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Abstract: This work proposes an economic dynamic real-time optimization (D-RTO) strategy
to control a solar collector field in order to maximize the amount of thermal power energy
delivered to multi-effect seawater distillation plant. A validated model of the compound parabolic
concentrator collector field of the AQUASOL plant, available at the Plataforma Solar de
Almeŕıa (Spain), is used as case study. The optimization algorithm is based on receding horizon
optimization problem, in which an economic function takes into account the energy produced by
the solar plant and the electricity consumption costs by the water pump. The D-RTO strategy
is compared to a feedback linearization controlling in different temperature setpoints, intending
to analyze economic benefits and viability of the proposed algorithm. Simulation results show
the D-RTO algorithm is capable of handling process disturbances and operating in economic
benefit conditions, bringing good perspectives for implementation in real applications.

Keywords: Dynamic optimization; solar energy; desalination process; feedback linearization
control.

1. INTRODUCTION

With the idea of sustainable development, governments
and the modern society recognize the use of renewable
energy as an alternative to reduce dependence on conven-
tional sources of polluting energy. Changes in the energy
model are promoting technological progresses and improv-
ing the quality of human life around the world. In this
context, solar energy has received a special attention. This
source of clean energy is practically inexhaustible and has
a high technical potential for use as it reaches the entire
planet. In particular, solar thermal generation is projected
to be responsible for the production of 12% of all world
energy by 2040 (Agency, 2011).

Solar thermal energy has been applied for many purposes
such as desalination (Roca et al., 2008), heating and cool-
ing (Americano-daCosta et al., 2014), generation of elec-
tricity (Karthick et al., 2019), and distillation (Americano-
daCosta and Santos, 2015; Salem et al., 2020). The main
concept of the thermal solar process is to use an internal
fluid, known as heat transfer fluid (HTF), that circulates
through the solar collectors and is heated by the incident
irradiance and its thermal transfer. The volumetric flow
rate of the heat transfer fluid may be manipulated to
control the final temperature at a desired point while
compensates the changes in solar irradiance and ambient
temperature.

The solar thermal plants can have different configurations
depending on the types of collectors, HTF (synthetic oil or
water) to produce low (below of 100oC), or medium (100
to 300oC), or high (above 300oC) temperatures (Goswami,
2015). Thus, this type of process deals with different prob-
lems known by the automatic control community such as
nonlinear dynamics, delay times, variant parameters and
many disturbances. In the literature, it is possible to find
a great number of studies and applications of control tech-
niques applied on solar thermal plants (Camacho et al.,
2012). Traditional PID controllers have been used (Pasa-
montes et al., 2011), but advanced control strategies have
presented better results (Camacho and Gallego, 2015).
Also, many works have been dedicated to the develop-
ment of mathematical models and simulation of solar ther-
mal processes (Americano-daCosta et al., 2020). Although
there are important studies focused on achieving optimal
operation of solar thermal plants, for instance Gallego
et al. (2013); Vega and Cuevas (2018); Gil et al. (2020),
there is still motivation to explore dynamic optimization
in these processes, especially when economic aspects are
considered. In fact, according to industrial experts, the
optimization layer can increase a profitability of a process
by 7% to 10%. Payback times of six months to a year
are often claimed on such projects (Brosilow and Joseph,
2002).

Real-time optimization (RTO) is not an appropriate pro-
cedure to solar plants, since its formulation uses a steady-
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state model to determine the best operation points and
weather conditions disturb this type of process all the
time. In this case, Dynamic-RTO (D-RTO) can be used
to calculate the optimal setpoints that maximizes the sys-
tem’s profits considering the range constraints and current
measured disturbances. Powell et al. (2013) demonstrated
the possibility of increasing efficiency in solar thermal
plants using dynamic optimization strategy. Nevertheless,
the main purpose is the optimal operation by means heat
dynamic integration to thermal energy storage and energy
demand. For that, models of systems and disturbances are
required. An improvement of that work was done, in which
a fossil fuel component was included to the system in order
to maximize the total solar energy collected over a 24
h period (Powell et al., 2014). Other studies considering
economic optimization can be found, but often employed
to size and design solar thermal plants that uses standard
control techniques or only accounts energy fluxes (Winter-
scheid et al., 2017).

On the other hand, recently, researchers have concerned
to dynamically optimize the operation of solar plants from
an economic point of view. Scolan et al. (2020) proposed a
dynamic optimization based on load curve (mass flow rate
and temperature) of a complex large-scale solar thermal
plant with the objective to sell energy as heat. Modelling
and validation for individual units such as solar field, heat
exchanger, and storage tank were performed to ensure
realistic simulations. The results show an increase of 6.2%
of the energy provided to the consumer, a redution of 62%
of electricity consumption, and economic profit gains by
2.1%.

Thus, based on foregoing, an economic dynamic real-time
optimization strategy to control solar thermal processes
and maximize its energy production is proposed in this
paper. The algorithm considers the disturbance inputs
(ambient temperature, irradiance, and inlet solar field
temperature) and updates the optimal inlet volumetric
flow rate, according to a cost function of accumulated
energy and operating constraints that also include the
control goals. For the simulations, experimental data and
the validated model of the CPC (compound parabolic
concentrator) collector field of the AQUASOL plant at the
Plataforma Solar de Almeŕıa, located in Spain, are used
to analyze different scenarios. The results are based on
Roca et al. (2008)’s work, in which a feedback linearization
control was applied on the plant.

The paper is organized as follows: in Section 2, the AQUA-
SOL system and solar field model are described. In Section
3, the D-RTO formulation is developed and the whole
algorithm is explained. In Section 4, the simulations are
presented and results are discussed. The conclusions from
the study are stated in Section 5.

2. PLANT DESCRIPTION AND MODELLING

The AQUASOL plant at the Plataforma Solar de Almeŕıa
consists of a CPC solar collector field, a thermal storage
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system with 24 m3 of total volume, a multi-effect distilla-
tion (MED) plant, a double-effect absorption heat pump
(DEAHP), and an auxiliary gas boiler. The AQUASOL
can be operated on three modes: (i) solar, in which the
required input temperature of the MED is reached using
only the solar field in good weather conditions; (ii) fossil,
when MED works supplied by the gas boiler coupled to
the DEAHP due to low irradiance or during the night;
and (iii) hybrid, in which there is a combination between
the previous modes avoiding the gas boiler as much as
possible. The whole water desalination process is detailed
in the researches of Roca et al. (2008) and González et al.
(2014).
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Figure 1. AQUASOL plant on solar mode.

In this work, it is considered the AQUASOL operating on
the solar mode, as shown in Figure 1. The water mass
flow rate ṁF (t) (kg/min) with a temperature TiF (t) (oC)
from the storage system pass through the solar field, where
it is heated due to thermal changes caused by incident
irradiance I(t) (W/m2) and ambient temperature Ta(t)
(oC). The heated temperature of the water ToF (t) (oC),
produced by the solar field, flows until the tanks where
the thermal energy is storaged to feed the MED. The inlet
first-effect nominal temperature TiM (t) (oC) is achieved by
mixing water from the storage system and with that one
ToM (t) (oC) returned from the first-effect using a three-
way regulation valve. Finally, the fresh water is obtained
with a 3 m3/h nominal distillate production D(t) (m3).

The solar field is an association of plane collectors in series
and parallel, wherein each one has a number of na = 7
parallel tubes in order to absorb with minimum losses
the thermal energy given by the ambient. The system is
organized with groups of ncp = 3 collectors in parallel,
connected to np = 3 of that in series composing an unit
denominated as cell, as is illustrated in Figure 2. Note that
the delay time dc is due to the distance along the pipers
between the location of the temperature sensor and the
input collector.

Finally, nc = 7 cells in parallel form a solar field row.
Thus, nl = 4 rows also in parallel integrate the whole solar
field, composed of 252 CPCs with a total surface area of
approximately 500 m2.

This configuration of rows, cells, and collectors can be sim-
plified as a lumped parameter model. The mathematical
model used for simulation is based on energy balance of
the water which flows into the equivalent absorber tube of
length Leq = L · np, in which L is the CPC tube length,
given by Roca et al. (2008):
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Figure 2. Unit cell composed of 3x3 collectors.

ρ · cp ·Aa ·
∂ToF (t)

∂t
= β · I(t) − H

Leq
· (T̄ (t) − Ta(t))

− cp · ṁeq(t) · (ToF (t) − TiF (t− dc))

Leq
,

(1)

T̄ (t) =
ToF (t) + TiF (t− dc)

2
, (2)

wherein the constant parameters are shown in Table 1, and
the delay time is modeled as:

dc(t) =
Ld ·Aa

Ff (t)
, (3)

and ṁeq is calculated as:

ṁeq(t) =
ṁF (t)

nl · nc · ncp · na
, (4)

in which Ff (t) (m3/min) and ṁeq (kg/min) are the
volumetric flow rate and mass flow rate of the water,
respectively. Ld represents the distance along the tubes
between the inlet temperature sensor and the input solar
plant, and the measured outlet temperature is given by:

To(t) = ToF (t− do),

wherein do = 4/6 min is the fixed output delay time.

Table 1. Process parameters

Name Value

absorber cross-section area, Aa 7.85 · 10−5 m2

water steam specific thermal capacity, cp 4190 J/(kg ·o C)
thermal losses coefficient, H 4.7 J/(s ·o C)

equivalent absorber tube length, Leq 4.5 m
irradiance model parameter, β 0.105 m

water density, ρ 975 kg/m3

CPC tube length, L 1.89 m
Equivalent tube length, Leq 5.67 m
Equivalent tube flow, ṁeq ṁF /588 kg/min

Thereby, the water temperature is obtained by varying
its volume flow rate Ff (t) and taking the energy coming
from the solar irradiance. On one hand, given a range of
disturbances values (TiF , I, Ta), it is possible to heat the
water by reducing its flow rate. On the other hand, in-
creasing the desired outlet temperature ToF , the quantity

of accumulated mass water decreases. This is an interesting
optimization and control problem that will be seen later.

3. DYNAMIC OPTIMIZATION ALGORITHM

In this work, it is used the method of orthogonal collo-
cation on finite elements, capable of determining optimal
control trajectories by given the description of process,
the cost function, equality and inequality constraints and
the time interval length of optimization. The optimization
problem is solved by complete parametrization of control
and state profiles vector, approximated by a sequence of
linear combination. Since the basis function is already
known, the optimization is performed by minimizing the
linear combination coefficients, that is, the control and
states vectors.

One of the advantages of this algorithm is that the basis
function is defined as open-loop ordinary differential equa-
tion (ODE) or differential-algebraic equations (DAE) of
the process, which are well known for CPC solar collector
plants and can be simply implement in computational
software, as Matlab, for instance. Moreover, since ana-
lytical equations are used, the gradients of the control
vector and states, as well as the objective function, can
be solved by formal calculus, which presents better results
when compared to the numerical approximation. Thus, the
optimization and control strategy is formulated applying
the DynOpt algorithm developed by Cižniar et al. (2005)
for Matlab.

In this case, the process behavior is described in the form
Mẋ(t) = f(x(t), u(t)), wherein theM is known as constant
mass matrix. This ODE system equation forms equality
constraints for the optimization problem, written as the
Mayer form (Cižniar et al., 2005).

3.1 Optimization Problem Design

Considering the system described in Section 2, the main
objective of the optimization problem is to provide the
production of distilled water from the greater use of re-
newable energy provided by the production of hot water
in the thermal solar field. Thus, the optimization problem
considers to maximize the amount of energy produced
by the CPC collector field taking into account the outlet
temperature ToF , the water mass flow ṁeq, and the con-
trolling ranges. It is important to mention that the D-RTO
strategy uses the nonlinear dynamic model of the process
and model uncertainties can deteriorate its performance
with changes in numerical iterations. Therefore, for the
purpose of improving the optimizer closed-loop robustness,
a low-pass filter Fr(s) = 1/(Tfs + 1) is employed for the
output error e(t) = ToF (t) − ToFm(t), in which ToFm is
the outlet temperature model. The dynamic optimization
and control scheme is shown in Figure 3. Notice that the
D-RTO takes into account the disturbances and essential
states of the process, calculates an optimal dynamic curve
and, thereby, gives a discrete signal u(kTs) for each Ts
sample time.

In order to formulate the optimization problem in the
Mayer form, Equations 5 and 6 are proposed, in which
the first state is the outlet temperature x1(t) = ToF (t),
described in Equation 1, and the second state is the
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Figure 3. Solar field optimization and control scheme.

economic-objective function x2(t) = Jec(t), that is min-
imized by the optimizer. In addition, the input variable
is the volumetric flow of water u(t) = ṁF /ρ. Hence, the
differential equation is defined as a system of equations
f(x1, x2, u, t) in which:

ẋ1(t) = f1(x1, u, t) =
ToF

dt
(5)

ẋ2(t) = f2(x1, u, t) = α · c1 · dv(t) · u(t) · ρ · Cp · (x1(t) − ToFmin)

− c2 · Ec(u(t))
(6)

wherein α is the weight parameter. dv(t) = (1−e(−0.167·t))
is the proposed valve-pump dynamic, although real process
behavior may diverge. Equation 6 can be separated in
two terms: the right one refers to the cost associated to
electricity consumption caused by the solar field pump, in
which Eec is calculated in euros, given c2 = 1.53·e−6 e/W,
in the form (González et al., 2014):

Ec(u(t)) = 191.4 · u2(t) − 479.5 · u(t) + 663.8. (7)

On the left is calculated the benefits, wherein c1 = 8.171 ·
e−10 e/J represents the approximated value for each
joule required by the MED plant, considering a minimum
operating temperature Tomin to produce fresh water. The
heated water price is estimated by the total distilled water
production in simulations performed by González et al.
(2014). To simplify implementation, dv is considered only
on benefit term, since it presents a higher magnitude.

Therefore, the optimization problem can be formulated as:

min
u(t)

−x2(x1(t), u(t), t) = −
∫ hf

0

Jec(x1(t), u(t), t)·dt (8)

subject to Equations (5), (6) and:

x1(hf ) = ToF (hf ) (9)

TiF + ∆Tmin + ef (t) ≤ x1(t) ≤ Tmax + ef (t) (10)

ṁFmin
(t) ≤ ρ · u(t) ≤ ṁFmax (t) (11)

being ef (t) the filtered error between the process and
model outputs; ∆Tmin and Tmax the outlet temperature
limits, and ṁFmin

(t) and ṁFmax
(t) the mass flow limits.

Note that the D-RTO configuration is a receding horizon
optimization problem, wherein the algorithm is solved
repeatedly over a moving prediction time horizon hf . Vol-
umetric flows are calculated to maximize thermal energy
produced by the solar field and to minimize the electric-
ity consumption of the pump, according to the control
constraints. For the proposed algorithm, the gradients are

analytically calculated and considered in the optimization
problem as:

∂f

∂x
=


∂f1

∂x1

∂f2

∂x1

∂f1

∂x2

∂f2

∂x2

 , ∂f
∂u

=

[
∂f1

∂u

∂f2

∂u

]
,
∂f

∂t
=

[
∂f1

∂t

∂f2

∂t

]
.

4. RESULTS

In this section, the proposed D-RTO algorithm is simu-
lated in different scenarios aiming to evaluate its economic
performance and the perspective of practical applications.
A feedback linearization control (FBL) strategy, proposed
by Roca et al. (2008), is used only as reference, wherein
the non-linear mapping formulation integrated to classical
linear controllers (in that case a PI controller with anti-
windup) allows solar fields to operate at the limit with
great results in economic point of view. In this work, the
inlet and outlet temperature delays for the CPC model
plant are considered for both the D-RTO and FBL, as
well as a low-pass filter in the solar irradiation signal, to
attenuate strong variations in the model. In addition, an
attenuation factor a = 0.4 for β is used only for the FBL
control strategy.

Figure 4. Process disturbances - Scenario 1 and 2.

Figure 4 shows disturbances of Scenarios 1 and 2. For
the first scenario, solar irradiance is uniform and presents
very slight variations. For the second scenario, stronger
variations occur in solar irradiance which can represent
a cloudy day. In both cases, the process is regulated to
acquire energy above 66.5 oC, which is considered the mini-
mum temperature to operate the MED unit, and, then, the
inlet temperature TiF is maintained constant. The useful
energy production of the solar plant is considered only
when To is greater than Tomin

= 62.5 oC and less than
Tmax = 86.5 oC, which for this case study is considered
the maximum temperature allowed for the plant, regarding
safety criteria, even though, the costs of operating the
pump are considered throughout the simulation. More-
over, it is considered the solar field pump characteristics,
wherein the maximum inlet flow is limited to 28.2 · 10−2

m3/min, the minimum flow limited to 6.0 · 10−2 m3/min,
the sample time Ts = 1 and the dynamic behavior dv(t), as
defined in Section 3. For the nominal case, a weigh tuning
constant α = 0.4 is used to improve performance of D-RTO
algorithm and the optimization horizon is set to hf = 1
min.



Since the purpose of this work is to analyze the proposed
D-RTO algorithm, it is important to emphasize that these
simulated scenarios are defined to provide a broader range
of conditions and, thereby, expand the limits to evaluate
the performance of the dynamic optimization strategy,
although, in real process the difference in inlet and outlet
temperature is maintained between 5 oC and 20 oC to
avoid stress in CPC materials (Roca et al., 2008; González
et al., 2014).

To compare the D-RTO performance, FBL control is used
for different outlet temperature set-points, in order to
scan the best operating point. This control strategy has
been applied in real case and has achieved interesting
control performance for the CPC plant (Roca et al., 2008).
Therefore, the FBL approach is used to reproduce a real
operating situation, in which the operator tries to deal
with the trade-off between greater energy production and
the lowest electricity energy costs by the pump, varying the
outlet temperature gradients to achieve optimum economic
conditions. Figure 5 shows the CPC outlet temperature
and the volumetric water flow for both D-RTO and FBL
algorithms simulated in Scenario 1. Notice that the FBL
cases follow an initial setpoint for TiF + 10 and, latter, for
TiF + 20 with slight overshoot when changing the ramp.
Then, when To reaches 66.5 oC, the setpoints are set to
66.5oC, 70 oC, 75 oC, 80 oC, and 85.0 oC. It may be
seen that the FBL controller keeps the outlet temperature
in the desired setpoint for all gradients. However, at
85.0 oC, the controlled variable overpasses the maximum
temperature limit. Regarding the D-RTO algorithm, it
is possible to notice that CPC plant operates closest to
the maximum limit in relation to the constrains, applying
very low water flow since high temperatures improve useful
energy production. In addition, D-RTO ensures an optimal
input flow curve and fast response from the beginning to
reach the minimum temperature to produce useful heated
water. It is important to highlight the advantage of the
predictive feature in accordance to the energy production
considered in the optimization problem formulated in
Section 3.

In order to analyze economic performance, Table 2
presents the performance indices for all cases in Figure 5.
The profits gains are related to the amount of fresh water
produced by the MED unit, from the energy produced
from hot water in the CPC plant. Notice that the D-RTO
strategy achieves the highest profits of e7.816 with the
lowest running costs, in which, in other words, it produces
the greatest amount of energy, even though the amount of
water at the end of the simulation is the lowest, comparing
to other cases. It may also be noticed that the higher the
set-point, the greater the amount of energy produced by
the FBL, achieving e7.344 for 80.0 oC set-point. However,
due to control variations and disturbances, for 85.0 oC
set-point, the FBL controller case passes 86.5 oC and
this production is not considered, hence, producing only
e4.073.

In Scenario 2, wherein there are strongest variations in so-
lar irradiation, Table 3 and Figure 6 show the performance
of FBL and D-RTO, however, only the best FBL case is
reproduced on graphs. In this scenario, FBL controller
is set to follow initial setpoint of TiF + 20, and, latter,
fixed setpoints identical to Scenario 1. It may be noticed

Figure 5. Output temperature and inlet water flow for
Scenario 1.

Table 2. Performance indices for D-RTO and
FBL cases in Scenario 1.

Scenario Profit (e) Hot Water (m3)
Running
costs (e)

D-RTO 7.862 19.04 0.171
FBL/SP=66.5oC 1.719 36.71 0.236
FBL/SP=70.0oC 4.838 31.57 0.197
FBL/SP=75.0oC 6.429 26.42 0.176
FBL/SP=80.0oC 7.344 22.83 0.172
FBL/SP=85.0oC 4.073 20.19 0.175

that the CPC plant loses energy production when strong
disturbance occurs, however, the D-RTO continues to re-
spect the constraints when the irradiation level rises again.
Thus, it is evident that the control performance reflects
on MED profits. The FBL best result achieves e3.920,
whereas the D-RTO was capable to produce more energy
and, hence, would produce more fresh water, achieving
e5.813 of profits. For FBL higher set-points, the control
strategy pass the 86.5 oC limit, not contributing to the
total energy production, since if the maximum operating
temperature is overpassed in real case it could damage the
structure.
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Figure 6. Output temperature and inlet water flow for
Scenario 2.

Table 3. Performance indices for D-RTO and
FBL cases in Scenario 2.

Scenario Profit (e) Hot Water (m3)
Running
costs (e)

D-RTO 5.813 21.04 0.186
FBL/SP=66.5oC 2.797 32.73 0.262
FBL/SP=70.0oC 3.814 26.03 0.185
FBL/SP=75.0oC 3.920 20.91 0.162
FBL/SP=80.0oC 2.893 17.91 0.161
FBL/SP=85.0oC 2.224 17.34 0.158



As can be seen in Scenario 2, the D-RTO shows interesting
results for strong disturbance. Thus, aiming to evaluate the
optimization algorithm robustness, uncertainties scenarios
were also simulated. β and H parameters are chosen to
represent the source of model uncertainties. In fact, it
encloses all the uncertainties of the terms β/(ρ · cp · Aa)
and H/(ρ · cp · Aa · Leq) in Equation 1. Table 4 shows
the performance indices for each parameter variations,
simulated in Scenario 1. To achieve better results, after
several simulated experiments, a first order low-pass filter
is used in the irradiation signal, with Ti = 10 min. The
robust filter is adjusted to Fr(s) = 1/(50s + 1) and
the weight constant to α = 0.075, which, in practical
analyses, minimizes more the electricity energy costs in
the optimization problem than the previous scenarios.
The performance indices show that the D-RTO algorithm
presents good performance for uncertainties cases, for both
β and H parameters, approximating its behavior to the
nominal case. Nevertheless, since the model plant is more
sensitive to the β parameter, the performance is more
deteriorated, but it still operates in economical benefits,
achieving 66.2% of profits of the nominal case for the worst
case. Therefore, these results bring us a good perspective
of practical applications, even thought robustness studies
must be done to ensure profits in cases with higher errors.

Table 4. Performance indices for β and H
uncertainties in Scenario 1

Scenario Profit (e) Hot Water (m3)
Running
costs (e)

+10% ×β 7.815 19.83 0.170
+10% ×H 7.206 22.55 0.169
+20% ×β 7.209 22.80 0.201
+20% ×H 6.874 23.83 0.170
-10% ×β 6.692 24.49 0.172
-10% ×H 7.826 19.73 0.170
-20% ×β 5.191 29.25 0.191
-20% ×H 7.825 19.78 0.170

5. CONCLUSIONS

A D-RTO optimization algorithm is proposed for a CPC
solar plant, operating as energy supply source to a MED
distillation facility. The D-RTO structure is based on a
one-layer receding horizon optimization problem, in which
the economic function takes into account the amount of
energy produced by the CPC plant and the costs associ-
ated to the electricity consumption by the water pump.
The optimization algorithm is compared to a validated
FBL control strategy method for different temperature
gradients.

The results shows that the D-RTO is capable of maximiz-
ing the amount of energy produced by the CPC, or, in
other words, the thermal power supplied, even with strong
disturbances. Moreover, the preliminary results show that
the D-RTO optimization problem can maximize economic
conditions whit no necessity to define an specific reference
for the controlled variables, only by correctly designing
the process limits as problem constraints. This results
brings good perspectives since it facilitates the CPC plant
operation in maximum power, which, in fact, represents
a MED operation as stable and profitable as possible
and a more efficient use of solar energy. Furthermore, the

D-RTO algorithm shows robustness accomplishment by
adding a robust filter in the predicted output, improving
performance on mismatch cases.

Finally, the optimization algorithm has good expectation
for implementation in real scenario. Future work regarding
robustness analysis could be carried out. In addition, a
more in-depth analysis with predictive control and opti-
mization strategies is intended.

ACKNOWLEDGMENT

The authors would like to thank National Council for
Scientific and Technological Development - CNPq - Brazil
(PhD Program Abroad/ Process no 201143/2019-4) for
financial support and CIEMAT for providing data of the
AQUASOL plant at the Plataforma Solar de Almeŕıa -
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Pasamontes, M., Álvarez, J.D., Guzmán, J.L., Lemos,
J.M., and Berenguel, M. (2011). A switching control
strategy applied to a solar collector field. Control
Engineering Practice, 19(2), 135 – 145.

Powell, K.M., Hedengren, J.D., and Edgar, T.F. (2013).
Dynamic optimization of a solar thermal energy storage
system over a 24 hour period using weather forecasts.
In 2013 American Control Conference, 2946–2951.

Powell, K.M., Hedengren, J.D., and Edgar, T.F. (2014).
Dynamic optimization of a hybrid solar thermal and
fossil fuel system. Solar Energy, 108, 210 – 218.

Roca, L., Berenguel, M., Yebra, L., and Alarcón-Padilla,
D.C. (2008). Solar field control for desalination plants.
Solar Energy, 82(9), 772 – 786.

Salem, M.R., Salem, M.R., Higazy, M., and Abdrabbo,
M. (2020). Performance enhancement of a solar still
distillation unit: A field investigation. Solar Energy, 202,
326 – 341.

Scolan, S., Serra, S., Sochard, S., Delmas, P., and Re-
neaume, J.M. (2020). Dynamic optimization of the
operation of a solar thermal plant. Solar Energy, 198,
643 – 657.

Vega, J. and Cuevas, C. (2018). Simulation study of a
combined solar and heat pump system for heating and
domestic hot water in a medium rise residential building
at concepción in chile. Applied Thermal Engineering,
141, 565 – 578.

Winterscheid, C., Holler, S., and Dalenbäck, J.O. (2017).
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