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Abstract: This paper presents a comparative study between two different approaches for
dynamic systems based on Taylor series and based on a double-integrator, and their influence in
path tracking control using model predictive controller (MPC) with the view to solve the path
tracking problem of an autonomous off-road vehicle. A physical-mathematical model, including
the celebrated tire model known as “Magic Formula”, is modified and linearized to control the
steering of the vehicle considering different reference trajectory inputs. Simulation results are
considered satisfactory, showing that the model linearized considering Taylor series presented
better results compared to the double-integrator which indicates that the prediction of the plant
output is driven close to the reference. Moreover, the results show that the implemented control
strategies for path tracking are adequate for applications in off-road autonomous vehicles.

Keywords: Path tracking, linearization models, model predictive control, off-road autonomous
vehicles.

1. INTRODUCTION

With the science and technology advance, autonomous ve-
hicles are coming into view (Lin et al., 2019). Autonomous
vehicles are those in which some aspects of a safety-critical
control function (e.g., steering, braking) occur without a
direct driver interference increasing safety and improving
energy efficiency (NHTSA, 2013; Sun et al., 2018; Li et al.,
2018). One of the most important topics of autonomous
vehicles research has been the path tracking problem,
which refers to following a desired path accurately by
controlling the speed and/or steering of the vehicle by
means of designing control techniques (Raffo et al., 2009;
Sun et al., 2012).

Path tracking of off-road vehicles is a complex task since
these vehicles are subjected to high level of slip due to the
rough and curvy terrains as well as sudden terrain changes
that can lead to significant difference between the real and
predicted trajectory. Thus, tire-soil interaction models,
such as those proposed by (Bekker, 1962) and (Wong and
Reece, 1967a,b) became reference in studies related to off-
road vehicles but the celebrated “Magic Formula”, firstly
proposed by (Bakker et al., 1987), is one of the most
used tire models even for a general off-road analysis. Here,
a dynamic model is combined with a kinematic model
considering the “Magic Formula” tire model to design the
controller.

However, as these models are nonlinear, it is common to
linearize the states in order to design trajectory tracking
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controllers. Thus, two different approaches are proposed
and compared in this work in order to simplify the vehicle
dynamic model. First, a method based on the expansion
of nonlinear function into a Taylor series is developed.
This expansion occurs about a point of equilibrium oper-
ation maintaining only the linear term. Recent research
has highlighted the potential of the linearization based
on Taylor series as Gidlewski and Zardecki (2016) that
investigated the vehicle motion control due to the lin-
earization of lateral dynamics. Similarly, Snider (2009)
linearized the lateral dynamic of a vehicle considering the
traditional “bicycle model” with Taylor series approach.
Linear time-varying model of lateral dynamics based on
Taylor expansion to design control algorithms for path
trajectory of autonomous vehicle are developed by Shen
et al. (2017); Lin et al. (2019). Second, the dynamic system
is simplified into a double integrator plant, which is one
of the most fundamental systems in control applications
(Rao and Bernstein, 2001). Different works have used
double integrator as simplification to dynamic model as
Cabecinhas and Silvestre (2019) that proposed a nonlinear
controller based on a double integrator simplified model
for path tracking of an autonomous vessel. A containment
control for multiple autonomous vehicles, modelled as a
double integrator, was studied by Cao et al. (2011). Qian
(2016), to design a path tracking controller, simplified
the vehicle dynamics by a double integrator taking into
account tire force to limit the lateral acceleration. George
and O’Brien (2004) developed a strategy control for lateral
vehicle dynamics using a double integrator model.

In order to solve the path tracking problem, it is required
to design a path tracking controller that aims to minimize
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the difference between the desired path and the vehicle
trajectory. Thus, a model predictive control (MPC) is pro-
posed in this paper. This technique is widely used to path
tracking control since it uses the physical-mathematical
model of a vehicle in order to predict a future situation
over a finite horizon (Ataei et al., 2020). Considering off-
road vehicles, different works have been used dynamic
and kinematic models with slip assumption in order to
design a MPC controller as Lenain et al. (2005); Lenain
et al. (2007) that used a kinematic with two slip angles
to develop a MPC controller which presented satisfactory
results even though the slip estimation were considered
a problem because the absence of a more robust method
in their modelling. Raffo et al. (2009) applied MPC tech-
niques in an autonomous Baja vehicle considering different
paths input in a dynamic model of the vehicle. The results
were considered satisfactory after practical experiments to
validate the simulation data. Shen et al. (2017) applied
a MPC-based path tracking control in a ground vehicle
over three different types of roads: wet and dry asphalt
pavement, and ice-covered soil. Li et al. (2019) proposed a
nonlinear model predictive controller for path tracking of
a ground vehicle considering the Magic Formula.

The aim of this work is to provide a contribution towards
nonlinear model approximation techniques and their in-
fluence in path tracking control of autonomous vehicles.
Therefore, this paper presents a comparative study be-
tween two different approaches based on Taylor series and
double-integrator considering different reference trajecto-
ries. Moreover, the presented results are analysed and
compared in the view of two different metrics: R2 and
RMSE.

The remainder of this paper is organized as follows: In
section II, the bicycle dynamic model and the kinematic
techniques are described and discussed. In section III, the
scheme of MPC is detailed. Numerical results are shown
in Section IV, where the proposed approaches are applied
to design the MPC controller to path tracking and then,
they are tested and compared according to different road
paths. Finally, in Section V we write the conclusion of this
paper and point future research directions.

2. NONLINEAR STATE-SPACE MODEL

A rigid vehicle is assumed to move on a flat surface
considering a constant longitudinal velocity and small steer
angles, so that the planar forces on the tire surface act at
the wheel center (Fig. 1). Thus, the following equations
describe the Newton-Euler equations of motion for a rigid
vehicle in the local coordinate frame

Fy(t) = mÿ(t) +mψ̇(t)vx , (1)

Mz(t) = Izψ̈(t) , (2)
where Fy is the total lateral force, m is the vehicle mass,
y is the position in the local coordinate frame, ψ is the
vehicle yaw angle, vx is the constant longitudinal velocity,
Mz is the yaw moment, Iz is the moment mass relative to
the vertical axis and t is the time.

Considering a small steer angle δf , the total force can be
approximated by

Fy ≈ Fyf + Fyr , (3)

Mz ≈ aFyf − bFyr , (4)

Figure 1. Global and local coordinate systems.

where Fyf and Fyr are the lateral forces on the tireprint
of the front and rear tires, respectively; a and b are the
distance from center of gravity (CG) to front axle and
rear axle, respectively.

The tire model which is actually most well established
is based on the work of Bakker et al. (1987). The tire
model is known as “Magic Formula” since there is no
particular physical basis for equations chosen. Then, the
“Magic Formula” is not considered a predictive model but
is commonly used to represent tire force over different
operating conditions (Blundell and Harty, 2004; Jazar,
2017). In this work, the third version of the “Magic
Formula” is used for lateral forces

Fy(α) = Dsin{Ctan−1[B(α+ sh)− E(B(α+ sh)

− tan−1(B(α+ sh)))]}+ sv , (5)

where α is the sideslip angle. The sideslip angle is impor-
tant for off-road vehicles since a high slip may lead to the
vehicle instability. Sideslip angles for the front (α1) and
rear (α2) tires can be determined respectively by

α1 = − ẏ + aψ̇

vx
+ δf , (6)

α2 = − ẏ − bψ̇
vx

. (7)

The other parameters which are listed on Table 1, depend
on the vertical force Fz and the camber angle γ.

Table 1. Magic Formula Parameters (Blundell
and Harty, 2004)

Parameter

D = µFz

µ = (a1Fz + a2)(1− a15γ2)
BCD = a3sin(2tan−1(Fz/a4))(1− a5|γ|)

C = a0
E = (a6Fz + a7)(1− (a16γ + a17)sgn(α+ sh))

B = BCD/CD
sh = a8Fz + a9 + a10γ

sv = a11Fz + a12 + (a13F 2
z + a14Fz)γ

The real trajectory Y (X) in the global coordinates can be
determined by integrating the following equations

Ẋ(t) = vxcos(ψ(t))− ẏ(t)sin(ψ(t)) , (8)



Ẏ (t) = vxsin(ψ(t))− ẏ(t)cos(ψ(t)) , (9)

Consequently, we have

Ÿ (t) = vxψ̇(t) + ÿ(t) . (10)

Finally, reorganizing (10) and substituting them in (1) and
(2), the dynamic equations considering kinematic aspects
can be obtained:

mŸ (t) = Fy(t) , (11)

Izψ̈(t) = Mz(t) . (12)

In terms of a nonlinear system with the form ẋ = f(x, u),

where x = [Y, ψ, Ẏ, ψ̇] is the state vector and u = δf is the
input signal of the plant, we have:

ẋ =


Ẏ

ψ̇

Ÿ

ψ̈

 . (13)

In this paper two different methods were used in order
to simplify the nonlinear model of the vehicle. The first
method is based on expanding the Taylor series around
an equilibrium point of operation (see Section 2.7 of
Ogata (2010) for details). If a given dynamic system works
around an equilibrium point and if the signals involved
are considered small, then it is possible to linearize the
dynamic system. Once the nonlinear system in the form
ẋ = f(x, u) in (13) determined, the linearization of the
system around the following equilibrium can be obtained
considering the input signal u∗ = 0,

Ẏ

ψ̇

Ÿ

ψ̈


∣∣∣∣∣∣∣∣
∗

=

 0
0
0
0

 .
The linearized model can be described as

δẋ = Aδx+Bδx , (14)

where δx = x− x∗ and δu = u− u∗ are the disturbance
variables; A and B are Jacobian matrices related to the
state vector and input signal around the equilibrium point.

The second method is simple and consists in simplifying
the system using a double integrator with velocity depen-
dent gain. This choice was made by empirically observing
the lateral displacement by harmonic excitations, as it was
found similar to the dynamics of double integrators. In
order to set the gain parameter, simulations were carried
out in such conditions and the matching was made by trial
and error.

3. MODEL PREDICTIVE CONTROLLER

Model predictive controller (MPC) is an optimal control
algorithm that is widely used to predict, on a specific finite
time-horizon, the future states of a dynamic system (Amer
et al., 2016). MPC uses a discrete-time model in order to
predict the future states:

x(k + 1) = Adx(k) +Bdu(k) ,
y(k) = Cd(k) ,

(15)

where x(k) is the state vector, y(k) is the output vector,
u(k) is the input vector; Ad, Bd and Cd are the state-space
matrices of the vehicle model in discrete-time form.

Figure 2. Scheme of the MPC controller without distur-
bance.

Based on the predicted states, the control action is deter-
mined by minimizing the following cost function:

J(k) =

Np∑
n=1

‖ yref (k + n)− y(k + n) ‖2Q +

Nc−1∑
n=0

‖ u(k + n) ‖2R , (16)

where yref and y are the output reference and predicted,
respectively, Np is the predictive horizon, Nc is the control
horizon, Q and R are weighting matrices regarding the
tracking errors and the control input efforts, respectively.

The control scheme for the path tracking system is shown
in Fig. 2, where the inputs of the controller are the
reference trajectory (Yref ) and the trajectory predicted
(Y ) in order to determine a specific steer angle (δf ) which
works as input for the plant.

4. NUMERICAL RESULTS

In this section, the MPC controller designed by both the
Taylor series and double integrator is applied in cases with
different trajectories input in order to verify the effectively
of each proposed method. It is important to state that both
methods are used to design the MPC controller. After that,
the controller is applied to the nonlinear system.

Before starting the tests, it is essential to ensure that the
system is controllable and observable. It then follows that

rank Qc = rank [B AB A2B] = 3 ,
rank Qo = rank [C CA CA2] = 4 ,

(17)

where Qc and Qo are matrices that have full rank indicat-
ing an observable and controllable dynamic system.

For the MPC controller implementation, the simulation
step, predictive horizon and control horizon are 0.01s, 12
steps ans 2 steps, respectively. For vehicle control problems
this horizon is commonly applied, since the dynamics
response of the vehicle are sufficiently fast enough to be
noted if occurs some disturbance (Beal, 2011).

The vehicle simulation parameters are listed in Table 2 and
are based on a “Baja” prototype which are similar to dune
buggies. Regarding the sensing of the state variables, it was
considered that all four states at global reference (position,
velocity, yaw angle and angular velocity) can be monitored
on the vehicle. However, for the MPC controller, only
lateral position state is required. The problem was solved
by using MATLAB/Simulink software version R2019b.

The coefficients an for the “Magic Formula” were provided
by Dunlop Tyres using in-house software to adjust the



parameters. The data (Table 3) is available in Blundell
and Harty (2004).

Substituting all parameters in the linearized model of the
system, we can obtain the linearized matrices that will be
used by Taylor Series technique as follows

A =

 0 0 1 0
0 0 0 1
0 0 −11.097 −12.039
0 0 −0.184 −27.991

 ;B =

 0
0

53.580
224.811

 . (18)

In order to compare the simulation results, two commonly
metrics based on the error between the reference signal and
predicted data are used in this paper: Root Mean Squared
Error (RMSE) and Multiple Correlation Coefficient (R2).
These metrics are formulated as

RMSE =

√√√√ 1

N

N∑
t=1

[y(t)− ŷ(t)]2 , (19)

R2 = 1−

N∑
t=1

[y(t)− ŷ(t)]2

N∑
t=1

[y(t)− ymean(t)]2
, (20)

where y is the reference signal, ŷ is the predicted data,
ymean is the mean value of the reference signal, and N is
the length of the data vector.

The poles location related to lateral position of the lin-
earized system based on Taylor series are located on the
left half of the s-plane (p1 = 0; p2 = 0; p3 = −10.97 and
p3 = −28.12) being so, no pole is unstable. Two repeated
poles are located at the origin which is a indicative of
the potential use of the double integrator in the study.
Different tests changing some parameters such as vehicle
mass, vehicle inertia, location of the center of gravity were
made and it was observed that the system maintained the
stable situation.

We show in the following, comparative tests and their
impacts in a MPC controller for path tracking considering:
step input signal (Section 4.1); lane-change input signal
(Section 4.2); sinusoidal input signal (Section 4.3).

Table 2. Table of Vehicle Parameters

Parameter Description Value Unit

m Mass of the vehicle 200 kg
Iz Yaw moment of inertia 42.9 kg.m2

l Wheelbase 1.5 m
a Distance front axle to CG 0.9 m
b Distance rear axle to CG 0.6 m
vx Longitudinal velocity 12 m/s

Table 3. Coefficients from Magic Formula
(Blundell and Harty, 2004)

Parameter Value Parameter Value

a0 1.0337 a9 0
a1 -0.2245e-5 a10 0
a2 0.8 a11 0
a3 0.6040e5 a12 0
a4 0.8777e4 a13 0
a5 0 a14 0
a6 0,4581e-4 a15 0
a7 0,4682 a16 0
a8 0 a17 0

Figure 3. Trajectory and trajectory tracking error - unit
step function.

4.1 Step Input Signal

For the first test, a unit step trajectory is used, starting
at 1 s. As shown in Fig. 3, the trajectory is followed
faster by the system linearized by Taylor series than that
in which a double integrator is applied, even though the
case with Taylor series presents some deviation in negative
direction that do not impact the final result. Consequently,
the trajectory tracking error for Taylor series starts bigger
than that presented for the double integrator. However,
after achieving the maximum value, the error starts to
decrease faster than that for the double integrator and
the steady state is achieved. Regardless of the method
used to simplify the dynamic system, MPC acts in a
receding horizon obtaining new response frequently whilst
controllers, as for example those based on linear quadratic
regulator (LQR) type, use the optimal solution (resulted
from a optimization process) for the entire time horizon.
Thus, MPC controller commonly spent less time to obtain
an optimal solution.

The results can be corroborated by the control action (Fig.
4) and Metric results (Table 4). The system linearized
by Taylor series presented faster results, even though, at
the beginning of the motion, the system decreases into
negative values. Considering R2 and RMSE metrics, we
can note that the Taylor series presented the best results
although double integrator results are similar.

Table 4. Unit Step Signal Results

Technique R2 RMSE

Taylor series 0.9107 0.1195
Double integrator 0.9020 0.1252

4.2 Lane-Change Input Signal

The second test performed considered the off-road vehicle
during a lane-change manoeuvre starting at 2 s.

It can be seen in Fig. 5 that the off-road vehicle follows
the track with good performance even though during the
single-lane maneuver an trajectory error appears for both
methods. However, Taylor series performed better than



Figure 4. Control action - unit step function.

Figure 5. Trajectory and trajectory tracking error - lane-
change signal.

double integrator, as observed with the previous test, since
it produces a smaller difference between the reference
trajectory and the predicted trajectory, which confirms
that this method of linearization is doing well.

In Fig. 5, two peak points can be identified, one comes
from the controller response after the lane change starts
and the following is caused by the controller response at
the end of the lane change in order to complete the single-
lane change maneuver.

The results can either be corroborated by the metric re-
sults (Table 5). Although the results with double integra-
tor presented good metric results, Taylor series lineariza-
tion performed better in this case with R2 and RMSE
metric values very close to the ideal.

Table 5. Single Lane Change Signal Results

Technique R2 RMSE

Taylor series 0.9986 0.0464
Double integrator 0.9981 0.0546

The control action from the controller can be observed in
Fig. 6 and indicates that the vehicle steering is constant

Figure 6. Control action - lane-change signal.

Figure 7. Trajectory and trajectory tracking error - sinu-
soidal signal (amplitude 25 m).

until the beginning of the maneuver. After that, the
maneuver occurs indicating that for Taylor series a smaller
steering angle is necessary to path tracking if compared
with the system composed by a double integrator. Finally,
the steering angle remains zero until the end of the
simulation which indicates the end of the lane-change
maneuver.

4.3 Sinusoidal Input Signal

For this simulation, the off-road vehicle performed a ma-
noeuvre in a form of a sinusoidal function (amplitude of
25 m and angular frequency of 0.3 rad/s).

It can be noted for this test that both Taylor series and
double integrator responses (Table 7) are close to each
other. However, the trajectory tracking error increases if
compared to the previous test. This occurs mainly due
to the linearization process which simplify the dynamic
model and, consequently, affects the MPC controller per-
formance. Despite that both methods presented good re-
sponses for path tracking as seen in tests before.



Figure 8. Control action - sinusoidal signal (amplitude 25
m).

Although double integrator performed well in both metrics
(R2 and RMSE) (Table 6), Taylor series performed even
better. R2 metric results are the best results considering
all tests performed. However, for RMSE metric the results
are higher than the other performed tests. This is due to
the sum of significant quadratic errors which increase the
metric value.

The control action from the controller can be observed in
Fig. 8 and indicates that the vehicle steering is similar
to the path followed. As noted in the previous test, the
steering angle presented by the system linearized by Taylor
series is smaller if compared with the system composed by
a double integrator which indicates a faster and precisely
path tracking.

5. CONCLUSIONS

The present work dealt with the application of Taylor
series and double integrator to design a model predictive
controller in order to solve the path tracking problem of
an autonomous off-road. The linearization based on Taylor
series is applied in a physical-mathematical model which
considers dynamic and kinematic characteristics of the
vehicle. The model still considers the well-known “Magic
Formula” tire model.

Three different tests considering different trajectories were
performed: unit step, single lane-change, and sinusoidal
signal. R2 and RMSE metrics were established to compare
the reference trajectory and that performed by the system
with a determined controller. Based on the results obtained
we conclude that the linearization based on Taylor series
performed better for all tests if compared with double
integrator in order to provide an effective means to solve
the path tracking problem of an autonomous off-road
vehicle. However, it is important to point out that a double

Table 6. Sinusoidal Signal Results

Technique R2 RMSE

Taylor series 0.9993 0.4283
Double integrator 0.9990 0.4977

integrator can be used for a preliminary test, since it
presented good results for all tests.

In the future we shall focus on implement a nonlinear
model predictive model (NMPC) to enhance the accuracy
of the control system; improve the dynamic model adding a
more complex tire model that take into account tire prop-
erties, terrain properties and other nonlinearities looking
for a more realistic setting for the system as Wong and
Reece (1967a,b). After that, we will try to validate the
numerical experiments herein conducted.
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