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Abstract: This work proposes a fixed-wing UAV (Ummaned Aerial Vehicle) control strategy
based on feedback-linearization and model predictive control (MPC). The strategy makes use
of the relationship between the applied control inputs of the UAV and the generalized forces
and moments actuating on it. A linear model is obtained by the exact feedback-linearization
technique, followed by the use of MPC to solve the trajectory tracking and the control allocation
problems. The proposed controller is capable of actuating on the 6 DOF (Degrees of Freedom)
of the UAV, avoiding inherited restrictions when the model is decoupled. The proposed strategy
is applied in a curve tracking task. Simulations are performed using MATLAB software, and
the results show the efficiency of the proposed control strategy.
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1. INTRODUCTION

As the use of unmanned aerial vehicles (UAVs) has in-
creased, more techniques have been developed concerning
path planning, navigation and control. Both military and
civilian applications usually require a UAV to be able
to estimate its own pose, process the information pro-
vided by the environment and follow a given trajectory
autonomously.

Some tasks like surveillance, terrain mapping and convoy
protection require a long endurance, in terms of energy
consumption. Therefore, the use of a fixed-wing UAV is
highly recommended due to its greater endurance when
compared to multirotors. Nevertheless, the nonlinear be-
havior of these systems, mechanical constraints, and un-
certainties impose challenges in UAV guidance.

Different proposals regarding fixed-wing UAV guidance
can be found in the literature. A common solution is
to decouple the lateral from the longitudinal dynamics
(Espinoza et al., 2014; Beard et al., 2014; Garcia-Baquero
et al., 2018). However, this decoupling implies that the
UAV is flying in steady-state conditions, as mentioned
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in (Stevens et al., 2015), which is not the case in many
applications which are subject to fast and time-varying
reference trajectories.

Another frequently found solution, makes use of lower
level controllers, usually PID, which simplifies the complex
nonlinear model. This strategy is mostly used in RC (radio
controlled) planes (Kang and Hedrick, 2009).

This work deals with the problem of guiding a fixed-
wing UAV. Differently from the mentioned approaches,
this work considers the full twelve-states coupled dynamics
model of the UAV. The proposed strategy is based on
two techniques to control the whole 6 DOF UAV. First,
a feedback-linearization based controller is used to reduce
the twelve states nonlinear model to a simplified linear
model, using the generalized forces and moments as virtual
control inputs. Second, a linear MPC is implemented
to solve the trajectory tracking and control allocation
problems simultaneously, ensuring feasibility between the
virtual control inputs and the applied ones.

Simulations are performed using MATLAB software, and
the results show that the proposed strategy is capable
of guiding the UAV along a desired trajectory from any
feasible initial configuration.

The remainder of this paper is structured as follows: in
the next section, we present related works that deal with
guidance problems. In section 3, the methodology of the
proposed controller is developed. Simulation results are
shown in section 4, and section 5 concludes the work.
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2. RELATED WORK

It is possible to find in the literature a great number of
control techniques applied to the UAV guidance problem.

To begin with, (Kang and Hedrick, 2009) use a nonlinear
MPC, in parallel with a set of low-level controllers, to
transform the tracking problem into a regulation one. In
the same subject, (Alessandretti and Aguiar, 2017) deal
with the problem of path following of a fixed-wing UAV
with an inner-outer loop design composed of a sampled-
data MPC and low-level controllers, providing advantages
like the reduction of computational burden.

In (Lesprier et al., 2015) a two stage control strategy is
proposed for the longitudinal dynamics of the UAV. The
first step consists of a classical pole placement method,
followed by partially linearized inner loops and a robust
H∞ outer loop controller. On the feedback linearization
subject, (Zhou et al., 2014) propose an attitude controller
which also uses adaptive control to stabilize the decoupled
model of the UAV.

Furthermore, in (Rezende et al., 2018) a robust control
law, based on a reference model with constrained inputs
and states, is proposed to navigate the UAV inside a
smooth vector field in R2 and R3.

Also, (Raffo et al., 2010) design an integral predictive and
nonlinear robust control strategy to solve the path follow-
ing problem for a quadrotor helicopter in a hierarchical
scheme, whilst a H∞ controller stabilizes the rotational
movements. Another H∞ control approach is found on
(Ferreira et al., 2011), where a secondary state feedback
control is used to reject input disturbances.

Differently from the previous approaches, this work pro-
poses an exact feedback-linearization controller for po-
sition and attitude control of a fixed-wing UAV, using
the coupled nonlinear dynamics equations, and a MPC
controller for the linearized system.

3. CONTROL STRATEGY

This section presents the development of the proposed con-
trol strategy. The details about fixed-wing UAV modelling
such as dynamic equations and aerodynamics coefficients
will not be covered here and can be found in (Stevens et al.,
2015) and (Beard and McLain, 2012).

3.1 UAV Model

The nonlinear model of the UAV is presented in equations
(1) - (4), where pn, pe, pd represent the north, east and
down positions, u, v, w the body velocities, φ, θ, ψ the
attitude (roll, pitch and yaw angles), and p, q, r the
angular velocities on the body-fixed frame of the UAV.

Furthermore, m is the UAV mass, Γi are combinations of
the inertial moments (Beard and McLain, 2012), repre-
sented by Jik, and Ra,b represents the rotation matrix of
b around the axis a.

The virtual control inputs fx, fy, fz represent the forces
in the xyz body frame, and l, m, n represent the moments.

(
ṗn
ṗe
ṗd

)
= Rz,ψRy,θRx,φ

(
u
v
w

)
, (1)

(
u̇
v̇
ẇ

)
=

(
rv − qw
pw − ru
qu− pv

)
+

1

m

(
fx
fy
fz

)
, (2)

φ̇θ̇
ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0
sinφ

cos θ

cosφ

cos θ

(pq
r

)
, (3)

(
ṗ
q̇
ṙ

)
=

 Γ1pq − Γ2qr
Γ5pr − Γ6(p2 − r2)

Γ7pq − Γ1qr

+

Γ3l − Γ4n
m

Jyy
Γ4l + Γ8n

 . (4)

The UAV is subjected to aerodynamic constraints, regard-
ing flight speed and orientation with respect to the wind,
allowing it to flight in stable conditions. These constraints
are specifically for each UAV. We will deal with them in
the next sections.

The relationship between the generalized forces and mo-
ments and the applied control signals on the UAV is given
by (5), where δa, δe, δr represent the deflection of ailerons,
elevators and rudder, respectively, and δt represents the
throttle percentage.

fx
fy
fz
l
m
n


︸ ︷︷ ︸
F

= M6×4 ×

δaδeδr
δt


︸ ︷︷ ︸
−→u

+Ĉ6×1. (5)

In equation (5), M is composed by the aerodynamics

coefficients of the UAV control surfaces, and Ĉ is composed
by the aerodynamics forces and moments generated by the
fixed surfaces. These can be obtained from data tables, and
depend on the angle of attack, sideslip angle, and from the
UAV states.

Therefore, since M is not a square matrix, as long as
det(MTM) 6= 0, we can obtain −→u from Ĉ and a proper F
as follows:

−→u = M+(F − Ĉ), (6)

where M+ is the Moore–Penrose left pseudo-inverse of M .

3.2 Problem Formulation

With the presented UAV model, we can now define the
problem in which we are going to apply the control
strategy developed in this work as follows:

Problem 1. Given a smooth reference trajectory ξd, find
a set of admissible control inputs δa, δe, δr, δt in order to
guide the UAV along ξd, from any initial configuration.

Also, in order to validate the model and the proposed
controller, we need the following assumptions:

A1. The UAV is flying at a constant speed;
A2. The reference trajectory ξd and all its time derivatives

are defined and continuous;
A3. The pitch angle (θ) will remain within the valid range

|θ| < π
2 .



In this work, we consider the task of tracking a trajectory
given by a vector field, which leads to the circulation of
a target curve. The structure of the vector field and the
desired trajectory are presented in Section 4.

3.3 Feedback Linearization

In order to obtain a linearized system, we will use input-
output feedback linearization (Khalil and Grizzle, 2002).
With a change of variables, a nonlinear system

ẋ = f(x) + g(x)û, (7)

y = h(x),

can be transformed to the normal form

η̇ = f(η, ξ),

ξ̇ = Aξ +Bγ(ξ)[û− α(ξ)], (8)

y = Cξ,

where η̇ determines the system internal dynamics, and ξ̇
determines the external dynamics.

Definition 1. (Khalil and Grizzle, 2002) An output of a
nonlinear system has relative degree ρk if

LgkL
i−1
f h(x) = 0, LgkL

ρk−1
f h(x) 6= 0,∀i ∈ [1, ρk − 1] .

For MIMO systems, the relative degree ρ of the complete
system will be given by the sum of all output’s relative
degrees ρk.

For the case where ρ equals the number of states, the
internal dynamics is removed, yielding

ξ̇ = Aξ +Bγ(ξ)[û− α(ξ)], (9)

y = Cξ.

It is possible then to use the control law û = α(ξ) +β(ξ)v,
with β(ξ) = γ(ξ)−1, which leads to the linearized system

ξ̇ = Aξ +Bv, (10)

y = Cξ.

In this work, we choose the desired outputs as the three
linear positions [pn, pe, h], where h = −pd, and the Euler
angles [φ, θ, ψ]. Also, we choose the generalized forces and
moments as the controls inputs (û = F ). This way, we
have ρk = 2, k = 1, ..., 6 and ρ = 12, therefore we eliminate
internal dynamics. Furthermore, according to (Khalil and
Grizzle, 2002), α(ξ) and γ(ξ) are given by

γ(ξ) =


Lg1Lfh1(ξ) · · · Lg6Lfh1(ξ)
Lg1Lfh2(ξ) · · · Lg6Lfh2(ξ)

...
. . .

...
Lg1Lfh6(ξ) · · · Lg6Lfh6(ξ)

 , (11)

α(ξ) = γ−1(ξ)



L2
fh1(ξ)

L2
fh2(ξ)

L2
fh3(ξ)

L2
fh4(ξ)

L2
fh5(ξ)

L2
fh6(ξ)

 = γ−1(ξ)b(ξ), (12)

β(ξ) = γ−1(ξ). (13)

For the expanded version of these equations, please refer
to appendix A.

Therefore, as long as det(γ(ξ)) 6= 0, we can choose

F = α(ξ) + β(ξ)v, (14)

leading to the linearized system (10) with

ξ =
[
pn ṗn pe ṗe h ḣ φ φ̇ θ θ̇ ψ ψ̇

]T
, (15)

A =


A1 0 0 0 0 0
0 A1 0 0 0 0
0 0 A1 0 0 0
0 0 0 A1 0 0
0 0 0 0 A1 0
0 0 0 0 0 A1

 , A1 =

[
0 1
0 0

]
, (16)

B =

[
B1 0 0
0 B1 0
0 0 B1

]
, B1 =

0 0
1 0
0 0
0 1

 , (17)

C =


C1 0 0 0 0 0
0 C1 0 0 0 0
0 0 C1 0 0 0
0 0 0 C1 0 0
0 0 0 0 C1 0
0 0 0 0 0 C1

 , C1 = [1 0] , (18)

where 0 are zeros matrices of appropriate size.

For the model presented in this paper, the condition
det(γ(ξ)) 6= 0 will maintain as long as assumption A3
holds.

3.4 Optimal Control

Since we are using the left pseudo-inverse, equation (6)
only gives us the minimum quadratic error solution for
arbitrary values of F . Therefore, we need to consider
constraints on F . For that, suppose a virtual input F1,
that generates a control input −→u 1 as follows:

−→u 1 = M+(F1 − Ĉ). (19)

Since M+ only gives the minimum quadratic error solu-
tion, the actual virtual input, F2, generated by −→u 1, will
be given by

F2 = M ×−→u 1 + Ĉ. (20)

However, the feasible solution must ensure F2 = F1 = F .
By replacing (19) in (20), we have

F = M ×M+(F − Ĉ) + Ĉ. (21)

Reorganizing (21), we find that if (F − Ĉ) is in the null
space of (I−M×M+), we can ensure that F2 = F1 through

(I −M ×M+)(F − Ĉ) = 0. (22)

Replacing the control law (14) in (22), we are able to relate
the linear system control inputs with the UAV model con-
trol inputs, ensuring that feasible transformations between
control inputs are achieved, as long as we choose v to
respect the constraint

(I −M ×M+)(α(ξ) + β(ξ)v − Ĉ) = 0. (23)

Furthermore, we also need v to respect the limits of −→u .
We will do this by replacing (14) in (19)

−→umax ≥M+(α(ξ) + β(ξ)v − Ĉ) ≥ −→umin. (24)

From (24) we ensure that v must respect the bounds of −→u ,
and from (23) we ensure feasibility between virtual control
inputs and the real ones.

Finally, our objective is to reduce the error of the linear
system (10) with respect to a desired trajectory ξd. For



that, we propose an optimal control problem in the form
of

J(v, ξ) = min
v

∫ tf

t0

(ξ − ξd)TQ(ξ − ξd) + vTRv dt

+ (ξN − ξdN )TP (ξN − ξdN ) (25)

s.t.(10), (23), (24)

where Q and R are the states and controls weighting
matrices, respectively, and P is the terminal cost weighting
matrix. In order to improve convergence, we will use
the incremental MPC framework to solve the quadratic
optimal control problem. Then, the linear control input is
given by

vk = vk−1 + ∆vk. (26)

Finally, the system (10) can be written in the discrete time
and incremental form as follows:[

ξk+1

vk

]
︸ ︷︷ ︸
ξ̄+

=

[
Ad Bd
0 I

]
︸ ︷︷ ︸

Ā

[
ξk

vk−1

]
︸ ︷︷ ︸

ξ̄

+

[
Bd
I

]
︸ ︷︷ ︸
B̄

∆vk. (27)

where Ad and Bd are obtained by discretizing A and B,
respectively, using Zero-order Hold (ZoH).

Furthermore, we will consider constraints on the rate of the
control inputs. Replacing (26) in (6) with (14), we obtain
−→u k = M+(α(ξk) + β(ξk)(vk−1 + ∆vk)− Ĉ). (28)

Using the superposition principle we can analyse the effects
of ∆vk in −→u k:

∆−→u k = M+β(ξk)∆vk, (29)

where ∆−→u k is the corresponding change in−→u k due to ∆vk.
This way, we can consider the constraints in ∆vk as

|M+β(ξk)∆vk| ≤ ∆−→umax. (30)

Finally, defining ξ̂j = ξ̄k+j|k − ξ̄dk+j|k and ∆vj = ∆vk+j|k,

we can rewrite the optimal control problem as

J(∆v, ξ̂j) = min
∆v

N−1∑
j=0

[
ξ̂j
T
Qξ̂j + ∆vj

TR∆vj

]
+

ξ̂TNP ξ̂N . (31)

s.t. (27),

(I −M ×M+)(α(ξk|k) + β(ξk|k)(vj−1 + ∆vj)− Ĉ) = 0,

M+(α(ξk|k) + β(ξk|k))(vj−1 + ∆vj)− Ĉ) ≤ −→umax,

M+(α(ξk|k) + β(ξk|k))(vj−1 + ∆vj)− Ĉ) ≥ −→umin,

|M+β(ξk|k)∆vj | ≤ ∆−→umax,

|θj | <
π

2
.

The states constraints on θ are added in order to ensure
that det(γ(ξ)) 6= 0, aiming to keep the UAV in stable flight
conditions. Also, α(ξk+j|k) and β(ξk+j|k) are calculated in
j = 0 and kept constant through the prediction horizon.

For the MPC formulation, we need to choose the prediction
horizon (Np) and the control horizon (Nu). A commonly
used strategy is to select Np = Nu, but selecting a smaller
Nu provides some advantages like faster computations, as
it reduces the number of decision variables.

Propagating (27) through the prediction horizon, we ob-
tain

ξ+ = T ξ̄k + Sū, (32)

where T is Np × 12 and S is Np ×Nu, given as follows

ξ+ =


ξ̄k+1

ξ̄k+2

...
ξ̄k+Np

 , T =


Ā
Ā2

...
ĀNp

 ,

S =



B̄ 0 · · · 0
ĀB̄ B̄ · · · 0

...
...

. . .
...

ĀNp−1B̄ ĀNp−2B̄ · · ·
Np−Nu∑
i=1

ĀiB̄

 ,

ū =


∆vk

∆vk+1

...
∆vk+Nu−1

 . (33)

Finally, the optimal control problem is reduced to

J(ū, ξ̄k) = min
ū

1

2
ūTHū+ fT ū+

1

2
Y, (34)

s.t.

Gū ≤W,
Eū = Z,

with

H = 2(R̄+ ST Q̄S), (35)

fT = 2(T ξ̄k − ξ̄d)T Q̄S, (36)

Y = (T ξ̄k − ξ̄d)T Q̄(T ξ̄k − ξ̄d) + ξ̄Tk Qξ̄k, (37)

where Q̄ = blkdiag(Q,Q, ..., P ), R̄ = blkdiag(R,R, ..., R),

and ξ̄d = [ξd
T

k , ..., ξd
T

k+Np−1]T . Also, G,W,E, and Z are

given in appendix B.

4. RESULTS

The proposed strategy is applied in a task of tracking a
trajectory given by a vector field which leads to the circu-
lation of a trajectory curve defined implicitly. Simulation
results are performed in MATLAB software.

The vector field used in this work is proposed in (Gonçalves
et al., 2010). Briefly, let n be the dimension of the
workspace and p ∈ Rn a coordinate for this space. The
implementation relies on finding n− 1 well-behaved scalar
functions η1(p), ..., ηn−1(p), such that the intersections of
these functions ηi(p) = 0, i = 1, 2, ..., n − 1 define the
target curve ζ. We are using vector fields in R3, where
their structure is given by

Ω(pe, pn, h) = G(P )
∇P
||P ||

+H(P )
∇η1 ×∇η2

||∇η1 ×∇η2||
, (38)

where P gives an idea of distance to the desired curve ζ,
G(P ) : R3 → R is a scalar function such that G(P ) =

0 ⇐⇒ P = 0, H(P ) is defined as H(P ) =
√

1−G(P )2,
and ∇η1 ×∇η2 defines a term tangent to the curve.

The following parameters are used in the simulations to
generate the field: η1 = h + µ(ε−2p2

e − 1), η2 = σ−2p2
n +

ε−2p2
e − 1, with µ = 50, σ = 600 and ε = 500. These

parameters represent the intersection of an ellipse with
main axis given by σ and ε, and a parable defined by µ
and ε.



The relationship between the components of the vector
field Ω and the desired trajectory ξd at time k is given by
equations (39)-(48).

ξdk = [pdn λpdn pde λpde hd λhd φd λφd θd λθd ψd λψd] (39)

λpdn = cos (Ωψ)Vref , pdn = pnk
+ λpdn∆τ , (40)

λpdn = sin (Ωψ)Vref , pde = pek + λpde∆τ , (41)

λhd = 3Ωz, hd = hk + λhd∆τ , (42)

λφd = tanh

(
1
6λψ

d − φk
∆τ

)
, φd = φk + λφd∆τ , (43)

λθd = tanh

(
Ωθ − θk

∆τ

)
, θd = θk + λθd∆τ , (44)

λψd = tanh

(
Ωψ − ψk

∆τ

)
, ψd = ψk + λψd∆τ , (45)

Ωxy =
√

Ω2
x + Ω2

y, (46)

Ωψ = atan2(Ωx, Ωy), (47)

Ωθ = atan2(Ωz, Ωxy), (48)

where Ωx,Ωy,Ωz are the vector field components in the
xyz plane, Vref is the reference speed in the xy plane,
∆τ is the sampling time, and λ(·) stands for the discrete
derivative. To extend the desired trajectory over the pre-
diction horizon [k + 1, ..., k +Np − 1], we need to integrate
the vector field. This way, the resulting field at time k + i
will be given by Ω(pdek+i−1

, pdnk+i−1
, hdk+i−1) and ξdk+i is

calculate as in (39). Finally, the complete reference vector
is given by

ξ̄d =
[
ξd

T

k ξd
T

k+1 · · · ξd
T

k+Np−1

]T
. (49)

Table 1 shows the effects of different Np values on the
final cost and execution time. The first two columns show
the values of Nu and Np. Column three shows the average
execution time of the algorithm, while column four shows
the percentage increase with respect to the first row.
Columns five and six show the total cost (J) and the
percentage reduction with respect to the first row.

Table 1. Selection of Np.

Nu Np Time (s) Increasing Cost Reduction

2 4 0.0053 - 9.3456e+05 -
2 6 0.0063 18,9% 7.4292e+05 20,5%
2 8 0.0072 35,8% 6.1254e+05 34,5%
2 10 0.0080 50,9% 5.7012e+05 39,0%
2 12 0.0095 79,2% 5.5506e+05 40,6%

From it, we can note that when increasing Np beyond
Np = 10 there is almost no improvement on cost reduction,
while the execution time keeps increasing, indicating that
increasing Np would imply in higher computational effort,
without improving the results. Therefore, we have selected
Nu = 2 and Np = 10 for the simulations results.

The weighting matrices Q and R were tuned in order to
emphasize the orientation error, regarding the field and
control smoothness, leading to

Qξ = diag(0.1 1 0.1 1 0.1 1 5 15 5 15 5 15), (50)

Qv = diag(0 0 0 0 0 0), (51)

Q =

[
Qξ 0
0 Qv

]
, (52)

R = diag(10 10 10 5 5 5). (53)

With Q and R we can select P as the solution of the
algebraic Riccati equation from the LQR problem.

Furthermore, since M and Ĉ are estimated using the
coefficient buildup method, we add parameter uncertainty
to the simulations in order to verify the robustness of the
strategy.

The UAV initial conditions are set to

ξ0 = [0 0 250 23 0 0 0 0
π

2
0 0 0 0 0 0 0 0.4]. (54)

Finally, we have chosen a fixed reference speed Vref for the
UAV as 23m/s.

Figure 1. Trajectory executed by the UAV and the desired
curve.

Figure 1 shows the trajectory executed by the UAV, for
the nominal parameters, and the desired curve. Note that
the UAV starts in the middle of the curve, and rapidly
converges to it. North, East and Down positions are
presented in Figure 2, where we can observe the effect
of parameter variation on the UAV trajectory. Figure 3

Figure 2. North, east and down positions of the UAV over
the trajectory.

shows the error on roll, pitch and yaw angles. We can
observe that despite of the different trajectories on xyz
presented in Figure 2, the UAV orientation still converges
to the field, presenting a maximum steady error of 0.01
rad. Furthermore, Figure 4 shows the control inputs. We



Figure 3. Error on roll, pitch and yaw angles during
simulation.

can observe that parameter variation directly affects the
control signals as a -20% variation on M coefficients
leads to a higher control effort, whereas a +20% variation
reduces the control effort. This is an expected behavior,

Figure 4. Applied control signals.

since M maps the control inputs into forces and moments.
Therefore, smaller coefficients leads to higher control effort
to produce the desired forces and moments. The same
analysis applies to the opposite situation.

Finally, we compare the proposed strategy with the one
presented in (Rezende et al., 2018), which uses a low level
PID to simplify the complex 12 states model. Figure 5
shows the UAV alignment error (|ψ − Ωψ|) for both
strategies. We can observe that the proposed controller not
only converges faster, but presents a smaller mean error
(0.0099 rad against 0.1023 rad).

Figure 5. UAV alignment error with respect to the field.

5. CONCLUSION

This paper dealt with the problem of fixed-wing UAV guid-
ance. A feedback-linearization based controller combined
with linear MPC was proposed and the implementation
of the strategy was presented and discussed. Different
from the commonly found approaches in literature, the
developed controller deals with the full coupled dynamics
of the system, which avoids restrictions whereas controlling
all 6 DOF of the UAV. Simulation results have shown the
efficacy of the proposed strategy and the behavior of the
prediction horizon in the tracking performance. Further-
more, the robustness of the controller against parameter
uncertainties was verified by applying ±20% uncertainty
on the coefficients.

As future work, we intend to implement the proposed
controller in a hardware-in-the-loop system to evaluate the
feasibility of implementing it on a small UAV. Further-
more, we also intend to use a tube-based MPC in order to
improve robustness. We also intend to develop the proof
of stability for the proposed strategy.
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Appendix A. FEEDBACK LINEARIZATION
EQUATIONS

Here we expand the matrices γ(ξ) and b(ξ) from (13) for
the specific case of this work, where i, j represent the row
and column number, respectively.

For γ we have the following terms:

γ1,1 = cos (ψ) cos (θ) , (A.1)

γ1,2 = − sin (ψ) cos (φ) + cos (ψ) sin (θ) sin (φ) , (A.2)

γ1,3 = sin (ψ) sin (φ) + cos (ψ) sin (θ) cos (φ) , (A.3)

γ1,4 = γ1,5 = γ1,6 = 0, (A.4)

γ2,1 = sin (ψ) cos (θ) , (A.5)

γ2,2 = cos (ψ) cos (φ) + sin (ψ) sin (θ) sin (φ) , (A.6)

γ2,3 = − cos (ψ) sin (φ) + sin (ψ) sin (θ) cos (φ) , (A.7)

γ2,4 = γ2,5 = γ2,6 = 0, (A.8)

γ3,1 = − sin (θ) , (A.9)

γ3,2 = cos (θ) sin (φ) , (A.10)

γ3,3 = cos (θ) cos (φ) , (A.11)

γ3,4 = γ3,5 = γ3,6 = 0, (A.12)

γ4,1 = γ4,2 = γ4,3 = 0, (A.13)

γ4,4 =
cos (φ) sin (θ) Jxz + Jzz cos (θ)

cos (θ)
(
Jxx Jyy − Jxy2

) , (A.14)

γ4,5 =
sin (φ) sin (θ)

Jyy cos (θ)
, (A.15)

(A.16)

γ4,6 =
cos (φ) sin (θ) Jxx + Jxz cos (θ)

cos (θ)
(
Jxx Jyy − Jxy2

) , (A.17)

γ5,1 = γ5,2 = γ5,3 = 0, (A.18)

γ5,4 = − sin (φ) Jxz

Jxx Jyy − Jxy2 , (A.19)

γ5,5 =
cos (φ)

Jyy
, (A.20)

γ5,6 = − sin (φ) Jxx

Jxx Jyy − Jxy2 , (A.21)

γ6,1 = γ6,2 = γ6,3 = 0, (A.22)

γ6,4 =
cos (φ) Jxz

cos (θ)
(
Jxx Jyy − Jxy2

) , (A.23)

γ6,5 =
sin (φ)

cos (θ) Jyy
, (A.24)

γ6,6 =
cos (φ) Jxx

cos (θ)
(
Jxx Jyy − Jxy2

) . (A.25)

For b we have the following elements:

b1 =b2 = b3 = 0, (A.26)

b4 =− 2 (cos (φ))
2
qr − cos (φ) sin (φ) q2 + cos (φ) sin (φ) r2

+
sin (θ)

(
cos (φ) pqΓ7 − cos (φ) qrΓ1 − sin (φ) p2Γ6

)
cos (θ)

+
sin (θ)

(
sin (φ) prΓ5 + sin (φ) r2Γ6 + cos (ϕ) pq

)
cos (θ)

− sin (φ) sin (θ) pr

cos (θ)
+ pqΓ1 − qrΓ2 + 4

(cos (φ))
2
qr

(cos (θ))
2

+ 2
sin (ϕ)

(
q2 − 2 r2

)
cos (ϕ) + qr

(
(cos (θ))

2 − 2
)

(cos (θ))
2 ,

(A.27)

b5 =
cos (φ)

(
−2 sin (φ) qr +

(
q2 − r2

)
cos (φ)

)
sin (θ)

cos (θ)(
−p2Γ6 + prΓ5 + r2Γ6

)
cos (ϕ)− sin (ϕ) q (pΓ7 − rΓ1)

− cos (φ) pr − sin (φ) pq − sin (θ) q2

cos (θ)
, (A.28)

b6 =2
sin (θ) cos (φ)

((
q2 − r2

)
sin (φ) + 2 cos (φ) qr

)
(cos (θ))

2

cos (φ) q (pΓ7 − rΓ1 + p)

cos (θ)
− 2

sin (θ) qr

(cos (θ))
2

−
(
−r2Γ6 − p (Γ5 − 1) r + p2Γ6

)
sin (φ)

cos (θ)
. (A.29)

Appendix B. CONSTRAINT MATRICES

Here we presented the constraint matrices from the opti-
mal control problem (34).



E =


E1,1 E1,2 · · · E1,Nu

E2,1 E2,2 · · · E2,Nu

...
...

. . .
...

ENp,1 ENp,2 · · · ENp,Nu

 , Z =


Z1

Z2

...
ZNp

 , (B.1)

G =


G1,1 G1,2 · · · G1,Nu

G2,1 G2,2 · · · G2,Nu

...
...

. . .
...

GNp,1 GNp,2 · · · GNp,Nu

 ,W =


W1

W2

...
WNp

 ,
(B.2)

Ei,j =

{
0, j 6= i

(I −M ×M+)β(ξ̄k), j = i
, (B.3)

Zi = (I −M ×M+)(α(ξ̄k) + β(ξ̄k)vk − Ĉ), (B.4)

Gi,j =



0, j > i
(I −M ×M+)β(ξ̄k)

−(I −M ×M+)β(ξ̄k)

IθA
i−jB

−IθAi−jB

 , j ≤ i , (B.5)

Wi =


∆−→umax

−∆−→umin−→umax −M+(α(ξ̄k) + β(ξ̄k)vk − Ĉ)

−−→umin +M+(α(ξ̄) + β(ξ̄k)vk − Ĉ)
π/2− IθAiξk
π/2 + IθA

iξk

 , (B.6)

Iθi =

{
0, i 6= 9

1, i = 9
, i ∈ [0, ..., 18]. (B.7)




