
Manipulation Task Planning with

Constrained Kinematic Controller

Marcos S. Pereira ∗ Bruno V. Adorno ∗∗

∗ Programa de Pós-Graduação em Engenharia Elétrica, - Universidade
Federal de Minas Gerais, MG, (e-mail: marcos.si.pereira@gmail.com)
∗∗Departamento de Engenharia Elétrica, Universidade Federal de

Minas Gerais, MG, (e-mail: adorno@ufmg.br)

Abstract: This paper addresses the integration of task planning and motion control in robotic
manipulation, where automatically generated feasible manipulation sequences are executed by
a controller that explicitly accounts for the task geometric constraints. To cope with the high
dimensionality of the manipulation problem and the complexity of specifying the tasks, we use a
multi-layered framework for task and motion planning adapted from the literature. The adapted
framework consists of a high-level planner, which generates task plans for linear temporal logic
specifications, and a low-level motion controller, based on constrained optimization, that allows
to define regions of interest instead of exact locations while being reactive to changes in the
workspace. Thus, there is no low-level motion planning time added to the total planning time.
Moreover, since there is no replanning phase due to motion planner failures, the robot actions
are generated only once for each task because the search for a plan occurs on a static graph. We
evaluated this approach with two pick-and-place tasks with similar complexity to the original
framework and showed that the number of plan nodes generated is smaller than the one in the
original framework, which implies less total planning time.

Resumo: Este artigo trata da integração de planejamento de tarefas e controle de movimento
em robótica de manipulação. O objetivo é gerar automaticamente sequências fact́ıveis de
manipulação para serem executadas por um controlador que considera restrições geométricas
impostas pela tarefa. Para lidar com a alta dimensionalidade do problema de manipulação e a
complexidade de especificar tarefas, foi usado um arcabouço multicamadas para planejamento de
tarefa e movimento adaptado da literatura. O arcabouço adaptado consiste em um planejador
de alto ńıvel, que gera planos de tarefa para especificações em lógica temporal linear, e um
controlador de movimento de baixo ńıvel baseado em otimização com restrições, que permite
definir regiões de interesse ao invés de localidades exatas e é reativo a mudanças no espaço
de trabalho. Logo, não há adição de tempo de planejamento de movimento ao tempo total de
planejamento. Além disso, como não há fase de replanejamento devido a falhas em um planejador
de movimento, as ações para o robô são geradas apenas uma vez para cada tarefa, portanto,
a busca por plano de tarefas ocorre em um grafo estático. Essa abordagem foi testada com
duas tarefas de pick-and-place com complexidade similar à das tarefas realizadas no arcabouço
original. O número de nós de planejamento gerados foi reduzido, o que implica em menor tempo
total de planejamento.

Keywords:
Linear temporal logic; task planning; constrained control.

Palavras-chaves:
Lógica temporal linear; planejamento de tarefa; controlador baseado em restrições.

1. INTRODUCTION

As robots have become physically capable of executing
highly complex manipulation tasks, there is a need to de-
fine plans in a longer time horizon and with a considerable
number of manipulable objects in cluttered environments.
Those plans determine the task execution order and how to
execute them. Furthermore, there is also a need to increase
robot autonomy and enable the robot to automatically
generate those plans, which motivates the integration of
task and motion planning (ITMP). In this sense, this work
focuses on solving the ITMP problem for manipulation

tasks in a computational efficient manner by combining
state of the art techniques including task planning and
motion controllers instead of motion planning.

Motion planning and task planning are studied in robotics
from different point of views. Task planners generate plans
by processing a high number of action states, that is,
states that describe what the robot must do regardless of
where objects are located in the environment (Kaelbling
and Lozano-Perez, 2011). On the other hand, a motion
planner treats the geometry of the problem, that is, it must
know the location of each object to plan how to manipu-

creacteve_michele
Texto digitado
DOI: 10.48011/asba.v2i1.1276

late them (Kaelbling and Lozano-Perez, 2011). Neither of
the approaches alone is enough to do manipulation task
planning. Thus, there is a need to do ITMP.

The goal of ITMP is to use a task planner to define a high-
level manipulation task sequence, that is used to generate
a trajectory in the task space for a low-level motion
planner that plans the trajectories in the configuration
space. This low-level trajectory is then executed by a
motion controller. This way, continuous motion planning
is combined with discrete task reasoning (He et al., 2015).
Discrete high-level task plans are appropriately described
by using an abstract discrete model of the robot and
formal specifications and, then, task planning can be done
through model-checking techniques (Bhatia et al., 2011).

Task planning appears in many guises and usually are dealt
with by using Artificial intelligence (AI). Fikes and Nilsson
(1971) propose a problem solver called STRIPS (Stanford
Research Institute Problem Solver) that searches for a
model in a space of world models to reach a desired goal.
However, STRIPS does not regard temporal specifications,
only uses linear sequences of operators, and requires lower
layers to translate its very high-level plans to robot actions
(Fikes and Nilsson, 1971). In this sense, Lana et al. (2015)
propose the Manipulation Task Model (MTM) that is
dedicated to the planning of robotic manipulation tasks
in a bottom-up manner.

The MTM describes actions and their sequence to take an
object from an initial state to a desired state. The task
primitive actions are defined as elements of dual quater-
nion algebra while the sequence is described by a small
subset of process algebra. One of the advantages of the
MTM is that it considers the task’s physical parameters
and, thus, facilitates the use of motion controllers to exe-
cute the task. However, MTM is specific to manipulation
tasks, which is a drawback when describing tasks such as
navigation. Furthermore, the MTM also does not allow
temporal specifications.

An interesting alternative for STRIPS and the MTM is lin-
ear temporal logic (LTL), which allows to specify Boolean
and temporal constraints. Also, LTL has correctness and
completeness guarantees (Baier and Katoen, 2008, ch. 5),
but the number of states of the specified task has combina-
torial growth, which is also known as the state-explosion
problem (Wongpiromsarn et al., 2010). Therefore, frame-
works based on LTL usually build a discrete abstraction
of the robotic system (Kress-Gazit et al., 2007; He et al.,
2015; Kloetzer and Belta, 2008; Bhatia et al., 2011), but
such construction is usually non-trivial.

LTL has been used mainly in mobile robotics (Kress-Gazit
et al., 2007; Kloetzer and Belta, 2008; Bhatia et al., 2011).
Nonetheless, the abstraction techniques for mobile robotics
depend on the discrete representation of the state-space,
which make them intractable to manipulation planning
due to the large dimensionality of the manipulation prob-
lem. To solve this problem, He et al. (2015) propose a
framework that allows the planning of high-level manipu-
lation tasks specified in LTL and also handles the ITMP
problem.

To solve the ITMP problem, Kambhampati et al. (1991)
investigated the use of a hybrid planning model that

contributes with expressiveness and reasoning power to
traditional hierarchical planners through the use of a set of
specialists, which adapt the plan to satisfy unexpected ad-
ditional constraints. Hence, the planner and the specialists
must know the constraints imposed by their decisions to
avoid inconsistent tasks. In order to add more flexibility to
ITMP, some works started using multi-layered frameworks
that use a task planner to generate a motion sequence for
the motion planner, which checks the viability of executing
the task (Erdem et al., 2011; Kaelbling and Lozano-Perez,
2011; Srivastava et al., 2014; Lozano-Perez and Kaelbling,
2014; He et al., 2015).

In addition to using LTL, He et al. (2015) also propose
a multi-layered framework to solve the ITMP problem,
which uses a coordinating layer between high- and low-
level to decide about the difficulty of executing the task.
However, it also uses a motion planner, which requires
motion planning time, in addition to the high-level plan-
ning time. Therefore, we adapt the framework of He et al.
to solve the ITMP challenge by using a new approach to
replace the motion planning layer.

In order to replace the motion planning layer, our work
proposes the use of a constrained motion controller (Mar-
inho et al., 2019), which allows the definition of regions
of interest instead of discrete poses for the end-effector
and the system to be reactive. The idea is to specify
geometrical constraints, based on those regions of inter-
est, to accomplish a desired task generated by the high-
level task-planner without resorting to low-level motion
planning. Constrained motion controllers depend on the
specification of a set of constraints that must be respected
by the system. They can be described by minimization
problems (Laumond et al., 2015) that make use of extra
available degrees of freedom of the robot to achieve the
task while respecting the constraints. This enables the
generation of collision-free motions by using mathematical
programming. Nonetheless, in the general case there are
no analytical solutions and numeric solvers must be used
(Goncalves et al., 2016; Escande et al., 2014).

The main contribution of this work is to adapt the frame-
work of He et al. (2015), which allows the specification of
manipulation tasks in LTL, to use a constrained motion
controller (Marinho et al., 2019), which allows imposing
joint limits and constraints to prevent collisions with the
workspace. This strategy greatly reduces the computa-
tional burden of the overall method, with the additional
advantages that there is no need of motion planning and
the system is reactive. Moreover, the merging of both
frameworks combines the expressivity and temporal rea-
soning of LTL at the task level with the closed-loop stabil-
ity guarantees of low level constrained motion controllers.

2. PRELIMINARIES

2.1 Linear Temporal Logic

In LTL, a proposition is a statement that can be true
or false, but not both, and atomic propositions are the
ones that do not depend on the truth or falsity of any
other proposition. Let A = {a0, a1, ..., aN} be a set of
atomic propositions. LTL semantics is defined over infinite
traces, that is, words over the alphabet 2A, where 2A is the

power set of A. Given letters Ai ∈ 2A, with i = 0, 1, 2, . . .,
words are infinite sequences such as σ = A0A1A2 · · · . For
example, consider A = {a0, a1, a2}, hence, a possible word
would be σ = A0A1A0A1A0A1 · · · , with A0 = {a0, a1}
and A1 = {a0}, which means that a0 is always true as it
belongs to all letters, a1 alternates between true (when it
appears in a letter) and false (when it does not appear in
a letter), and a2 is always false, because it does not belong
to any letter in the word σ.

A LTL formula ϕ is composed of atomic propositions,
Boolean operators, and basic temporal operators. More
specifically, a formula ϕ over A results in

ϕ = a | ¬a |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |ϕ1Uϕ2 | Xϕ1 | Eϕ1, (1)

where a ∈ A. The Boolean operators are “negation” (¬),
“and” (∧), and “or” (∨). The temporal operators “until”
(U) is such that ϕ1 is true until ϕ2 becomes true. The
temporal operator “next” (X) means that ϕ will definitely
be true at the next step, and“eventually” (E) 1 means that
ϕ will become true at some point in the future. It is also
possible to include the operator “implication” (ϕ1 → ϕ2)
and “equivalence” (ϕ1 ↔ ϕ2), although we do not make
use of them in our current work.

To clarify what is a formula ϕ and the operators mentioned
above, let A = {a0, a1}. Therefore,

(1) ϕ = T is always true;
(2) ϕ = a0 is true if and only if a0 is true;
(3) ϕ = ¬a0 is true if and only if a0 is false;
(4) if ϕ0 = a0, ϕ1 = a1, then ϕ = ϕ0 ∧ ϕ1 is true if and

only if both a0 and a1 are true;
(5) if ϕ0 = a0, ϕ1 = a1, then ϕ = ϕ0 ∨ ϕ1 is true if and

only if a0 is true or a1 is true or both are true;
(6) if ϕ0 = a0, ϕ1 = a1, then ϕ = ϕ0Uϕ1 is true if and

only if a1 becomes true after a0 was already true;
(7) if ϕ1 = a1, then ϕ = Xϕ1 will be definitely true if

and only if a1 becomes true in the next time step;
(8) if ϕ1 = a1, then ϕ = Eϕ1 will be eventually true since

a1 becomes true at some point in the future.

The formulas for ϕ, ϕ1 and ϕ2 could be any formula
containing the operators in (1) with an arbitrary number
of propositions. Although in the previous example we used
simple formulas for the sake of clarity, they can be arbi-
trarily more complex. For instance, ϕ2 = E(a0 ∧ XE(a1))
means that eventually a0 will be true and, afterwards, a1

will eventually be true. More specifically, the operation
E(a0 ∧ XEa1) implies that a0 and XEa1 will surely be
true in an unknown time in the future. Let us assume,
for the sake of example, that a0 becomes true in time j.
The operation Ea1 implies that a1 will surely be true in
an unknown time k in the future and XEa1 implies that
k ≥ j + 1. Therefore, eventually a0 will be true, and, after
that, eventually a1 will be true. The formula ϕ2 could be
used, for instance, to specify a pick-and-place task that
requires two objects to be eventually manipulated in a
given order.

In our current work, manipulation tasks must be achieved
over a finite time horizon. Hence, we use only co-safe
LTL formulas, which are the ones that can be interpreted
1 In LTL literature, “eventually” is commonly represented as F .
Because in our works F denotes coordinate systems, we use E for
“eventually”.

by considering finite words (Kupferman and Y. Vardi,
2001). Syntactically, co-safe LTL formulas contain only the
temporal operators X , E , U , and the negation operator
is only allowed over atomic propositions, but not over
temporal formulas.

See the works of Kupferman and Y. Vardi (2001); Baier
and Katoen (2008) for more formal definitions of the syn-
tax and semantics of LTL. Examples of LTL specifications
for manipulation tasks are given in Section 3.2.

2.2 Constrained Kinematic Controller

The constrained controller (Marinho et al., 2019) is based
on an optimization problem that minimizes the joint ve-
locities, q̇ ∈ Rn, in the `2-norm sense while respecting
hard constraints, such as obstacles in the workspace, joints
limits, etc. The controller is derived from the desired
closed-loop task-error dynamics. The differential kinemat-
ics, given by ẋ = Jq̇, provides the relation between the
joint velocity vector and the task-space velocity vector in
which q , q(t) ∈ Rn is the robot configuration vector,

x , x(q) ∈ Rm is the task vector, and J , J(q) ∈ Rm×n
is the task Jacobian. Given a desired task vector xd ∈ Rm,
we define the task error x̃ , x − xd. Considering ẋd = 0
for all t, the error dynamics is given by ˙̃x = ẋ. To drive x̃
to zero with an exponential convergence rate, the closed-
loop dynamics is given by ˙̃x + ηx̃ = 0 where η ∈ (0,∞) is
the gain. Thus, the desired closed-loop dynamics is given
by Jq̇ + ηx̃ = 0 and the control input u that minimizes
the joint velocities q̇ ∈ Rn is obtained as

u ∈ argmin
q̇

‖Jq̇ + ηx̃‖22 + λ ‖q̇‖22

subject to Wq̇ ≤ w (2)

where λ ∈ [0,∞) is a damping factor and W ∈ Rl×n
and w ∈ Rl are used to impose linear constraints in the
control inputs. In addition to describing poses, the task
vector xd can also be used to describe geometric primitives
(e.g., points, lines, planes) in the workspace. In this sense,
the end effector will converge to the specified desired task
vector.

Constrained controllers allow the definition of regions of
interest, eliminating the need of low-level motion planners,
thus saving computational time and resulting in a reactive
system. In order to prevent collisions with the workspace,
we use the Vector Field Inequalities (VFI) framework
(Marinho et al., 2019), which requires distance functions
between two collidable entities and the corresponding
Jacobian matrices, as better described in Section 3.3.

3. METHODOLOGY

The framework for integration of task planning and motion
control that we adapt from the literature is composed of a
high-level planning framework and a low-level constrained
motion controller. We use the high-level planner proposed
by He et al. (2015) and the constrained motion controller
proposed by Marinho et al. (2019). Figure 1 shows both
steps.

Figure 1. Adapted manipulation framework.

3.1 Problem Definition

Consider a robot in the workspace that can pick-and-place
objects between locations. Given a finite set of objects
O, a finite set of locations L, and a finite set of actions
M, find a sequence of actions α0, α1, . . . , αm ∈ M that
manipulate the objects o0, o1, . . . , on ∈ O between loca-
tions loc0, loc1, . . . , lock ∈ L to satisfy a linear temporal
logic (LTL) specification ϕ. The sequence of actions is
obtained by the planning framework that will be presented
in Section 3.2 and the actions are executed by the con-
strained motion controller presented in Section 2.2 with
the constraints that will be presented in Section 3.3.

3.2 Planning Framework

The planning framework of He et al. (2015) can be di-
vided into the four steps depicted in Figure 1, which are
described next.

Linear Temporal Logic Task Specification In the first
step, a manipulation task ϕ is specified using co-safe LTL
and it depends only on the objects and the locations.
For instance, in a pick-and-place task we can specify
where each object must be at the end without mentioning
anything about the robot. Therefore, the propositions of
the LTL formulas are defined as (oi, lj), which means that
“object oi is in location with the label lj” (He et al., 2015).

Given a scene with a finite set of objects O, a finite set of
labels Γ, and a finite set of locations L, with a function L
that maps locations to labels, the atomic propositions of
this scene are elements of O×Γ. For instance, first, suppose
a robot has to place an object o1 ∈ O at the location
with label l1 ∈ Γ. The specification for this task can be
given by ϕ1 = E(o1, l1), which means that “eventually
object 1 is in location 1”. For the sake of clarity, let us
define pi = (oi, li) ∈ O × Γ. We specify a second task
“Keep object 1 at location 1 until object 2 and object 3
are sequentially placed at their locations”, which is defined
as ϕ2 = p1U(p2 ∧ Xp3). More specifically, p1 will be true
until (p2 ∧ Xp3) becomes true. If p2 becomes true in time
k, then Xp3 will be true in time k + 1. Therefore p1 will
be true, at least, until time k. If we had multiple objects
to be sorted, we would define Ep1 ∧ Ep2 ∧ Ep3 ∧ · · · ∧ Epn
that reads “eventually place object 1 in location 1 and so
on”.

Manipulation Abstraction The next step is to define an
abstraction graph R = (V,E, L) that captures all the ways
the robot can manipulate the objects, in which the set of
nodes V consists of the Cartesian product between the set
M of motion primitives, the set L of locations, the set O
of objects, and a set OL of objects locations. The set E
contains the edges of R and L is a labeling function that is
defined later in this section when we introduce the product
graph. The set of motion primitives contains the robot
actions needed for pick-and-place tasks and is defined
as M , {GRASP,PLACE,HOLD,MOVE}. The motion

graph M , (M, EM), with EM ⊆ {(ei, ej) ∈ M×M},
which is shown in Figure 2a, defines the allowed sequence
of motions.

The location set L , {loc1, ..., lock, locinter} represents the
locations of interest in the robot workspace where objects
can be placed. Also, when an object is in the gripper, it
is considered to be in the intermediate location locinter.
Furthermore, the location graph L , (L, EL) with EL ⊆
{(ei, ej) ∈ L×L}, which is shown in Figure 2b, represents
how objects can be transferred between locations.

The set of objects is given by O = {o1, ..., on} and the
set containing all the possibilities for objects locations is
given by OL = {(ō1,loc, . . . , ōn,loc) ∈ Ln : i 6= j ⇐⇒
ōi,loc 6= ōj,loc}, where ōi,loc is the location of the ith
object. Finally, all sets are combined to obtain the set
of abstraction nodes V by doing the Cartesian product
V =M×L×{O∪{∅}}×OL. Therefore, each node in V
is given by the tuple V 3 v = (α, loc, o, oL), where α ∈M
is an action, loc ∈ L is the end-effector location, o is the
gripper object and oL ∈ OL is the tuple that indicates the
location of each object in the world.

The construction rules of the set of edges E ⊆ {(ei, ej) ∈
V × V } that connect the nodes V of R can be found
in the work of He et al. (2015). Generally speaking, at
least each edge (v, v′) ∈ E in the abstraction must satisfy
that (α, α′) ∈ EM . For example, assume two nodes v =
(HOLD, loc, o, oL) and v′ =

(
PLACE, loc′, o′, oL

)
. There

will be an edge transition between them if loc = loc′ 6=
locinter, meaning that the robot will be holding the object
at one of the k locations in v and placing it at that location
in v′. On the other hand, if the action was MOVE in v′,
there would be no edge between v and v’ because there is
no edge connecting HOLD to MOVE in M .

Invalid nodes may be generated by the Cartesian product
(He et al., 2015). For instance, it is not possible that
object 1 be at the gripper while at location 1. Therefore,
in our work, the set of reachable nodes is incrementally
constructed by starting from an initial node v0 ∈ V and
following the construction rules of E that only point to
valid nodes.

Deterministic Finite Automaton After constructing the
abstraction graph R, the formula ϕ is converted into a
deterministic finite automaton (DFA) Aϕ (Duret-Lutz and
Poitrenaud, 2004) that specifies all the ways the robot can
execute the task while fulfilling the formula ϕ (He et al.,
2015).

The DFA is defined as Aϕ = (Z, z0, Σ, δ, F), where Z is
the finite set of states, z0 is the initial state, Σ is the

(a) Motion graph M . (b) Locations graph L .

Figure 2. Abstraction graphs.

set of events that causes transitions in the automaton,
δ : Z × Σ → Z is the transition function, and F is the
set of final states (also known as accepting or marked
states). The set of events Σ is also the alphabet of the
LTL formula, that is, Σ = 2A. The automaton begins in
the initial state z0 and when an event represented by the
letters from Σ occurs, there is a transition to the next
state following the transitions in δ. This happens until a
state in F is reached. The transitions between each state
are represented by letters and the path that leads to a
state in F represents the sequence of truth assignments of
the propositions that satisfy the specification (He et al.,
2015). In other words, a sequence of letters represents a
word accepted by the automaton.

For example, consider the automaton shown in Fig-
ure 3, 2 with A = {p0, p1, p2}, where pi = (o, li) and
i ∈ {0, 1, 2}. Therefore, Σ = {∅, {p0}, {p1}, {p2}, {p0, p1},
{p1, p2}, {p0, p2}, {p0, p1, p2}}. Given Ai = {pi}, an exam-
ple of accepted word is σ = A0A1A2. The letter A0 = {p0}
means that object o will be placed at location with label l0,
which causes the transition from state 3 to state 2 because
the letter {p0} is equivalent to the logical condition p0 ∧
¬p1∧¬p2. Similarly, letters A1 and A2 cause the transitions
to state 1 and 0, respectively. Again, the letter {p1} is
equivalent to the logical condition ¬p0∧p1∧¬p2 and {p2}
is equivalent to ¬p0∧¬p1∧p2. Therefore, the object o will
be in locations with labels l0, l1, and l2 in this sequence,
but not simultaneously.

Nonetheless, there may be words or paths that do not
respect the physical world. For instance, one transition
may require that an object be at multiple locations at the
same time, that is, (o, lj) ∧ (o, lk). This is exemplified in
Figure 3 by the one-letter word σ = {p0, p1, p2}, which
causes the transition from state 3 to the final state 0. This
transition means that the object will be simultaneously in
locations with labels l0, l1, and l2.

Product Graph Last, the nodes in the set V of the
abstraction graph R are combined with the states in
the set Z of the automaton Aϕ into a product graph

P , (VP , EP), where VP = V × Z and EP ⊆ {(ei, ej) ∈
VP ×VP}. This combination represents how the robot can
move the objects to achieve the specified task (He et al.,
2015). There is an edge (p, p′) ∈ EP from p = (v, z) to
p′ = (v′, z′), where p, p′ ∈ VP , if and only if there exists an

2 Generated at https://spot.lrde.epita.fr/app/ and then adapted.

Figure 3. Automaton Aϕ obtained from LTL specification
ϕ = Ep0∧Ep1∧Ep2. State 3 is the initial state and 0 is
the final state. In this diagram the negation operator
is given by ! and the Boolean operator “and” is given
by &. Recall that pi = (o, li) means that object o is in
location with label li. States marked red, green, blue,
and magenta represents the object in locations with
labels l0, l1, and l2 and linter, respectively. The cyan
arrows represents an accepted path for an accepted
word σ = A0A1A2. States marked with multiple
colors mean that the object can be at one of the
locations indicated. For instance, in state 1 the object
may be in location with label l0 or l1 depending on
the path taken.

edge (v, v′) ∈ E and δ(z,Π(L(v′))) = z′, with L(v) being
the labeling function

L(v) , {(p,P(v, p)) ∈ A× {T,F} : P(v, p) = T},
where

P(v, p) ,

{
T, if L ◦ F (oL, op) = lp,

F, otherwise.

The function P(v, p) determines if the object label lp
in p = (op, lp) matches the label of the corresponding
object in the tuple oL of v = (α, loc, o, oL}. Furthermore,
L : L → Γ provides the corresponding label of a given
location and F : O|O| × O returns the object location
in oL corresponding to op. Lastly, Π(L) , {p : (p,T) ∈
L} generates the letter that causes the transition in the
automaton.

For example, consider O = {o1, o2}, Γ = {l1, l2},
L ={loc1, loc2, loc3}, A = {p1, p2, p3} with p1 = (o1, l1),
p2 = (o2, l1), and p3 = (o2, l2); also, L(loc1) =
l1, L(loc2) = l1, and L(loc3) = l2; lastly v =
(MOVE, locinter,∅, oL), with oL = (loc1, loc2). In this
case,

L(v) = {(p1,T), (p2,T), (p3,F)}
because the label of p1 = (o1, l1) and the location label
of o1 (i.e., L(loc1)) are l1; hence, (p1,T). Similarly, the
label of p2 = (o2, l1) and the location label of o2 (i.e.,
L(loc2)) are l1; therefore, (p2,T). The label of p3 = (o2, l2)
is different from the location label of o2; thus, (p3,F).
Furthermore, the corresponding letter is Π(LAi

(v)) =
{p1, p2}.

As a result from the building process of P, a path from
the start node p0 = (v0, z0) to an accepting node pF =
(vF , zF)—which consists of a node in which zF is an
accepting state—on P induces a path on R and a run on
Aϕ. Furthermore, the path onR considers that each object
will be at exactly one location, at a given instant, and that
objects can be moved only by the manipulator (He et al.,
2015). Finally, each node (v, z) ∈ P contains the infor-
mation v, which indicates what action the robot must do,
where the end-effector should be located, the object that
should be on the gripper, and where the objects should
be placed in the world, and the state z that indicates the
current state of the automaton. Moreover, if an accepting
state is reached, then the task plan executes the task
satisfying the specification. Therefore, a path is searched
from the start node to the accepting node. For instance,
assume that (v, v′) ∈ E with v = (HOLD, loc1, oi, oL} and
v′ = (HOLD, locinter, oi, o

′
L}. This means that object i is

on the gripper, which will move from loc1 to locinter and
oL =(. . . , locinter, . . .) and oL

′ = (. . . , locinter, . . .), since
the object begins in the gripper and stays in the gripper.

Since there may be more than one solution in P, the
Dijkstra’s algorithm is used to search for the shortest
accepting path on the product graph P, that is, the
shortest path from an initial node to an accepting one.
In our work, differently from the work of He et al. (2015),
the high-level plan is executed by the constrained motion
controller (Marinho et al., 2019) defined by (2). More
specifically, the controller is used to execute the actions
of type HOLD and MOVE. The actions GRASP and
PLACE are executed by closing and opening the end-
effector gripper, respectively.

3.3 Constrained workspace manipulation

We use three planes in the environment to prevent end-
effector collisions with two walls and the table in the
workspace and four lateral planes to constrain the end ef-
fector inside a region of interest—the relaxed task region—
as shown in Figure 4. Similarly to the work of Quiroz-
Omana and Adorno (2019), these seven constraints can be
written as

−Jp,nπi
q̇ ≤ ηd̃p,nπi

, (3)

where i ∈ {1, 2, ..., 7} and d̃p,nπ
i

= dp,nπ
i
− dπ,safe, with

dπ,safe being the safe distance to each plane and dp,nπ
i

and

Jp,nπi
are the point-static-plane distance and its Jacobian,

respectively (Marinho et al., 2019). The error vector in the

control law (2) is given by x̃ , deff,nπ , where deff,nπ is the

(signed) distance from the end-effector to the horizontal
plane passing through the regions of interest shown in
Figure 5. In addition to the plane constraints, we use joints
velocities constraints to prevent saturation of actuators
(Quiroz-Omaña and Adorno, 2018). Moreover, to prevent
end effector collisions with non-manipulated objects while
a given object is being manipulated, we add semi-infinite
cylindrical constraints to each non-manipulated object
(see Figure 4). Therefore, each object is constrained by
a cylinder cut by a plane. Given k objects, to each one
of them is associated a cylindrical and a plane constraint,
which yields the following inequalities:

R1

R2

R3

Locations
l1

l2

l3

Region of interest

Lateral planes

Environment

planes

Figure 4. The red cuboid is the object to be manipulated,
the other objects are already in their region of interest.
The semi-infinite cylinders to prevent collisions with
the non-manipulated objects are represented by the
light shaded purple cylinder, with pink centerlines,
around each object and the white planes that cut each
cylinder. The coordinate frames indicate locations in
the scene.

−J semi,j q̇ ≤ ηd̃p,objectj , (4)

−Jp,nπj
q̇ ≤ ηdp,nπj

, (5)

where j ∈ {1, . . . , k}, and d̃p,objectj = dp,lj − Rj , with Rj
being the radius of the cylinder around the j-th object;
dp,lj and J semi,j ∈ R1×n, with n being the number of robot
joints, are the point-static-line distance and its Jacobian,
respectively (Marinho et al., 2019), and

J semi,j =

{
Jp,lj if dp,nπ

j
< 0,

01×n otherwise.
(6)

4. SIMULATION & DISCUSSION

The implementation of the planning framework proposed
by He et al. (2015) was done in C++ with the Boost Graph
Library 3 and the automata utilities from the Open Motion
Planning Library (OMPL). 4 The LTL task is processed
using Spot (Duret-Lutz and Poitrenaud, 2004) and we
performed simulations on CoppeliaSim 5 using ROS. 6

Furthermore, we used the DQ Robotics library (Adorno
and Marinho, 2020) for robot modeling and control and to
define the geometrical constraints, and constrained convex
optimization was implemented using IBM ILOG CPLEX
Optimization Studio. 7

To test the planning framework, we created a simulation
scene on CoppeliaSim where a Kinova JACO robot must
execute assistive tasks for a seated person, with limited or
no lower limbs mobility, who cannot reach farther objects
in the scene. The robot is placed on a table and the
3 https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/

index.html
4 https://ompl.kavrakilab.org/
5 http://www.coppeliarobotics.com/
6 https://www.ros.org/
7 https://www.ibm.com/products/ilog-cplex-optimization-studio

preparation
pen

meat

cooling

waiting

book

person

Figure 5. Scene for an LTL specification. The red, green,
blue and orange cuboids represent the meat, salad,
book, and pen, respectively. The regions of interest
are indicated in the figure.

person is seated on a chair in front of the table. There
are four colored cuboid objects omeat, osalad , obook, open

representing, meat (red), salad (green), book (blue) and
a pen (orange), respectively. In addition, eight colored
regions of interest are depicted representing preparation
area lprep (dark gray), heating area lheat (red), cooling
area lcool (green), waiting area lwait (cyan), book area lbook

(blue), two person-areas lpers (yellow), and pen area lpen

(orange). Initially, the meat is in the preparation area, the
salad is in the waiting area, the pen is in the pen area,
and the book is in one of the person areas, as shown in
Figure 5.

The planning framework generates all the graphs and
searches the product graph P for an accepting path, that
is, a task plan. Afterward, the robot iterates over the nodes
of the accepting path executing the actions considering the
scene locations. During HOLD, the robot holds an object
from one location to another, and during MOVE, the robot
moves the empty gripper from one location to another. Let
us assume the robot is currently at node k with action
MOVE and end-effector location loci. Assume that at the
node k+1, the end-effector location is locj . Therefore, the
end-effector will move from loci to locj .

Two tasks with increasing complexities were devised. Both
tasks require the planner to identify that at least one
location is occupied and an object must be removed from
one location before continuing the task.

Task 1: “First, heat the meat and serve the salad, next
serve the meat.”

To express task 1 in co-safe LTL, we define pm,h =
(omeat, lheat), ps,p = (osalad, lpers) and pm,p = (omeat, lpers).
Hence,

ϕ1 = E(pm,h ∧ ps,p ∧ XE(pm,p)). (7)

The automaton generated from ϕ1 has three states and
the planner explores 16975 nodes in the product graph.
The total planning time average is 1.65 seconds. Since
task 1 is a sequential task, the planner generates a task
plan that follows the specified order of manipulation. The
formula for this task does not specify what should be done
with the book in front of the person. Hence, the planner
generates a task plan that heats the meat, then serves
the salad and then serves the meat. However, after the
salad is served, both locations in front of the person are
occupied by the book and the salad. Thus, the planner
decides to remove the salad instead of the book. Should
both the meat and the salad be served together, it would
be necessary to explicitly specify that.

Task 2: “First, move book to the book region. Next, serve
the salad and heat the meat in any order. Afterward, serve
the meat while the salad is being eaten. Keep the book on
the book position during the whole task execution.”

For task 2, we define po,b = (obook, lbook), ps,p =
(osalad, lpers), pm,h = (omeat, lheat), and pm,p = (omeat, lpers).
As a result ϕ2 is given by

ϕ2 = E

(
po,b ∧ ¬ps,p ∧ ¬pm,h∧

XE
(
po,b ∧ E(ps,p) ∧ E(pm,h)∧

XE
(
po,b ∧ ps,p ∧ XE(ps,p ∧ pm,p)

)))
(8)

After moving the book to the book region, task 2 gives
freedom to the robot to decide if the salad will be served
first or, instead, if the meat should be heated first. Next,
it will serve the meat while the salad is being eaten. In
comparison to task 1, task 2 specifies that the salad and
the meat must be placed in front of the person. Otherwise,
the robot would be free to remove the salad and only then
serve the meat. The automaton generated from ϕ2 has
eight states and the planner explores 25098 nodes in the
product graph. The total planning time average is 2.41
seconds.

Table 1 shows the planning data for the two tasks, which
have the same number of objects (four) and locations
(eight). The number of states and edges in the DFA
indicates the complexity of the task. The planning time
Tplanning with the associated standard deviation (s.d.)
corresponds to an average of 50 runs. As expected, an
increase in the task complexity increases the planning time
because more nodes are explored in the product graph
and then Dijkstra runs on a larger graph. In addition,
Table 1 also shows the results for two tasks with similar
complexities in the original framework of He et al. (2015).

5. CONCLUSION

This work presented an improvement of the manipula-
tion framework proposed by He et al. (2015), which uses
sampling-based motion planners as the low-level planner,
to use instead a constrained motion controller that al-
lows the definition of regions of interest. Our contribution
is that the low-level layer from the original framework,

Table 1. Planning data for ϕ1 and ϕ2.

Task |Aϕ| |EAϕ | |VP | Tplanning(s)

Framework with constrained motion controller
ϕ1 3 5 16975 1.65418 (0.152028)
ϕ2 8 20 25098 2.40551 (0.203752)

Original framework
ϕ3 2 3 44100 2.76
ϕ4 8 27 75511 4.48

|Aϕ| and |EAϕ | are the number of states and edges in the DFA,
respectively, |VP | is the total number of nodes in the product graph,
Tplanning (s.d.) is the total high-level planning time accounting for
the generation of graphs and the Dijkstra search for a path in the
product graph P.

composed of a motion planner and a motion controller, is
replaced by a single constrained motion controller. Hence,
there is no motion planning time added to the total plan-
ning time and there is no need to generate more than one
high-level plan due to changes in the scene, in terms of
the modeled geometric primitives, as long as there are
mechanisms to track their changes. As a consequence,
there is no increase in the number of generated planning
nodes during the task planning phase and the Dijkstra’s
algorithm searches for a task plan on a static graph. For
tasks with similar complexity in the original framework,
our approach has greatly reduced the number of generated
task plan nodes, which also reduced the planning time.
Since we define regions of interest instead of single loca-
tions of interest, the number of states in the planner is re-
duced thanks to a smaller discretization of the workspace.
Future works will exploit the use of regions of interest
to describe complex tasks using less locations, increasing
the computational efficiency and demanding less degrees
of freedom for a given motion task.

ACKNOWLEDGEMENTS

This work was supported by the Brazilian funding agencies
CAPES and CNPq.

REFERÊNCIAS

Adorno, B.V. and Marinho, M.M. (2020). DQ Robotics: A
Library for Robot Modeling and Control. IEEE Robotics
& Automation Magazine, 0–0.

Baier, C. and Katoen, J.P. (2008). Principles of model
checking. MIT Press.

Bhatia, A., Maly, M.R., Kavraki, L.E., and Vardi, M.Y.
(2011). Motion Planning with Complex Goals. IEEE
Robot. Autom. Mag., 18(3), 55–64.

Duret-Lutz, A. and Poitrenaud, D. (2004). SPOT: an
extensible model checking library using transition-based
generalized buchi automata. In IEEE Comput. Soc. 12th
Annu. Int. Symp. Model. Anal. Simul. Comput. Tele-
commun. Syst. 2004. (MASCOTS 2004). Proceedings.,
76–83. IEEE.

Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., and
Uras, T. (2011). Combining high-level causal reasoning
with low-level geometric reasoning and motion planning
for robotic manipulation. In 2011 IEEE Int. Conf.
Robot. Autom., 4575–4581. IEEE.

Escande, A., Mansard, N., and Wieber, P.B. (2014).
Hierarchical quadratic programming: Fast online
humanoid-robot motion generation. Int. J. Rob. Res.,
33(7), 1006–1028.

Fikes, R.E. and Nilsson, N.J. (1971). Strips: A new appro-
ach to the application of theorem proving to problem
solving. Artif. Intell., 2(3-4), 189–208.

Goncalves, V.M., Fraisse, P., Crosnier, A., and Adorno,
B.V. (2016). Parsimonious Kinematic Control of Highly
Redundant Robots. IEEE Robot. Autom. Lett., 1(1),
65–72.

He, K., Lahijanian, M., Kavraki, L.E., and Vardi, M.Y.
(2015). Towards manipulation planning with temporal
logic specifications. In 2015 IEEE Int. Conf. Robot.
Autom., 346–352. IEEE.

Kaelbling, L.P. and Lozano-Perez, T. (2011). Hierarchical
task and motion planning in the now. In 2011 IEEE
Int. Conf. Robot. Autom., 1470–1477. IEEE.

Kambhampati, S., Cutkosky, M., Tenenbaum, M., and
Hong Lee, S. (1991). Combining Specialized Reasoners
and General Purpose Planners: A Case Study. In Proc.
9th Natl. Conf. Artif. Intell. Anaheim.

Kloetzer, M. and Belta, C. (2008). A Fully Automated
Framework for Control of Linear Systems from Tempo-
ral Logic Specifications. IEEE Trans. Automat. Contr.,
53(1), 287–297.

Kress-Gazit, H., Fainekos, G.E., and Pappas, G.J. (2007).
Where’s Waldo? Sensor-Based Temporal Logic Motion
Planning. In Proc. 2007 IEEE Int. Conf. Robot. Autom.,
3116–3121. IEEE.

Kupferman, O. and Y. Vardi, M. (2001). Model Checking
of Safety Properties. Form. Methods Syst. Des., 19(3),
291–314.

Lana, E.P., Adorno, B.V., and Maia, C.A. (2015). A
new algebraic approach for the description of robotic
manipulation tasks. In 2015 IEEE Int. Conf. Robot.
Autom., 3083–3088. IEEE.

Laumond, J.P., Mansard, N., and Lasserre, J.B. (2015).
Optimization as motion selection principle in robot
action. Commun. ACM, 58(5), 64–74.

Lozano-Perez, T. and Kaelbling, L.P. (2014). A constraint-
based method for solving sequential manipulation plan-
ning problems. In 2014 IEEE/RSJ Int. Conf. Intell.
Robot. Syst., 3684–3691. IEEE.

Marinho, M.M., Adorno, B.V., Harada, K., and Mitsuishi,
M. (2019). Dynamic Active Constraints for Surgical
Robots Using Vector-Field Inequalities. IEEE Trans.
Robot., 35(5), 1166–1185.

Quiroz-Omaña, J.J. and Adorno, B.V. (2018). Whole-
Body Kinematic Control of Nonholonomic Mobile Ma-
nipulators Using Linear Programming. J. Intell. Robot.
Syst., 91(2), 263–278.

Quiroz-Omana, J.J. and Adorno, B.V. (2019). Whole-
Body Control With (Self) Collision Avoidance Using
Vector Field Inequalities. IEEE Robot. Autom. Lett.,
4(4), 4048–4053.

Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell,
S., and Abbeel, P. (2014). Combined task and motion
planning through an extensible planner-independent in-
terface layer. In 2014 IEEE Int. Conf. Robot. Autom.,
639–646. IEEE.

Wongpiromsarn, T., Topcu, U., and Murray, R.M. (2010).
Receding horizon control for temporal logic specificati-
ons. In Proc. 13th ACM Int. Conf. Hybrid Syst. Comput.
Control - HSCC ’10, 101. ACM Press, New York, New
York, USA.

