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Abstract: Reliable models are vital for dynamic simmulations made by electric system
operators. Generic models can be adjusted to match certain equipment criteria and provide
accurate responses to different faults and disturbances. This paper adresses that issue by
proposing a hybrid estimation method to estimate parameters of a wind power plant generic
model. At first, the parameters are estimated through the Mean-Variance Mapping Optimization
method, a population-based metaheuristic. When the parameters are close enough to their real
values, Trajectory Sensitivity method is applied to improve the results and optimize solution.
Combining both methods results in a fast and robust estimation approach. The proposed hybrid
method was executed using measurement data acquired from PowerFactory and the results show
the adequacy of this application.

Keywords: Parameters Estimation, Wind Energy, DFIG, MVMO, Trajectory Sensibility.

1. INTRODUCTION

During the last few decades, participation of renewable
sources in power generation increased worldwide, leaded
mainly by wind and solar energy. These green technologies
provide an alternative to sources based on fossil fuel,
reducing environmental impact of energy generation.

In Brazil, wind energy contributed to the energy matrix
with 48.5 TWh during 2018, resulting in a participation
share of 8.1%. For comparison, Itaipu, Brazil’s largest
power plant in generation, has produced 96.6 TWh during
the same period. Also, while other sources, such as coal
and other fossil fuels, had their share reduced, wind energy
had the highest increase among sources comparing to 2017
levels, increasing its participation by 14.4% (EPE, 2019).

Regarding installed capacity, Brazil had 14.4 GW of wind
turbines operating in 2018 (EPE, 2019). Despite the high
participation of wind energy in Brazil’s energy mix, the
country has a large ammount of unexplored yield, specially
in the Northeast Region, as shown in do Amarante et al.
(2001).

One of the issues concerning wind energy is the lack of
reliable models for operational studies, since many manu-
facturers do not provide complex information about their
generators due to industrial secret. Besides, wind farms are
composed of multiple turbines, each with different char-
acteristics and technologies, preventing the application of
aggregate models to represent such power plants.

In order to allow the expansion of this energy source, many
studies have addressed wind generators and power plants
modelling. The application of generic models to represent
entire wind power plants was discussed and validated in
Muljadi and Ellis (2008), Ellis et al. (2011) and Asmine
et al. (2011). These models can have their parameters
adjusted to represent most wind power plants. Thus,

the modelling problem becomes an optimization problem,
focusing on estimating parameters in order to reduce
error between model and real system behaviour. Many
estimation methods were developed during the years, with
metaheuristic and nonlinear methods worth mentioning.

Metaheuristics are methods based mainly on behaviours
present in nature, such as evolution, bacteria growth,
swarms and flocks, to find a global optimum solution.
These methods are able to quickly narrow down the search
region, but usually take a long time to find an optimal
solution.

Nonlinear methods, on the other hand, rapidly converge to
an optimal solution. However, these methods are extremely
sensitive to the initial values chosen for parameters, diverg-
ing for parameter values far enough from real.

In Erlich et al. (2012), a generic model of equivalent
wind power plant was introduced and its parameters were
estimated by a metaheuristc known as Mean-Variance
Mapping Optimization (MVMO). In Cari et al. (2015),
Trajectory Sensitivity Method (TS), a nonlinear method,
was applied to estimate the parameter of the same generic
model.

The results of the first study show that MVMO had good
performance in the beginning of the estimation process,
but, as it approaches to the optimal values, the process
became slow. In the second study, the applied method
quickly converged to a solution, however it presented
strong convergence problems when the initial values of the
parameters were not close to their optimum.

Therefore, in this paper, a hybrid method based on both
MVMO and TS is proposed, resulting in a fast and
robust parameter estimation method. At first, the Mean-
Variance Method Optimization method, a population-
based metaheuristic, will be applied to find a global
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optimum. This solution is then refined by the Trajectory
Sensitivity method, a nonlinear method based on Newton-
Rhapson method.

The resulting hybrid method is used to estimate param-
eters of a wind power plant generic model adapted of
the one presented in Erlich et al. (2012). This model is
able to represent most Doubly-Fed Induction Generators
(DFIG) and Full-Converter Generators, the most common
technologies used in wind turbines.

This paper is organized as follows: the next section
adresses the hybrid estimation method and the methods
that compose it. Section 3 discuss the chosen generic
model, its characteristics and the data collected for es-
timation. Results of the estimation process are shown in
Sections 4, followed by the conclusions of this work.

2. HYBRID ESTIMATION METHOD

By combining two distinct methods, the resulting hybrid
method is expected to provide a suitable parameter vector
faster than the methods separetely and be less susceptbile
to divergence. The flowchart in Figure 1 shows how the
hybrid method will conduct the estimation process.
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Figure 1. Hybrid estimation method.

Measurement data obtained during a disturbance in the
system is used both as input for the model, u, and as
output of the real system, yr. The adequacy of the model
is evaluated by the l2-norm of the error vector, as shown
in equation (1).

While the error function J is above a predetermined
tolerance tol1, MVMO is used to improve the model
behaviour by searching for a global optimum solution.
When J is reduced to a level below tol1, TS is used to
provide a fine-tuning on the parameters values. These
adjustments are carried out until the error is lowered below
a tolerance tol2, when the resulting model with estimated
parameters is considered capable of representing the real
system with desired accuracy.

J(p) =
1

2

T0∫
0

(yr(t) − y(t))T (yr(t) − y(t))dt (1)

Each method is discussed individually in the following
subsections. With both methods combined, the time spent
on exploitation by MVMO is reduced, since, when it
reaches this stage, the method is switched to TS. On
the ohter hand, MVMO provides a more reliable initial
parameter vector for TS to start from, preventing it to
diverge. This is crucial when standard parameter values
are not well-defined.

2.1 MVMO

First presented in Erlich et al. (2010), the Mean-Variance
Mapping Optimization method is a population-based
metaheursitic. The main difference between this algorithm
and others based in evolution of populations is the muta-
tion and offspring generation steps. MVMO uses a map-
ping function based on populational statistics to generate
new individuals, inserting a memory effect to the evo-
lutional process. The mapping function improves search
performance, allowing MVMO to perform as fast as other
metaheuristics with a relative small population.

For the sake of analogy, the authors use the terms ‘gene’
and ‘individual’ instead of ‘parameter’ and ‘parameter
vector’, respectively, to explain MVMO process. At the
start, individuals are randomly generated to compose the
initial population. These individuals are evaluated and
ranked according to their error and the fittest individual
is then selected to generate new individuals.

The offspring are cloned from the fittest individual and
suffer a mutation on some predetermined genes. During
the mutation process, the selected genes receive a random
value in the interval [0, 1]. The value is then plugged into
a transformation function that returns the new value of
the genes. The transformation function depends on the
mean and variance values of the gene inside the population.
Figure 2 depicts an example of the tranformation function.

The offspring are evaluated and included to the popu-
lation, that is then reranked according to the error of
individuals. The worst individuals are then discarded in
order to maintain the original size of the population. This
process goes on until the stop criterion are met.

The main advantages of this algorithm are its low com-
putational cost, good performance with small populations
and constrained search region. The effects of population
size on method performance are also addressed in this
paper.



Figure 2. Example of MVMO transformation function.

2.2 Trajectory Sensitivity

In order to minimize the error J(p), one must find a
parameter vector p∗ so that:

G(p∗) =
∂J(p∗)

∂p
= 0 (2)

The derivative G(p∗) can be rewritten as:

G(p) = −
T0∫
0

[
dy(p)

dp

]T
[yr − y(p)]dt (3)

Expanding the Taylor series of G(p) and truncating it on
the first-order term results in (4).

G(p∗) = G(p) + Γ(p)(p∗ − p) (4)

The matrix Γ(p) is the jacobian matrix of g and can be
calculated by the following approximation.

Γ(p) =
∂G(p)

∂p
≈

T0∫
0

(
dy

dp

)T (
dy

dp

)
dt (5)

Based on (2) and (4), the parameter vector after the n−th
iteration can be obtained by:

pn+1 = pn + Γ−1(pn) ·G(pn) (6)

In order to facilitate the calculations of G(p) and Γ(p),

the derivatives dy
dp were approximated using its definition,

given by:

dy(p)

dp
= lim
h→0

f(p+ h) − f(p)

h
(7)

Consider two parameter vectors p and pε, where pε is
obtained by adding a small perturbation εpi to the i− th
element of p, as shown in (8).

p =


p1
...
pi
...
pn

 ; pε =


p1
...

pi + εpi
...
pn

 (8)

With ε sufficiently small, the partial derivative with re-
spect to the parameter pi can be approximated by the
difference shown in (9).

∂y(x, p, u)

∂pi
≈ y(x, pε, u) − y(x, p, u)

εpi
(9)

The value of ε = 0.1 × 10−3 have shown great results for
most cases. Using the approximation of the partial deriva-
tives allows Trajectory Sensitivity method to be applied
on both differentiable and non-differentiable systems, as
shown in Benchluch and Chow (1993).

The Trajectory Sensitivity method has fast convergence
characteristics and can be applied directly to nonlinear
problems, not requiring linearization. Also, by analyzing
the sensitivities, the method is able to provide information
about identifiability of parameters.

However, this method is extremely sensitive to initial value
of parameter. Thus, if the initial values are too far from
the real values, the method may diverge (Benchluch and
Chow, 1993).

3. WIND POWER PLANT EQUIVALENT MODEL

The model chosen to represent wind turbines and wind
farms is an adaptation of the model presented in Erlich
et al. (2012). This model represents a wind power plant
by its Thevenin equivalent, where the voltage source
is controlled by PI controllers and saturation blocks.
The Thevenin equivalent is connected to an infinite bus
representing the entire power grid. The chosen model
is able to simulate the dynamic behaviour of the most
common types of wind turbines composing wind farms.
Figure 3 depicts the block diagram of this model.

It is important to notice that dynamic responses of wind
turbines occur during a considerably short amount of time.
Thus, the wind speed in these instants can be considered
constant, not impacting on the model behaviour.

The point of interconnection to the grid is represented
by the bus between grid and Thevenin equivalent, and
vT and φV stand for its voltage magnitude and angle,
respectively. The active and reactive power generated by
the wind farm are represented by Pe and Qe, respectively.
Those four variables are the inputs of the chosen model and
their data is crucial to the estimation process. Thevenin
equivalent resistance R and reactance X represent the line
impedances connecting the turbines to the point of inter-
connection. The equivalent voltage source is decomposed
into direct (vd) and quadrature (vq) components.

The block diagram controlling the voltage source simulates
the controllers of a real wind turbine. At first, the reference
values of active and reactive components of current are
obtained by the following equations.
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Figure 3. Block diagram of chosen model.

{
IAc =

pTref
vT

IRe = kV C(vTref − vT )
(10)

Those reference currents are inserted into the current pri-
ority block. This block checks terminal voltage magnitude
and current magnitude to decide whether the priority is
active power injection or voltage control. In case of voltage
sag, reactive power injection must be prioritized in order
to sustain the bus voltage. During normal conditions, the
wind turbine must focus on injecting the maximum active
power possible into the grid.

The following PI blocks represent all turbine controllers
(blade pitch, gearbox, converters). The following equations
describes the PI blocks behaviour.



VPA = kI [(iPref −
Pe
vT

) +
1

TI

t∫
0

(iPref −
Pe
vT

)dt]

VQA = kI [(
Qe
vT

− iQref ) +
1

TI

t∫
0

(
Qe
vT

− iQref )dt]

(11)

The following phase-shifting block adequates the obtained
values to the direct-quadrature reference used in the volt-
age source. The block performs the transformation dis-
played in (12).

{
VPAS = −VPAcos(φv) − VQAsin(φv)

VQAS = VPAsin(φv) − VQAcos(φv)
(12)

Finally, a delay block simulating the delay effects of
converters and electrical machine (mechanical, electrical
and magnetic delays) composing the wind turbines. Their
effects are summarized by the following equations:


v̇d =

1

TV
(vd − VPAS)

v̇q =
1

TV
(vq − VQAS)

(13)

The active and reactive power generated by the wind
power plant are described by:


Pe =

R(vTdvd + vTqvq − v2T ) +X(vTqvd − vTdvq)

R2 +X2

Qe =
X(vTdvd + vTqvq − v2T ) −R(vTqvd − vTdvq)

R2 +X2

(14)

Thus, this model can be represented by the following
equation system:

{
ẋ = f(x, p, u)

y = g(x, p, u)
(15)

where the states x, inputs u, outputs y and parameters p
are described by (16), (17), (18) and (19), respectively.

x = [vd, vq]
T (16)

u = [vT , φv, Pe, Qe]
T (17)

y = [Pe, Qe]
T (18)

p = [R,X, kI , TI , TV , kV C , imax]T (19)

The parameters presented above are, respectively, the
resistance and reactance obtained via Thevenin equivalent,
gain and time constant of the PI block, time constant of
the delay block, voltage gain and maximum rated current.
These will be the parameters estimated in order to reduce
the error between the model output and the data collected.

The initial values of x can be easily calculated based on the
data collected during the initial instants and considering
the equations below, where V ∗t is the complex conjugate
of the terminal voltage.


vd(0) = Re

[
Vt(0) +

P (0) − jQ(0)

V ∗t (0)
(R+ jX)

]
vq(0) = Im

[
Vt(0) +

P (0) − jQ(0)

V ∗t (0)
(R+ jX)

] (20)

Notice that the initial values of the states depend on the
values of the parameters R and X. Therefore, after every
change in those parameters, the values of vd(0) and vq(0)
must be reevaluated.
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Figure 4. Voltage at wind power plant bus.

3.1 Collected data

The data used in the estimation process adressed in this
paper was the same used in Cari et al. (2015), where the
authors apply only the Trajectory Sensitivity Method to
estimate the parameters of the model presented in this
section.

In that study, a test system composed of a wind power
plant connected to a infinite bus by a transmission line
was simulated using PowerFactory 14. A short-circuit was
applied to the infinite bus with fault impedance of ZF =
3 + j9 Ω and lasted for 0.2 s. The entire simulation lasted
for 1 s and the sampling rate was 1 kHz. Figure 4 depicts
the voltage beahviour observerd at the wind power plant
bus.

4. RESULTS

Based on the parameter values found in Cari et al. (2015),
the search region used in MVMO was defined, as displayed
in Table 1. At every generation, three parameters of the
fittest individual in the population would suffer mutation
in order to generate one new individual. This method
would halt if either reached the 5000th generation or the
fittest individual presented an error level below tol1 = 0.5.

Table 1. MVMO search region

Parameter
Lower

boundary

Upper

boundary

R 0.027 0.040
X 0.16 0.24
kI 5.58 8.37
TI 0.028 0.043
TV 0.22 0.32
kV C 1.60 2.40
imax 0.88 1.32

Estimation through Trajectory Sensitivity takes place af-
terwards, using the fittest individual found by MVMO as
its starting point. This method was set to find a solution
with error level below tol2 = 5 × 10−4 in seven or fewer
iterations. Estimations that eventually take longer than
that are considered to result in divergence and can be
discarded.

4.1 MVMO population size

As mentioned in Section 3, the effects on population size on
the speed of MVMO were evaluated prior to the estimation
itself. Five different population sizes were chosen and 35
estimations were executed for each one of them. The
estimations were made using only MVMO (settings used
were the same described above) and each one was timed.
The mean duration of estimation for each population size
can be seen in Table 2.

Table 2. Effects of population size in MVMO
performance

# of

individuals
Mean

duration (s)

5 15.62
10 11.08
20 13.02
50 17.84
100 29.00

It is possible to observe that for considerably small popu-
lations (five or less individuals), MVMO takes more time
searching for fit individuals, due to the lack of good can-
didates in the first population. On the other hand, very
large populations (over 50 individuals) usually present
good candidates in their first generation. However, these
populations take a good amount of time just to create and
evaluate all of their first individuals. As depicted in Table
2, the optimal population size for this estimation problem
would be between 10 and 20 individuals.

4.2 Parameter estimation

Based on the results depicted in the previous section,
the size of MVMO population was set to 15 individuals.
The hybrid estimation method proposed was then applied
considering all settings described in the beginning of this
section. The estimation took 8.11 seconds in total, with
4.19 seconds for MVMO and 3.92 for TS. The final
error between data collected and modelled behaviour was
1.5 × 10−4. The values estimated for each parameter are
displayed in Table 3.

Table 3. Estimated values of parameters

Parameter
Estimated

value

R 0.034
X 0.198
kI 6.333
TI 0.0348
TV 0.246
kV C 1.999
imax 1.100

The comparison between the real system and modelled
behaviour are presented for both active and reactive power
in Figures 5 and 6, respectively. In both figures, it can be
seen that the modelled behaviour fits almost exactly to the
curve obtained from the collected data. Thus, the model
with the estimated parameters can be used to simulate
the behaviour of the same wind power plant in similar
disturbances.
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5. CONCLUSION

In this paper, a hybrid estimation method combining
metaheuristic and nonlinear methods is applied to esti-
mate parameters of a wind power plant equivalent model.
Disturbance data, obtained via fault simulation of a sim-
plified system using PowerFactory 14, was used as model
input and for output comparison. The first stage of esti-
mation is executed by MVMO, a population-based meta-
heuristic, in order to find good solutions near global opti-
mum. Trajectory Sensitivity is then applied to refine the
results. An assessment on MVMO population size was
performed to observe the impacts of it on the estimation
process, culminating in a optimum range for this prob-
lem of 10-20 individuals. Estimation applying the hybrid
method was executed and the results obtained provided a
model with error level lower than 2 × 10−4.
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