be found.
The H2P has the advantage of computing the Kalman gain
K only once. By relating the error system to Lemma 1, we
have A = (A−KC), B = [E −KF ], and C = In×n. In so
doing, the following result is derived.

Corollary 1. Consider a parameter ψ > 0 and matrices
P = PT � 0n×n, Y2 ∈ Rn×m, and Y4 = Y T

4 � 0m×m.
Consider also the LMIs

tr
(
ETPE

)
+ tr

(
FTY4F

)
< ψ, (57)[

−Y4 Y T
2

Y2 −P

]
≺ 0(n+m)×(n+m), (58)[

In×n − P ATP − CTY T
2

PA− Y2C −P

]
≺ 02n×2n. (59)

Bu solving the constrained optimization problem

min ψ

s.t. (57)−(59), (60)

we obtain the matrix K = P−1Y2. 2

Proof. This proof is similar to the prior proof with T =
In×n and N = 0n×m. 2

5.3 The H2F for Discrete-Time Linear Systems

Let the instant k be enough large to assume the steady
state. Therefore, the KF is reduced to the H2F, whose
mean and error estimates are given by (15) and (16),
respectively, with the constant gain K to be found. The
H2F has the advantage of computing the Kalman gain K
only once. By relating the error system to Lemma 1, we
have A = (A − KCA), B = [(E − KCE) − KF ], and
C = In×n. In so doing, the following result is derived.

Corollary 2. Consider a parameter ψ > 0 and matrices
P = PT � 0n×n, Y2 ∈ Rn×m, and Y4 = Y T

4 � 0m×m.
Consider also the LMIs

tr
(
ETME

)
+ tr

(
FTY4F

)
< ψ, (61)[

−Y4 Y T
2

Y2 −P

]
≺ 0(n+m)×(n+m),

(62)[
In×n − P ATP −ATCTY T

2
PA− Y2CA −P

]
≺ 02n×2n, (63)

where

M = P − Y2C − CTY T
2 + CTY4C. (64)

By solving the constrained optimization problem

min ψ

s.t. (61)−(63), (65)

we obtain the matrix K = P−1Y2. 2

Proof. This proof is similar to the prior proof with T =
In×n and N = 0n×m. 2

6. NUMERICAL EXAMPLE

In this section, we use the five-state numerical example
from Tang et al. (2019b). In order to compare the perfor-
mance of the KP, KF, H2P, H2F, and OH2F, three indexes
are employed, namely: (i) the mean processing time TCPU;
(ii) the root mean square error of the mean estimate of the
j-th state (RMSEj)

RMSEj =
1

MC

MC∑
i=1

√√√√1

ζ

ζ∑
k=1

(xj,k − x̂j,k,i)2, (66)

for j = 1, . . . , n, where n is the state vector dimension, ζ
is the time horizon, and MC is the number of Monte Carlo
simulations; and (iii) the mean trace (MT)

MT =
1

MC

1

ζ

MC∑
i=1

ζ∑
k=1

tr
(
P xx
k,i

)
. (67)

The simulations are run with the parameters ζ = 60 and
MC = 1000. However, to compute the indexes RMSE
and MT, only the first 10 time steps (ζ = 10) are used.
This choice is made to compare all algorithms during the
transient, where there exist significant differences among
them. In (23) and (27), the trace of the a posteriori
covariance matrix P xx

k is minimized, at each time step, by
the KP and KF, respectively; in (46), (60), and (65), the
steady-state variance of the error ek (31) is minimized by
the OH2F, H2P, and H2F, respectively. Then, we expect
that the KP and KF reach the smallest indexes RMSE and
MT with respect to the predictors and filters, respectively,
and that the OH2F reaches the smallest MT with respect
to the fixed-gain algorithms. The computer configuration
is: 4 GB RAM, Windows 7 Ultimate, and Intel Core 2
Quad CPU Q6700 2.66 GHz.

6.1 Problem Description and Setup

Consider the system with the form (10)-(11), defined by
the following parameters:



A =


−0.54 0.45 0.36 0 0
0.63 0.45 0.18 0.36 0
0.09 0.45 0.27 0.09 0.18

0 0 0.25 0.25
√

2 −0.25
√

2

0 0 0 0.25
√

2 0.25
√

2

 , (68)

B = 05×1, E = [−1 0 0 0 1]
T
, (69)

C =

[
1 0 0 0 0
0 0 0 1 0

]
, F = 0.1× I2×2. (70)

It is simulated with initial state x0 = [4 −4 4 −4 4]T. The
noise realizations wk−1 and vk take values from the GRVs
W ∼ N (0, 1) and V ∼ N (02×1, I2×2), respectively.

To estimate states, the tuning is set as x̂0 = 05×1, P xx
0 =

25
ς I5×5, Q = 1, and R = I2×2, where ς = 18.2051 is

the greatest realization of the chi-square variable with five
degrees of freedom that implies 99.73% confidence level.
The state estimates are initialized such that the initial
interval contains the true states with 99.73% confidence
level. After solving (46), we obtain the matrices

T =


0.0099 0 0 0.0005 0
0.0006 1 0 −0.1588 0
−0.0012 0 1 0.0036 0
0.0005 0 0 0.8691 0
0.9867 0 0 0.1384 1

 , (71)

N =


0.9901 −0.0005
−0.0006 0.1588
0.0012 −0.0036
−0.0005 0.1309
−0.9867 −0.1384

 , (72)

KOH2F =


−0.0026 0.0007
0.2854 0.0909
−0.0435 0.0509
0.1523 0.0726
−0.4161 0.0705

 , (73)

with the minimal H2 norm equal to 0.1755. Also, by solving
(60) and (65), the corresponding matrices are found:

KH2P =


−0.5343 0.1241
0.6234 0.2068
−0.0878 0.1011
0.3479 0.1655
−0.3480 −0.0045

 , (74)

KH2F =


0.9901 −0.0009
−0.0010 0.2793
0.0023 −0.0058
−0.0009 0.2298
−0.9834 −0.2424

 , (75)

whose minimal H2 norm is equal to 1.4208 and 0.2015,
respectively.

6.2 State Estimation

In Table 1 and Figure 1, the computed indexes are pre-
sented. First, note that the TCPU of the Kalman estimators
is larger than the TCPU of the fixed-gain algorithms. It oc-
curs because both KP and KF compute a matrix inversion
at each time step to obtain the Kalman gain, while the
other algorithms do not. This is the main advantage of the
fixed-gain algorithms. Second, we differ the indexes RMSE
and MT. On one hand, the RMSE measures exactness,
since the true state xk is compared to the mean estimate

Table 1. Numerical results from the state esti-
mation of the system (68)-(70).

Estimators TCPU × 10−5(s) MT

KP 7.5472 2.7581

H2P 4.3301 2.9439

KF 6.7300 1.0844

H2F 4.6705 1.4327

OH2F 6.1300 1.2407
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Figure 1. Index RMSE for each estimated state of the
system (68)-(70).

x̂k. On the other hand, the MT measures precision, since it
is related to the uncertainty region spreading, that is, the
covariance matrices P xx

k . According to the indexes RMSE
and MT, the filters are more precise and exact than the
predictors. This is always true, since the filters use both
past and current measurements.

Regarding the fixed-gain filters, the OH2F returns an H2

norm smaller than the H2F. As the H2 norm is a variance
measure, and it influences the precision of the algorithm,
the OH2F reaches a smaller MT as illustrated in Table 1.
About the index RMSE, no significant difference is noted,
because some states get worse while others get better.

7. CONCLUSION

This paper proposed a novel state observer based on
H2 norm, called OH2F. Its novelty is to design a fixed-
gain filter based on the steady-state variance. For LTI
systems, its observer structure is more general than the
KP one. This paper also revisited the regular KP and
KF algorithms to highlight similarities and differences to
the OH2F. In terms of numerical comparisons involving
both transient and steady-state parcels, no significant
difference is noted between Kalman estimators and fixed-
gain algorithms. This is expected because the varying gain
algorithms also reach the steady state. Therefore, the idea
was to compute the performance indexes RMSE and MT
during the transient only. In so doing, we showed that the
OH2F can yield results more precise than the H2F, when
its H2 norm is smaller. Moreover, we showed that the H2P
is a special case of the OH2F, and that it corresponds to the
KP at steady state. The proposed algorithm is indicated
to applications where both low processing time and good



accuracy are requirements to make feasible the usage of
state estimators at real time, such as unmanned aerial
vehicles that flight in hovering state.
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