
A CLOSED DESIGN CYCLE TO EMBEDDED LOW-COST AUTOMATION BASED
IN MICRO-CONTROLLERS

Victor G. Cardoso∗, Jessica T. Barros∗, Renata T. Tavares∗, Pedro M. G. del Foyo∗

∗Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco
Av. Acadêmico Helio Ramos s/n, CEP 50740-550, Recife/PE, Brasil

Emails: victor.cardoso@ufpe.br, jessica.tbarros@ufpe.br, renata.ttavares@ufpe.br,

pedro.foyo@ufpe.br

Abstract— In this paper a Discrete Event Systems approach is used to design embedded systems, implemented
using a commercial low-cost platform based on a single-board micro-controller. The approach uses Time Petri
Nets (TPN) to build the system model and a model-checking tool to perform the formal verification and to support
the embedded system code generation. The method was applied to design an automated sorting machine using
the Arduino platform as programming device.

Keywords— Embedded systems, Discrete Event Systems, Model checking

Resumo— Neste artigo, uma abordagem de sistemas de eventos discretos é usada para projetar sistemas
embarcados, implementados utilizando uma plataforma comercial de baixo custo baseada em micro-controlador
de placa única. A abordagem usa Redes de Petri Temporizadas para construir o modelo do sistema e uma
ferramenta para verificação de modelos para executar a verificação formal do sistema e dar suporte à geração de
código do sistema embarcado. O método foi aplicado ao projeto de uma máquina de classificação automatizada
usando a plataforma Arduino como dispositivo de programação.

Palavras-chave— Sistemas embarcados, Sistemas de Eventos Discretos, Verificação de modelos

1 Introduction

Embedded systems are present in almost all as-
pects on today’s society such as industrial ma-
chines, agricultural and process industry devices,
medical equipment, household appliances, as well
as mobile devices. Embedded systems demand is
expected to continue rapidly growing, driven in
large part by the internet of things (IoT).

Embedded systems consist of hardware, soft-
ware and an environment (Henzinger and Sifakis,
2006). As stated in (Liu et al., 2018), traditional
simulation-based verification could not cover all
possible test cases due to a large number of poten-
tial interleaving between the hardware and soft-
ware components. Then, formal verification tech-
niques are needed in order to verify that design
models work correctly for all allowed inputs by
using rigorous mathematical methods.

Recent trends have focused on combining
both language-based and synthesis-based ap-
proaches (hardware/software co-design) and on
gaining, during the early design process, maxi-
mal independence from a specific implementation
platform (Henzinger and Sifakis, 2006). Method-
ologies like SystemC (Panda, 2001) and UML
(Rumbaugh et al., 2004) go that way but the lack
of analytical tools for computational models to
deal with physical constraints; and the difficulty to
automatically transform non-computational mod-
els into efficient computational ones limits their
application. Other techniques basically propose
unified properties specification languages and a
co-verification framework used to reason about
the relationship between specification and corre-

sponding implementation. A survey of those tech-
niques can be found in (Liu et al., 2018). Most of
the success of those techniques are in the verifica-
tion of low-level software on firmware and drivers
which can be used in compositional design ap-
proaches like in (Sifakis, 2005).

In (Hajjar, 2013) a technique based on Com-
mercial Off The Self (COTS) components was pro-
posed. In such method, formal verification is used
to discover design errors and a Discrete Control
Synthesis (DCS) (Ramadge and Wonham, 1989)
method is used to automatically enforce some de-
sired behaviors on a given system. The control is
implemented using a sample-driven approach in-
stead the event-driven approach. The DCS ap-
proach was modified to deal with a sample-driven
approach which is more appropriated for elec-
tronic design techniques (Xie and Liu, 2007).

According to (Henzinger and Sifakis, 2006),
the solution for the embedded system design prob-
lem cannot be achieved by simple juxtaposition of
analytical and computational techniques, but re-
quires their tight integration within a new mathe-
matical foundation that spans both perspectives.
Still, there is a class of embedded systems that can
be implemented in commercial low cost platforms
based on micro-controllers (Wilmshurst, 2007).
The choice for an open source, commercial low-
cost platform sometimes is justified by the need
to speed up the development of the application.
There is also a tested hardware, which provides
enough computational power to execute the de-
sired functionality. The Arduino platform has
been successfully used in several minor projects
like (Syazlina Mohd Soleh et al., 2018; Mukherjee

creacteve_alessandra
Texto digitado
DOI: 10.48011/asba.v2i1.1267

et al., 2019; Lapshina et al., 2019).
The design, validation and maintenance pro-

cesses make software, paradoxically, the most
costly and least reliable part of systems in auto-
motive, aerospace, medical, and other critical ap-
plications (Henzinger and Sifakis, 2006). Then, it
is desirable that even for minor projects a formal
verification can be done before implementation.
In this paper, a methodology based on the Dis-
crete Event System approach is used to design and
implement an M&M’s sorting machine. The paper
main contribution is the scheduler synthesis from
the automaton built after the system verification.
Such scheduler will be the core of the embedded
system running over a commercial low-cost plat-
form.

The paper is organized as follows. Section 2
presents the M&M’s sorting machine mechanical
project and describes the system specification. In
Section 3 the design methodology is presented.
Section 4 shows the prototype implementation
in two versions: preemptive and non-preemptive
with its respective verifications procedures. Sec-
tion 5 brings the implementations results. Finally,
Section 6 presents the paper conclusion.

2 The M&M’s sorting machine

The M&M’s sorting machine was designed to sep-
arate M&Ms according with their color, putting
them into specific cups for each color. The M&Ms
come in packs with six different colors mixed. The
mechanical project was adapted from (Wiki, 2017)
and it is shown in Figure 1.

Figure 1: M&M’s sorting machine

The machine prototype was built using 3D
printed parts, aluminum angle connectors and
electromechanical components available in the
laboratory. As shown in Figure 1 the machine
consists of four modules, three of which have elec-
trical components necessary for their operation.
The Feeder is driven by a continuous rotation ser-
vomotor (model SM-S4306R). Its function is to
conduce the M&Ms from the storage to the color

detection module and, at the same time, to de-
liver the M&M in the color detection position to
the dispenser. An optical sensor (model HC 020k)
detects when the Feeder reaches the desired posi-
tion.

The Color Detection module has a color sen-
sor (model TCS34725). When required, the sensor
illuminates an M&M piece and collects the RGB
intensities that will be used to detect the correct
color by using appropriated algorithm. The Dis-
penser is the mechanism projected to deliver the
M&M piece to the desired cup, which is attached
to a step motor (model 28YJ-48). An encoder disk
and a set of three optical sensors (model HC 020k)
were used to identify the dispenser’s six different
positions.

The machine was designed to be fully auto-
mated and to support up to six different colors.
It must process up to 20 M&M pieces by minute.
The system must ensure that once the color was
detected, the M&M will be dispensed to the ap-
propriated cup. There must be also guaranteed
that the dispenser will only move when the cur-
rent position is different from the corresponding
position to the color been detected.

3 Methodology

The proposed approach starts by choosing the ba-
sic features that each module must perform. It
must be ensured that such functionalities are the
simplest and its compositions will satisfy all re-
quired system functionalities. Once those basic
tasks were defined, the system automation is re-
duced to synthesize a scheduler to guarantee the
desired behavior. The idea is to use an exist-
ing commercial low cost platform based on single-
board micro-controller that provides the necessary
resources to interface with the proposed modules.

The advantage of working with a commer-
cial low cost platform, besides the cost, is that
there are tested hardware devices with access to
IDE platform to program the device. The soft-
ware/hardware co-verification is not needed since
the basic tasks must be directly programmed and
tested over the same devices in it will be operating.
The challenge will be to show that the integration
of those simple, reliable and tested tasks ensure
the system specification.

Then, the system required behavior will be
modeled using TPNs. TPN (Merlin and Faber,
1976) is a formal model suitable to deal with real-
time systems because of their ability to represent
varying time durations of activities, by using tim-
ing intervals attached to transitions (del Foyo and
Silva, 2011). There are also several tools available
that can be used to verify the system specifica-
tion. TINA (Berthomieu and Vernadat, 2006) is
one of them, and it has features that can support
the system implementation.

The system model must be built using the
state-transition paradigm where transitions repre-
sent system function executions and states repre-
sent system or environment variables. Once the
system model was completed, the specification
is translated in temporal formulae and a model
checking procedure will answer if the desired be-
havior was achieved or not.

Besides safety and liveness properties verifi-
cation, performance issues are usually part of the
system specifications. Depending on the perfor-
mance criteria established, TPNs properties can
be used to assess those metrics. There are also
other kinds of properties linked to software de-
velopment like deadlock avoidance or termination
proof. Such properties also need to be checked.

To avoid introducing errors in the translation
from the model to the programming language, the
scheduler is synthesized directly from the automa-
ton built from the system model once the verifi-
cation process is concluded.

3.1 Implementing the execution flow control
function (scheduler)

In this proposal, a TPN verified model is used
to automatically generate the C code to be used
in the platform based on single-board micro-
controller. In order to do this, the Labeling TPN
must be used, in which the labels in transitions
are related to the functions being executed and
labels in places are associated to variables of two
types: boolean or enumerated.

The algorithm proposed to synthesize the ex-
ecution flow control function needs two basic en-
tries: a file with the automaton that describes
the desired scheduler behavior and a file with the
Place and Transitions labels.

A Time Petri Net is a tuple
(P, T,B, F,Mo, SIM,L) where:

• P is a finite non-empty set of places {pi};
• T is a finite non-empty set of transitions {ti};
• B : T × P → N and F : T × P → N are the

backward and forward incidence functions;

• Mo : P → N is the initial marking

• SIM: T → Q+ × (Q+ ∪ {∞}) is the static
interval for each transition

• L : T → L is a labeling function

When a software system is modeled with a
TPN, several transitions could represent the same
function. Such relaxation allows to build nets in
an easy way. A labeling function is needed to de-
fine which transitions represent the same software
function.

The labeling function L can be organized as
a partition of T . Such partition must contain not
only the labels (function names) but also all func-
tions possible exit results. Lets define O(Lk) as an

operator that returns the set of transitions which
represents all results of function Lk. If function
Lk, represented by transition tk returns only one
result, O(Lk) = ∅. Formally:

O(Lk) : ∀t ∈ p•|tk ∈ L(Lk) ∧ tk ∈ •p ∧ |p•| > 1

where •p : ∀t ∈ T |B(t, p) ≥ 1 and
p• : ∀t ∈ T |F (t, p) ≥ 1.

Let L1, L2, . . . Ln be the functions names in
TPN. The partition must satisfy the following con-
dition to be considered valid:

L1 ∩O(L1) ∩ . . . ∩ Ln ∩O(Ln) = ∅ (1)

An automaton that preserves the linear tem-
poral properties can be built using the state
class approach and partial order techniques
(Berthomieu et al., 2004).

That automaton obtained from the TPN
model is a tuple G = (S, µ, s0, T, δ), where:

• S is a finite set of nodes, representing all
reachable marking in the TPN;

• µ : S → 2P is a labeling function assigning to
each node a set of marking places in TPN;

• s0 ∈ S is the start node;

• T is a set of transitions in the TPN;

• δ : S × T → S is transition function;

The scheduler is then synthetized from the au-
tomaton and TPN labeling information. Such op-
eration is based on Algorithm 1:

1 Algorithm 1: Scheduler generation

Input: File .adr: S, µ, s0, T, δ
File .yaml: L

Output: OutFile .ino
2 write ‘int Scheduler(int s){’
3 write ‘switch(s){’
4 for s do
5 write ‘case (s):’
6 If |s•|=1 write L(s•);
7 write ‘s = δ(s, s•)’;
8 write ’break;’
9 else

10 write ‘switch(V arName(µ(s))){ ’
11 foreach t ∈ s• do
12 write ‘case(L(t))’;
13 write ‘s = δ(s, t)’;
14 write ’break;’

15 end
16 write ‘} break;’

17 end
18 write ‘} break;’

19 end
20 write ‘}’
21 write ‘return(s)’

The notation s• was used to define the set
of transitions that may occur to reach the s next
states.

∀t ∈ T |t ∈ s• iff δ(s, t) = s′ ∧ s, s′ ∈ S

V arName(µ(s)) gets from the partition, the
variable name associated to marking that holds
in s. L(t) gets the function name associated to
transition t. Those operations are conducted over
the partition info file.

The proposed methodology will be applied to
the M&M’s sorting machine design.

4 Prototype Development

4.1 System Architecture

In order to implement the system automation, the
architecture shown in Figure 2 was proposed. All
necessary modules, described in previous section,
must be controlled using a micro-controller based
platform.

Figure 2: M&M’s sorting machine architecture

An Arduino Nano board was selected as the
micro-controller based platform in this project due
to several reasons: the amount of available I/O
pins, compatibility to I2C communication proto-
col, facility of integration with other peripher-
als and its low cost. Such single-board micro-
controller is based on the ATmega328P micropro-
cessor and the system performance will be vali-
dated or not in the methodology next steps.

4.2 Software Functions Implementation

First of all, a proper basic set of functions must
be found and implemented in the platform pro-
gramming device. The fewer functions to be im-
plemented and the simpler they are, the easier will
be to maintain the code. There is also the claim
that all “system intelligence” will be provided by
the combination of that minimum set of simple
functions, so there is no need to implement com-
plex functions which are more difficult to verify.

The formal verification will answer if the de-
sired functionality was achieved by those basic
functions. Another set of functions must be imple-
mented if the desired functionality is not achieved.

In order to achieve the desired system func-
tionality the next functions were implemented:

• MoveForward() - This function sends the
command to shift the feeder 90◦ clockwise.
The wheel need to be stopped by software
when the (inPosition) boolean variable is set
to true by a hardware interrupt activated by
the optical sensor.

• GetColor() - Performs the detection of the
M&M’s color by getting the RGB intensities
and applying some calculation based on a cal-
ibration procedure. It returns an integer that
represents one of six colors or that spot is
empty.

• MoveCW() - Moves the dispenser 60◦ clock-
wise, only considering the number of steps
given by the step motor.

• MoveCCW() - Moves the dispenser 60◦

counterclockwise, only considering the num-
ber of steps given by the step motor.

A ShowColor() function was develop to sig-
nalize the detected color in a RBG LED located
behind the machine. Such function can be use
inside the GetColor() function if desired but it
does not interfere in system functionality. There
is also the Initialize() function which instantiates
variables, sensors and actuators according to the
TPN initial marking.

4.2.1 Time measurements for determining
function execution times

As stated before, TPN uses time interval in tran-
sitions to define the earliest and latest firing time.
Such approach is appropriate to software functions
since its executions times tends to be affected by
many factors. Experiments were conducted in or-
der to determine the minimum and maximum ex-
ecution times (in milliseconds) for all proposed
functions. Each function was executed 30 times
and their duration were measured. The results
are presented in Table 1.

Function Name Min. Mean Max
MoveForward()* 730 754.93 785
GetColor() 1701 1702.23 1703
MoveCW() 478 479.10 480
MoveCCW() 479 479.70 481

Table 1: Time measurements results (in ms)

The execution time of the MoveForward()
function was measured considering the time when
the hardware interruption signaled that the Feeder
reached 90◦ and the wheel was stopped.

As an embedded system design, environment
behavior must be included in the system model.
Then all system events are subject to time mea-
surement experiments. In the case of the M&M’s
sorting machine there were also carried out some
experiments to determine the time elapsed from
the moment in which the M&M piece is released

and the moment in which exits the dispenser to
fall in the corresponding cup. After 40 experi-
ments, a minimum time of 180ms and a maximum
time of 630ms was determined.

4.3 The non preemptive solution

Once the set of basic functions were defined and
implemented, a TPN model is built using Net
Draw (nd) tool in TINA package.

Figure 3 shows the TPN model of the non pre-
emptive solutions, that is, when function Move-
Forward() only exits when the feeder reaches the
desired position.

Figure 3: TPN model of the non preemptive solu-
tion

For verification purposes, the state space
which represents the system behavior is computed
using the reachability analysis tool with (-W) op-
tion. The TPN was identified as bounded and the
computed state space had 78 states and 114 tran-
sitions.

The bounded property in a TPN ensures the
program termination. The absence of deadlocks
was determined by model checking the property
�(¬dead).

The temporal formula (p0 → 3p76) states
that once p0 is marked, signalizing that a yellow
M&M was detected in the color analyzing posi-
tion, all paths will lead to a state in which p76
holds, meaning that the M&M was dispensed to
the yellow cup.

A temporal formulae to check the specifica-
tion “The system must ensure that once the color

was detected, the M&M will be dispensed to the
appropriate cup”, was built by the conjunctive
form including the six available colors and cups.

The specification “The dispenser will only
move when the current position is different from
the corresponding position to the color been de-
tected” was checked by a combination of twelve
temporal formulas. Six of the sub-formulas were
related to the case in which the spot is empty
(signalized by p14) and the dispenser is in one of
the six valid positions (p59 to p64 respectively),
the marking with the same position will hold un-
til the function GetColor be run again, signal-
ized by marking p2. For instance: (p15 ∧ p59) →
3(p59

⋃
p2). Other six sub-formulas check that

when the dispenser is in the position correspond-
ing to the detected color it will not move until a
new color had been detected. It is checked by a
temporal formula like (p59 ∧ p4)→ 3(p59

⋃
p2).

Figure 4 shows the verification results of tem-
poral formulae designed to verify all three specifi-
cations.

Figure 4: Verification results for TPN model of
the non preemptive solution

In order to evaluate the performance crite-
ria, an M&M test package composed by 90 pieces,
15 of each color, was used in simulations. The
TPN model in Figure 3 was modified to accept
fire transitions that represent color detection only
15 times. Using the stepper simulator tool from
TINA package with the random execution option
the time elapsed to process the entire 90 pieces
package can be obtained. According to the per-
formance criteria established, such a package must
be processed in at most 04 : 30s.

The simulation was repeated 40 times and
the average time elapsed to process the test pack-
age was 286443ms, which represent approximately
04 : 46s above the desired rate of 20 M&M pieces
by minute.

4.4 The preemptive solution

Considering that the MoveForward() function
can be executed in a preemptive way, that means,
when the function is called, the servomotor starts

its movement and the function exits. Such oper-
ation takes less than 1ms. Then another action,
for example a MoveCW() or MoveCCW(), can
be executed before waiting for the interruption to
stop the servomotor. That can be done since the
worst execution time for CW or CCW operations
are less than the best execution time waiting for
the interruption.

Now the TPN model was updated and the
control logics checks whether the dispenser is
one movement away from reach the desired po-
sition. In those cases the MoveForward() func-
tion is executed before the last MoveCW() or
MoveCCW() operation. Figure 5 shows the
TPN that model the described behavior.

Figure 5: TPN model of the preemptive solution

Despite the fact that the same properties must
be checked, the temporal formulae can be slightly
different due to the place or transition increased
in that version. Figure 6 shows the verification
results of all temporal formulae.

The performance was evaluated using the
same procedure and the average time elapsed was
250910ms, which represent approximately 04 : 11s
bellow the desired rate of 20 M&M pieces by
minute.

Once all system specification were achieved
the execution flow control function must be syn-
thesized. To yield the automaton that describes
the scheduler, all net elements (places, transitions
and arcs attached to them) representing the envi-
ronment must be removed. So, elements modeling
the M&M drop and M&M cups in Figure 5 are all
removed. It is obvious that the environment be-
havior will be manifested in real execution.

By default, the Arduino sketch relies on

Figure 6: Verification results for TPN model of
the preemptive solution

two main functions: setup() and loop(). The
setup() function only runs once, at the Arduino
startup and generally it is used to initialize system
variables and peripherals. The loop() function
runs the code contained in its scope as an infinite
loop. The system’s control logic must be inserted
in this context in order to operate continuously.
The programmer is responsible by developing the
code for both functions.

A program was developed in Python program-
ming language to yield the scheduler following
the algorithm explained in section 3.1. The au-
tomaton with 78 states and 114 edges was ob-
tained from the .ktz file yield using TINA. The
file net info.yaml with function names and vari-
ables information is shown in Figure 7.

Figure 7: net info.yaml file corresponding to the
TPN in Figure 5

The file describes the function labelling and
variable declarations used to yield the scheduler
function in C programming language based on
switch case sentence. The function names: Get-
Color(), MoveForward(), MoveCW() and

MoveCCW() are the L1, . . . , L4 labels described
in section 3.1 with its respective transitions and
variables Color - that can take one of next val-
ues: Empty, Orange, Brown Red, Blue, Yellow or
Green, each of them represented by a transition -
and InPosition - which is a boolean variable.

Operator O(L1) returns the transitions
t16, t5, t6, t7, t8, t9 and t10 which represent the
GetColor() possible results and O(L2), O(L3)
and O(L4) returns the empty set. So the parti-
tion condition 1 is satisfied.

The function setup() calls the Initialize()
function and do s = s0. The function loop() is
based on the scheduler obtained by Algorithm 1:

void loop(){

s = Scheduler(s);

}

The Initialize() function follows the TPN
initial marking which was the same in both ver-
sions. The color variable was initialized in 0, cor-
responding to the empty spot, the inPosition vari-
able was set to false and the dispenser was moved
to the Yellow cup position.

5 Results

Following the proposed method, the Sched-
uler() function was obtained both for the non-
preemptive -called here as version 1- and the pre-
emptive -called version 2. It was also developed a
version 3, following the approach in (Wiki, 2017).
That last version was designed to follow logic oper-
ations using condition clauses and repetition loops
along the process. At every iteration, the con-
troller considers the dispenser position and the
color detected to decide the next action. When a
movement of the dispenser is necessary, the con-
troller chose the closest path to take and preempts
the feed wheel shift before the last dispenser move-
ment.

The dispenser rotation functions utilized in
version 3 differ considerably from that imple-
mented for version 1 and 2. Instead of turning 60◦

continuously, these functions realize micro steps
and check the optical sensors to detect the arrival
at the next position. Furthermore, other minor
functions were created to give support to logic op-
erations. The dispenser motor speed remains the
same in all versions in order to do a fair perfor-
mance comparison.

Using a M&M package as defined in the tests,
ten experiments were carried out for each version
and the time required for processing was com-
puted. It is worth mentioning that each experi-
ment represents a different color sequence due to
the randomness of this process. Thus, the results
presented in Table 2 for a given experiment do not
imply that the order in which the M&M pieces
were processed was the same for the three evalu-
ated versions.

Exp. No. Version 1 Version 2 Version 3
1 04:44 04:17 04:10
2 04:54 04:08 04:02
3 04:40 04:09 04:07
4 04:49 04:11 04:20
5 04:52 04:08 04:11
6 05:02 04:09 04:15
7 04:50 04:12 04:13
8 04:44 04:10 04:08
9 04:59 04:09 04:06
10 04:52 04:11 04:08

Table 2: Processing time (in mm:ss) for standard
test package (90 pieces, 15 of each color)

From the results shown in Table 2, it can be
seen that the TPN performance evaluation was
quite precise. For version 1 the expected average
time was 04 : 46s while in the experiments the av-
erage time was 04 : 50s. For version 2 the expected
average time was 04 : 11s while in the experiments
the average time was 04 : 10s, almost the same of
the version 3 considering randomness nature of
M&M pieces in the storage module.

Despite the different design approaches and
implementations in version 2 and 3 there was no
significant differences in the system performance.
Both versions met all the specifications provided
for the system.

Considering all the materials and devices,
3D printed parts, plastic and metallic materials,
electromechanical devices, sensors and the micro-
controller board, the project cost was US$ 65.32.

6 Conclusion

The proposed approach led to an implementa-
tion using a low-cost commercial Arduino board
in which all system specification were met. Even
though there was no performance gain between
the version adapted from (Wiki, 2017) and the
one proposed here, both of them were successful
attending the systems requirements.

The solution proposed here used fewer and
simpler functions to implement the solution,
which can be seen as an indicator of how easy will
be to maintain the system. Basic functions like
the ones proposed here tend to have similar exe-
cution flows regardless of the context because they
do not need to identify the state of the device to
determine the action that will be performed. Such
characteristic implies in a more predictable execu-
tion time, as well as less difficulty in verifying its
operation on a given hardware.

Considering that, the class of problems ad-
dressed here are linked to the execution of specific
tasks generally connected to higher level devices
in charge of coordinating and integrating the func-
tioning of smaller systems, the solution of the au-
tomation problem tends to adopt the centralized

paradigm.
The method proposed here proved to be sat-

isfactory to solve the problem of automating low-
cost systems, ensuring the proper functioning
through the use of formal verification techniques.

Although when a case study in which there
was no need to perform periodic tasks - which is
common in embedded systems - was used to show
the proposed method, it does not mean that the
proposed approach would not work for that kind
of systems. In (Salmon et al., 2014) it was shown
how to model periodic tasks using TPN, verify
quantitative temporal formulas using the observer
approach in order to synthesize an scheduler based
on task priorities. Such approach can be used in
the context here proposed.

Acknowledgements

The authors want to thank Prof. José Reinaldo
Silva for valuable comments on a preliminary draft
of this manuscript.

References

Berthomieu, B., Ribet, P. O. and Vernadat, F.
(2004). The tool tina – construction of ab-
stract state spaces for petri nets and time
petri nets, International Journal of Produc-
tion Research 42(14).

Berthomieu, B. and Vernadat, F. (2006). Time
petri nets analysis with tina, tool paper, Pro-
ceedings of 3rd Int. Conf. on The Quantita-
tive Evaluation of Systems, IEEE Computer
Society.

del Foyo, P. M. G. and Silva, J. R. (2011). Some
issues in real-time systems verification using
time petri nets, Journal of the Braz. Soc. of
Mech. Sci. and Eng. 33(4): 467–474.

Hajjar, S. (2013). Safe Design Method of COTS
based embedded systems based on COTS, PhD
thesis, INSA de Lyon.

Henzinger, T. A. and Sifakis, J. (2006). The em-
bedded systems design challenge, Proceedings
of the 14th International Symposium on For-
mal Methods (FM), Springer, pp. 1–15.

Lapshina, P. D., Kurilova, S. P. and Belit-
sky, A. A. (2019). Development of an
arduino-based co2 monitoring device, 2019
IEEE Conference of Russian Young Re-
searchers in Electrical and Electronic Engi-
neering (EIConRus), pp. 595–597.

Liu, K., Kong, W., Hou, G. and Fukuda, A.
(2018). A survey of formal techniques for
hardware/software co-verification, 2018 7th
International Congress on Advanced Applied
Informatics (IIAI-AAI), pp. 125–128.

Merlin, P. and Faber, D. (1976). Recover-
ability of communication protocols– implica-
tions of a theoretical study, IEEE Transac-
tions on Communications, [legacy, pre-1988]
24(9): 1036–1043.

Mukherjee, S., Ghosh, A. and Sarkar, S. K.
(2019). Arduino based wireless heart-rate
monitoring system with automatic sos mes-
sage and/or call facility using sim900a gsm
module, International Conference on Vision
Towards Emerging Trends in Communication
and Networking (ViTECoN), pp. 1–5.

Panda, P. (2001). Systemc: A modeling platform
supporting multiple design abstractions, Pro-
ceedings of the International Symposium on
Systems Synthesis (ISSS), ACM, pp. 75–80.

Ramadge, P. J. and Wonham, W. M. (1989). The
control of discrete event systems, Proceedings
of the IEEE 77(1): 81–98.

Rumbaugh, J., Jacobson, I. and Booch, G. (2004).
The Unified Modeling Language Reference
Manual, second edition edn, Addison-Wesley.

Salmon, A. Z. O., del Foyo, P. M. G. and
Silva, J. R. (2014). Scheduling real-time
systems with periodic tasks using a model-
checking approach, 12th IEEE International
Conference on Industrial Informatics (IN-
DIN), pp. 73–78.

Sifakis, J. (2005). A framework for component-
based construction, Proceedings of the Third
International Conference on Software Engi-
neering and Formal Methods (SEFM), IEEE
Computer Society, pp. 293–300.

Syazlina Mohd Soleh, S. S., Som, M. M., Abd
Wahab, M. H., Mustapha, A., Othman,
N. A. and Saringat, M. Z. (2018). Arduino-
based wireless motion detecting system, 2018
IEEE Conference on Open Systems (ICOS),
pp. 71–75.

Wiki, I. (2017). Skittles m&m’s sorting ma-
chine, https://beta.ivc.no/wiki/index.

php/Skittles_M&M’s_Sorting_Machine.
Accessed: 2020-04-15.

Wilmshurst, T. (2007). Designing Embedded Sys-
tems with PIC Microcontrollers, second edn,
Elsevier.

Xie, F. and Liu, H. (2007). Unified prop-
erty specification for hard- ware/software co-
verification, Computer Software and Ap- pli-
cations Conference, pp. 483–490.

