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Abstract: This work presents a summary of the main tools and contributions, since the
2000s, to solve temperature control problems and predict thermal temperatures in steel ladles.
We discuss different modeling strategies implemented to several applications related to heat
transfer in steel ladles and their most relevant contributions, as well we show some of the main
process parameters. Finally, future perspectives are described, mainly the advantages of the
implementations based on machine learning.
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1. INTRODUCTION

With the development of steel technologies and the search
for energy efficiency, characterizing and minimizing ther-
mal losses of steel during production have become es-
sential. Due to the complexity, and the non-linear and
time-varying relationship among the process parameters,
monitoring the variables for precise temperature control
has been a major research problem over the past two
decades (Fredman, 2000; Gupta and Chandra, 2004; Laha
et al., 2015; Cavalcante, 2019).

Lower steel temperatures along the continuous casting
process may promote the interruption of production or
the need for greater demand for aluminum to reheat
the bath, i.e., liquid steel. Aluminum still contributes to
occur an event called clogging in the submerged entry
nozzle (Ferreira et al., 2002). Clogging is defined as a
material obstruction in the flux of steel during continuous
casting, which can interfere in the production quality and
control (Thomas and Bai, 2001). On the other hand, high
temperatures of liquid steel imply a greater loss of energy,
more fluxes for dephosphorization and greater degradation
in the refractory wear of both converter and ladle. In
addition, high temperatures can also reduce the casting
speed, thus reducing the productive capacity of the system.

In order to establish the factors that most impact the
thermal losses in the ladles, part of the literature that deals
with the control of the thermal status of liquid steel was
reviewed, not only in the ladles, but also in all the stages
between tapping and casting. Until the end of the 20th
century, most contributions were limited to articles from
conferences and experimental studies on plants (Fredman,
2000). However, since the beginning of the 21st century,
this scenario has changed, reflecting an increase in the
number of scientific works and publications in journals.
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In order to define the main factors that most impact heat
losses from ladles, Fredman (2000) reviewed part of the
literature, starting in 1956, which deals with the control
of the thermal status of liquid steel, not only in ladles,
but also in all stages between the tapping of the converter
and the continuous casting. From the beginning of the
21st century, the works found in the literature began
to apply different types of models, especially physical,
mathematical, empirical and statistical ones (Gupta and
Chandra, 2004; Jormalainen and Louhenkilpi, 2006; Tian
et al., 2008; Wu et al., 2012; Ahmad et al., 2014; He et al.,
2014; Laha et al., 2015; Wang et al., 2018; Hou et al.,
2019).

The objective of this paper is to present a summary of the
main contributions developed after the synthesis carried
out by Fredman (2000), in an attempt to understand
thermal losses, as well as in order to identify the main
process parameters that influence them.

This paper is organized as follows: In Section 2, a descrip-
tion of the steelmaking process is made and the effects of
temperature control in this process are discussed; Section
3 presents the main models used in the literature since
the 2000s; Section 4 mentions the main applications in the
industry and their results; future prospects are discussed
in Section 5; and, finally, the conclusions are presented in
Section 6.

2. THERMAL CONTROL OF LIQUID STEEL

The basic raw materials for the steelmaking process in-
clude iron ore, mineral coal and limestone. The first stage
of the process consists of the preparation of raw materials,
which transforms iron ore into sinter and mineral coal into
coke. These materials are sent to silos that have systems
responsible for forming the load used in the next stage of
the process, the reduction. This stage occurs in the blast
furnace, using the countercurrent principle (Geerdes et al.,
2015). Ferrous raw materials and fuel are loaded through
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Figure 1. Schematic flowchart of the steel refining steps in
steelmaking.

the upper part of the blast furnace. At the bottom, hot air
is blown through the nozzles, and auxiliary fuel injections
can also be made, in order to generate heat to the process
through the combustion of carbon (Mourão et al., 2011).
This part of the process is shown on the left side of Figure
1.

The final product of this phase is a hot metal, produced at
a temperature of approximately 1500oC, in a liquid state,
composed of iron, carbon and other alloying elements such
as silicon, manganese, phosphorus and sulfur. Slag and
blast furnace gas are also generated as by-products. The
slag is directed to a granulation system through the slag
channel, while the hot metal is transported, using torpedo
cars (equipment made of structural steel and coated with
refractories), to be transformed into steel, through the
oxidation of impurities and alloy additions (Geerdes et al.,
2015).

During steelmaking process, the hot metal passes through
the refining stages, where it is transformed into steel.
Refining can be divided into three stages: primary refining,
secondary refining and casting, as shown in Figure 1
(Rizzo, 2005).

The primary refining occurs mainly in Basic Oxygen
Furnace (BOF), which has a cylindrical shape, composed
of heat resistant steel, internally coated with refractory
materials. The primary refining process is fundamentally
based on the oxidation reactions of the impurities found in
the hot metal, through the blowing of oxygen. Thus, the
need to add immiscible ingredients to the liquid metal is
justified, so that impurities are removed from the metal
with the aid of these ingredients. As a result, slag is
produced, which, due to the difference in density, separates
from the metal and carries the impurities (Rizzo, 2005;
Mourão et al., 2011).

In general, although slag is important for the steelmak-
ing process, protecting it against oxidation by air and
controlling thermal losses, its improper passage from the
converter to the ladle can cause some inconvenience to
the subsequent processes. The passage of slag to the steel
ladle can not only affect the product’s quality, but also
enhance the wear of refractories and decrease the efficiency
of steel deoxidation and desulfurization. For these reasons,
the slag must be discarded at each stage of production
(Rizzo, 2005; Mourão et al., 2011).

After processing in the primary refining, the liquid steel
is transferred to the ladle steel, which fulfills not only the
transport role for subsequent equipment, but also the met-

allurgical reactor in the secondary refining operations. At
this time, the steel temperature abruptly decreases, mainly
due to exposure of the liquid steel to the environment,
when passing from the converter to the ladle. This process
is called tapping. Thus, the tapping time has a strong
influence on the thermal loss of the liquid steel, which in
general occur by convection and radiation (Rizzo, 2005).

The secondary refining of liquid steel, which is also called
Ladle Metallurgy, constitutes the fine adjustment of the
chemical composition of the steel, usually in a reducing
atmosphere (absence of oxygen) and temperature adjust-
ment. During this stage, some factors contribute to the
reduction of the thermal input of the bath, such as the
addition of materials to adjust the chemical composition,
injection of inert gas to homogenize the metal and the
contact of the steel with the walls and bottom of ladle
refractories (Mourão et al., 2011).

Throughout the secondary refining stages, although the
thermal losses become smaller, those that occur through
the slag remain, becoming more important than the losses
by the refractories. This happens since the heat lost to
the refractory is reduced over time, due to the increasing
difficulty of heat entering the refractory layers. However,
the greatest reduction in the temperature of the steel can
occur in the vacuum and homogenization processes due
to the agitation of the bath, as well as by the specific
treatment for the injection of calcium. In these stages,
radiation losses mainly occur at the top of the ladle
(Ferreira, 2000; Ferreira et al., 2002).

After refining is complete, the steel is sent to the contin-
uous casting process. This is the last stage in steelmaking
where the metal is liquid. The main objective of casting is
the solidification of liquid steel, in such a way that it can
be used in the subsequent stages of the production chain
(Mourão et al., 2011). The basic principle of this process is
the vertical casting of liquid steel from a ladle positioned
over the tundish, which is a mechanism for feeding the
molds using dip tubes.

In continuous casting, high temperature losses occur due
to the action of steel passing through the long valve. The
temperature of the liquid steel depends fundamentally on
its residence time inside the tundish. In this way, the speed
of the casting and the level of the steel in the tundish
have a strong influence on the temperature of the process.
According to Ferreira (2000), the actual temperature of the
continuous casting, also called stabilized temperature, is
calculated by averaging the three temperatures measured
within the tundish throughout the process (beginning,
middle and end of the casting).

In general, the operational performance of steelmaking
can be assessed from four parameters: productivity, yield,
correct chemical composition and, fundamentally, temper-
ature of the liquid steel at the end of the blow. Thus, the
need to cool or heat the liquid steel to reach the casting
temperature, the increase in the frequency of new blows in
the converter and the formation of the skull in the ladle
(formed by solidified metal) are relevant factors in the loss
of productivity. In addition, the efficiency of continuous
casting is closely related to the temperature of arrival of
the steel. In this sense, temperature control is essential
throughout the process, making it necessary to estimate



thermal losses during all the steps that compose it, as well
as defining the optimal release temperatures for each of
the process equipment.

3. TYPES OF MODELING

In general, the works developed since the 2000s can be
divided into three major categories. Initially, the works
were still based on numerical and heat transfer equations
(Xia and Ahokainen, 2001; Ferreira et al., 2002; Gupta and
Chandra, 2004; Samuelsson and Sohlberg, 2009; Wu et al.,
2012). These models represent the phenomena by theoreti-
cal means, considering the basic laws of physics and chem-
istry that characterize the process, or phenomenological,
which are also based on the process, but apply parameters
whose values must be obtained in the process itself (Dym,
2004).

Heat can be transferred by three different mechanisms.
This characterization is based on models based on Fourier’s
laws, Newton’s cooling and Stefan-Boltzmann’s; that deal
with conduction, convection and radiation, respectively.
In real physical systems, the three mechanisms of heat
transfer are present, consequently, the heat transferred is
the set of contributions corresponding to each of them.
In some situations, the predominance of one of the mech-
anisms makes it possible to ignore the contributions of
the others. However, the adoption of this practice must
be done carefully, under condition of distancing the model
too much from the real situation (Bejan and Kraus, 2003;
Dym, 2004).

With the development of new computational tools, re-
searchers started to apply techniques such as Computa-
tional Fluid Dynamics (CFD). As presented in the works
of Pan et al. (2003), Jormalainen and Louhenkilpi (2006)
and Tripathi et al. (2012), the use of these tools is a very
common practice in the literature. In general, Fortuna
(2000) defines CFD as an area that studies computational
methods for simulating phenomena involving fluid flow
with and without heat transfer and chemical reactions.
The tool starts from the premise that fluids are governed
by Partial Differential Equations (PDE) that represent,
for example, the laws of conservation of mass, amount of
movement and conservation of energy. The goal of CFD
then is to promote the solution of these PDE systems using
numerical methods, such as, for example, Finite Differ-
ences and Finite Elements. Thus, using these techniques,
it is possible to numerically evaluate different parameters
relevant to the problem.

Further on, with the increase in the volume of data and
access to information due to the advent of Industry 4.0,
as well as the need for solutions applied in real time and
more robust to noise, models based on machine learning
started to be used for the solution of practical problems.
In particular, this type of modeling can be divided into
two classes: hybrids, also known as gray-box modeling,
which start from the premise that information inherent
to the process derived from physical modeling can provide
important gains to the model and, therefore, should be
used to compose the solution to the problem (Tian et al.,
2008; Ahmad et al., 2014; He et al., 2014; Botnikov et al.,
2019; Song et al., 2019); and non-hybrids, called black-
box modeling, in which little or no prior knowledge of

the system is needed. In general, this type of modeling is
composed of algorithms based purely on machine learning,
capable of identifying patterns between information and
then predicting and executing tasks (Laha et al., 2015;
Klanke et al., 2017; Wang et al., 2018; Hou et al., 2019; Jo
et al., 2019).

4. APPLICATIONS AND RESULTS

4.1 Physical models based on heat transfer

The transient flow and heat transfer in a ladle during the
waiting period was investigated by Xia and Ahokainen
(2001), who proposed a simplified physical model for heat
losses for the refractory. Based on numerical predictions,
the thermal stratification, steel temperature and heat loss
rates were obtained. As a result, the authors concluded
the importance of considering the influence of the ladle
walls to obtain reasonable flow and thermal stratification
predictions during the holding period, that is, the period
when the empty ladle waiting for the liquid steel.

In order to reduce the consumption of aluminum in the
heating process in the secondary refining, Ferreira et al.
(2002) present a project developed in a real plant. The
methodology applied a two-dimensional model with axial
symmetry in finite elements, using the commercial software
Algor, elaborated in order to establish the thermal state
of the ladles through a parameter called Soak Index, in
different set points. As a result, in the comparison between
the temperatures measured by the instrumentation and
those calculated by the model, there was a certain discrecy
between the values of the first two heats for the refractories
of both the wall and the bottom of the ladle. Applying
fixed values of density and the specific heat of the ma-
terials, the developed model converted the temperatures
of the elements into stored heat, allowing simulation of
five thermal categories of the ladles, to mention: drying
and heating; cooling the empty ladle with lid; cooling the
empty ladle without a lid; ladle with steel; and ladle during
casting. However, the model did not consider the thermal
losses due to radiation, slag and dissolution of alloys, which
are fundamental for the evaluation of the refractory degra-
dation, in addition to not adapting to the dynamism of the
process conditions. The simulations demonstrated that the
use of the cover is capable of promoting a reduction of
approximately 50% of the thermal losses of liquid steel.

Gupta and Chandra (2004) proposed a combination of a
simple regression model and one-dimensional heat transfer
for controlling the casting temperature. The methodology
calculates forward and backward direction temperatures.
In this way, for a desired casting temperature, the tem-
perature of the liquid steel before casting is predicted by
forward modeling, through the heat transfer model. On the
other hand, during all stages of the steelmaking process,
the model receives information about the events that have
occurred. In this sense, a developed statistical model can
be used to update the process, resulting in temperature
control during all stages of the refining process (these steps
are also called heat or race), using the previous model. Al-
though the pre-processing of the data is not well described,
the model was tested with the actual observations of the
plant. The prediction of the temperature of the steel in



the bubbling station presented an error within 5◦C, from
the actual value for 66% of the heats and within 7◦C for
97% of the heats. A comparison of the predicted with the
actual casting temperature shows that 75%, 88% and 95%
of the predicted value showed an error around 5◦C, 7◦C
and 10◦C, respectively.

Using gray-box modeling, Samuelsson and Sohlberg (2009)
use a model of Ordinary Differential Equations (ODE),
derived from physical relationships, for modeling the tem-
peratures of steel and ladle walls. The model provided
promising performance in estimating steel temperature,
but the predicted temperatures for the ladle walls showed
a bias. The reason for this was not found, but the possible
causes may be a difference in the characteristics of the
material or in the assembly of the ladle. Another point
observed was that, for some heats, the estimate of the
steel temperature showed a very large deviation from the
measured values. Although they do not justify precisely,
the authors point out as possible causes some systematic
measurement error or even the influence of thermal strat-
ification due to insufficient agitation. In particular, the
absence of temperature measurements at different posi-
tions on the wall and bottom of the ladle, as well as a
possible deterioration in the refractory layers, should have
been evaluated by the proposed model. Possibly these fac-
tors were determinant for the limitations of the presented
model.

In order to establish an online multi-factor temperature
compensation model in a steel industry, Wu et al. (2012)
apply a numerical simulation method based on finite
element analysis to quantitatively calculate the effects
of the ladle thermal state in the temperature of the
steel, throughout the various stages of its operating cycle,
and use the actual data to verify the calculation results.
When performing a regression analysis of the thermal
losses of steel caused by the ladle for different process
conditions using the software SPSS (Verma, 2012), they
establish a nonlinear regression model for temperature
compensation on different circumstances, as a way of
guiding the control of plant operations. Data analysis
showed that the errors between the measured value and
the estimated temperature were within a range around
±6◦C, with values measured in the range of 1551 ◦C at
1571◦C. According to the authors, the application of this
model would be able to meet the production requirements.

4.2 Models Based on Fluid Dynamics

Pan et al. (2003) discuss the heat transfer and liquid steel
flow in the ladles, using one-dimensional CFD numeri-
cal models (predict heat conduction fluxes through the
ladle wall, bottom and slag layer), two-dimensional (to
simulate the natural convection in the ladles during the
holding period before casting) and three-dimensional (for
the simulation of fluid dynamics in the ladles and drainage
flows during casting). Although the 1D and 2D models
showed sufficiently faster results, 3D simulations of the
fluid dynamics in the ladles during casting were shown
to be inefficient and can only be used offline. Even so,
the authors make many observations regarding the ladle
thermal losses and note a strong impact of the evalu-
ated parameters on the temperature of the steel during

the casting, with a difference between real and estimated
temperature of up to 20◦C.

Mathematical models to predict steel temperatures in the
ladle and in the tundish in continuous casting were also
developed in CFD by Jormalainen and Louhenkilpi (2006).
These models were, at first, developed to simulate the
influence of the control parameters on the ladle during
its cycle. Subsequently, models were developed to simulate
the fluxes of molten steel from the ladle and the evolution
of the temperature in the tundish during the ladle change
period and during the casting. Finally, a final predictive
model was tested with data collected from a real plant,
being found, through statistical tests, the correlation co-
efficients of the temperature at the start, in the middle,
and at the end of casting, respectively equal to 0.9, 0.92
and 0.87. The authors discussed a possible increase in the
performance of the model at the beginning of the casting
if any type of parameter related to the final ladle exchange
period had been used. Anyway, although the model needs
adjustments, the tool can be applied offline to assist in
scheduling process operations.

Later, a mathematical model based on the CFD was also
developed by Tripathi et al. (2012) predict the temperature
of the liquid steel and the thermal profile of the steel ladles.
For this purpose, the authors considered that the heat
losses due to conduction and radiation during the heat are
much more dominant than convection and, therefore, the
convective effect was limited to the homogenization of the
bath. Constant values were also applied to the calculations
regarding the physical and thermal properties of molten
steel, slag, smudge and ladles refractories. Through the
model, it was possible to analyze the thermal profile of
liquid steel throughout the process, to study the role
played by the slag layer and the useful life of the ladles. The
model was validated with data collected from the plant,
with a maximum deviation of 4% between the predicted
and measured data.

4.3 Gray-Box Modeling

Tian et al. (2008) combined the conventional methodology
for thermodynamic calculation with a machine learning
algorithm to predict the temperature of molten steel in a
ladle furnace of a real plant. The strategy was to analyze,
through thermodynamic equations, the energy input and
output of liquid steel during the refining process in the
ladle furnace, being proposed the application of Extreme
Learning Machine (ELM) together with AdaBoost.RT for
to increase the performance of calculation of the heat ex-
change coefficients used by these equations. Thereafter, the
error between the actual temperature and the predicted
temperature was used to modify the hybrid model to
obtain better performance. In addition, they compare the
performance of the proposed model with a standard ELM
for temperature prediction. The results of this experiment
demonstrated that the performance of the black box model
was lower than that of the hybrid model.

Tian et al. (2008) also comparing the proposed model with
a hybrid applying a Back-Propagation Neural Network
(BPNN), and a higher speed and precision of the hybrid
model was verified using ELM. Although the performance
metrics of the compared models are not presented in the



work, neither do they provide more information about
the topologies used, the experiment demonstrates that
the proposed hybrid model can improve the generalization
performance and the prediction quality. According to the
results presented, about 87.5% of the predictions presented
errors below 5◦C. Another point that must be taken into
account is that, although there was a certain concern
with the dynamism of the coefficients, some simplifications
were imposed on the model. For example, liquid steel
was considered homogeneous in terms of temperature
and composition throughout the process, as well as a
one-dimensional variation of the temperature profile was
assumed in the refractory ladle.

Ahmad et al. (2014) also provides a general gray box mod-
eling framework to predict and control the temperature of
steel in a tundish. The parameters of the physical model
were estimated from process variables using a non-linear
statistical model. However, as this modeling is not able to
accurately describe the uncertainties of the process, such
as the degradation of ladle refractories and their respective
heat transfer coefficient, another statistical model, based
on Random Florests (RF) was developed to compensate
the prediction errors caused by such disturbances in the
process. Two types of gray box structure (series and paral-
lel) were developed and their applicability and limitations
were discussed. In parallel mode, a statistical model to
compensate for the prediction error of the physical model
was developed using 53 process variables, not described in
the work, measured in the processes from the converter to
the tundish. Although some parameters depend on the op-
erating conditions, other parameters in the parallel gray-
box model are constant, consequently, these simplifications
could decrease the performance of the physical model. In
order to circumvent these issues, the gray-box serial model
was proposed, used to estimate the parameters as functions
of the input variables. As a result, there was a reduction
of about 36% in the value of the Root Mean Square Error
(RMSE) of the combined gray-box model compared to the
physical model.

A hybrid modeling based on the thermal state of the
ladle furnace and on Artificial Neural Networks (ANN)
was proposed by He et al. (2014), in order predict the
temperature of the liquid steel. They developed a ladle
thermal classification scheme based on a coding of their
state. Following this logic, forward and backward predic-
tion models were implemented that act simultaneously.
Thus, for each output of the model, a set of input variables
was selected, although the authors do not elaborate on how
the selection was made, nor the pre-processing applied to
these data. After the simulations, there was be observed
that the hit rate of prediction for the initial temperature
in the ladle furnace is 88.2%, in the error range of ±15◦C,
and the hit hate of prediction for the final temperature of
this step is 96% for error range of ±10◦C. The prediction
hit rate for the tundish temperature in the first casting
and in the casting of the sequence was 95.8% and 97.9%
with an error range of ±10◦C, respectively. The results of
the application revealed that the models presented consid-
erable precision in the prediction and are satisfactory for
the practical production process.

Hou et al. (2019) applied a BPNN to predict the thermal
and thermomechanical responses of a steel ladle, consider-

ing variables related to the properties of refractory linings
and ladle geometry. To this end, five orthogonal matrices
were used for finite element simulations and training of the
neural model, with the aim of organizing the combination
of ten characteristics in the variables space. First, a test
was carried out to explore the ideal number of nodes in
the hidden layer, with 7 neurons being proposed, although
this configuration did not result in the lowest Maximum
Relative Error (REMAX). The objective of the second test
was to identify the minimum sample size for the study
of the lining configurations, with a minimum sample size
of 160, that is, 16 times the number of entries. Eight
learning algorithms were used individually in the third
test to detect the one that best fits the model to the data.
Although four learning techniques showed the most accept-
able coefficients of determination, i.e., Conjugate Gradient
with Fletcher-Reeves updates (CGF), Scaled Conjugate
Gradient (SCG), One-Step Secant (OSS) and Bayesian
Regularization (BR), the SCG and OSS algorithms needed
a longer time to converge. When analyzing the perfor-
mance of the CGF and BR prediction in the thermal and
thermomechanical responses, the superiority of the BR
over the CGF was verified. Thus, the BPNN model with
BR was chosen, resulting in a REMAX of 7.15% and a
Mean Square Error (MSE) of 1.76%.

Song et al. (2019) demonstrate the ability to generalize
a model involving the use of Convolutional Neural Net-
works (CNN) and Deep Neural Network (DNN) to predict
cooling parameters demanded during continuous casting.
As CNN input, the temperature data obtained from the
simulation based on the Finite Difference Method (FDM)
were used, while the DNN has some process condition
parameters, such as the environment temperature and the
initial temperature of process, as well as the shape of the
steel (thickness and width), in addition to the amount of
carbon contained in steel, which was defined as the main
variable in steel production. The final nodes of the models
of the two architectures were concatenated using a fully
connected layer to predict a total of 11 cooling temperature
zones. The proposed model was not only able to overcome
the limitations of traditional ANNs, but also to reasonably
reduce computational time and prediction error.

4.4 Black Box Models based on Machine Learning

A comparison between RF algorithms, ANN, Dynamic
Evolution Neuro-Fuzzy Inference System (DENFIS) and
Support Vector Regression (SVR) for modeling and pre-
dicting steel characteristics at the output of the steel-
making process, using 10 input variables selected by prior
knowledge, was carried out by Laha et al. (2015). Based on
the results, DENFIS and SVR outperformed RF and ANN.
The authors attribute the best performance of the SVR
due to the fact that it is a global optimization method,
which can map a low dimension input space to a high
dimension characteristics space for regression tasks. In ad-
dition, although it took a longer processing time, the high
performance of DENFIS was justified because it combines
the generalization capacity of the fuzzy system with the
training capacity of an ANN. In terms of computational
time, DENFIS and RNA were the slowest algorithms due
to the training procedure. In contrast, RF is the fastest be-
cause its training does not require much parameter tuning.



In this sense, the authors conclude that the SVR was the
algorithm that presented the best performance for the task
of forecasting steel production among the four evaluated
methods. However, due to the limitations imposed on data
collection and treatment, it was not possible to obtain
better predictions on large real data sets.

Klanke et al. (2017) present a detailed study for the pre-
diction of the carbon content and temperature of the steel
produced in a converter. For that, different pre-processing
and validation strategies were used in combination with
several supervised machine learning approaches, such as
Bayesian Regression, SVR and DNN. The attributes were
classified into two groups, in relation to the availability of
this information before and during the blowing process or
after the end of the blowing and, based on a joint discus-
sion with the specialist engineers, rules were determined
to deal with missing data. The selection of characteristics
was done manually and automatically, applying algorithms
such as Backward Selection and Forward Selection, how-
ever the attributes selected in the final model are not
mentioned. Among the machine learning approaches sug-
gested, the authors decided to use Bayesian regression with
Automatic Relevance Determination (ARD), according to
them, for exercising a certain complexity control and se-
lection of integrated resources, however, no comparative
test between the performances of other techniques were
presented in the work. As a measure of the quality of
the predictions, RMSE was applied, with an improvement
in the prediction about 9% compared to the physical
model used by plant operators (no information was given
regarding these data). Although the authors emphasize the
advantages of applying a data-driven forecasting model for
a future online application, they suggest combining the
proposed modeling with approaches that use metallurgical
and thermodynamic equations.

On the other hand, Wang et al. (2018) propose a more
comprehensive strategy, integrating the prediction of liq-
uid steel temperature with the detection of outliers. The
model developed consists of three levels based on the
Gaussian Process (GP), with three types of detectors being
applied to each division of the data set. After evaluating
the process data, the outliers were categorized into two
groups. The first are the outliers contained in the model’s
training set, where detection can be implemented offline.
The other group consists of the outliers of the input
variables applied to the model’s test set. The detection
of this type of outlier must be implemented online. Three
of the input variables were selected a priori based on the
knowledge of the process and the others were processed by
the Kernel Principal Component Analysis (KPCA) algo-
rithm, with the first nine components being chosen. The
experimental results showed the capacity of the method to
achieve a better generalization in comparison with other
proposed methodologies, resulting in an RMSE of 3.3807,
reaching an hit rate of 86% for the liquid steel in the ladle
furnace, for error range of 5◦C. The authors attribute this
improvement in performance due to the implementation of
the outlier detection procedure.

Botnikov et al. (2019) propose a prediction model for the
median of the steel temperature in a specific time interval
during continuous casting. The model was a kind of combi-
nation containing elements of statistics, analytical calcula-

tions, and experience of the process operators, which took
into account the history and treatment of the ladle during
the secondary metallurgical processes. The modeling was
based on two stages. The first stage integrated an RF-
based machine learning algorithm with a Probabilistic
Graphical Model with a Bayesian Network; and the second
stage used a method to assess probability distributions.
Three nonlinear algorithms were also tested for the con-
struction of regression equations, based on decision tree,
RF and gradient descent on decision trees, however, no fur-
ther information is presented regarding the configuration
of the techniques used or how the results were generated.
The precision of the developed models reached 5.4◦C for
non-degassed steel and 5.9◦C for vacuum degassed steel.
According to the characteristics of the plant, as the error
remained within the range of ±7.5◦C, the quality of the
models obtained is very promising. In the second stage,
the integration of the model in the plant’s process control
system improved the prediction, resulting approximately
4.6 times fewer occurrences of temperatures outside the
range targeted for casting, in addition to energy savings
(up to 0.75 kWh) and reduced consumption of graphite
electrode (up to 1%) in the ladle furnace.

Jo et al. (2019) develop a machine learning algorithm to
predict the end point temperature of liquid steel in a con-
verter and compare the results of the simulation with the
actual operating temperatures. Searching for an efficient
way to understand and analyze the data, Exploratory Data
Analysis (EDA) was used, but the authors do not give
details on how the input variables were determined. The
missing values and outliers were replaced by the mean or
median, depending on the asymmetry of the distribution
of each variable. Some variables were manipulated in order
to create new variables or transform them into other types
of data, generating artificial resources, however, it is not
taken into account that the use of this resource without a
certain caution can lead to redundancy in the information.

In particular, Jo et al. (2019) define a decision tree algo-
rithm based on gradient descent and combine the predic-
tions made by several estimators in order to improve the
predictive performance in relation to a single estimator.
A steel industry evaluated this new proposed model for
three months and, during this period, the model showed an
absolute error (i.e., absolute error less than 10◦C) around
9% less than the conventional model. However, the authors
conclude that the performance of the proposed model may
be compromised if the number of samples is reduced, which
may happen if specific cases of the primary refining process
are evaluated.

5. FUTURE PERSPECTIVES

Based on the developed analysis, the revised works arouse
some reflections on the modeling of this type of system.
The studies show that the experimental study of these
systems played an important role in understanding the
mechanisms involved in heat transfer, as well as in formu-
lating theoretical models that describe the thermal state
of the system.

With regard to theoretical modeling, the focus has not
been on considering the real complexity and dynamism
of plants, but on ensuring a simpler model whose results



reflect a certain agreement with the measurements through
calibrations. Considering these aspects, some authors limit
themselves to the development of more complex dynamic
models only for design purposes, while, for real time
simulations, they use simpler models.

In fact, the implementation of a modeling that contem-
plates the non-linearities inherent to the process and vari-
ations over time, as well as the validation with large-scale
experimental data obtained in different circumstances, is
not a trivial task. In contrast to what happens with tra-
ditional metallurgical models, statistical or data-oriented
models are based on partially hidden relationships that are
systematically determined by the application of certain
algorithms to a data set. These characteristics made it
possible to apply variables that, although influencing the
process itself, are often not present in physical equations.

The research also reveals that, due to the data-oriented na-
ture, models based on machine learning are able to adapt
to different process conditions during training, unlike what
occurs with traditional metallurgical models. This fact
justifies its wide application in the modeling of thermal
losses in real time, with precision of forecast within the
criteria established by the Industry 4.0 (Ferreira et al.,
2002; Klanke et al., 2017; Cavalcante, 2019).

With the aim of providing not only realism to the model,
but also computing speed, the researchers are looking for
new solutions based on machine learning. In view of the
performance of these models in industrial applications,
the study and exploration of machine learning has been
continuously deepened, in order to guarantee the viability
of applications in real time.

6. CONCLUSION

Several works were evaluated, including solutions for the
monitoring, modeling and control of thermal losses in
steelmaking process. Usually the method of control have
a direct impact on the thermal control and ladles can
be combined with the geometry and composition of the
refractory layers for reducing the prediction error of the
thermal losses.

Although the results described here are, in general, rele-
vant and promising for the Industry 4.0 demands, most of
the solutions presented in the bibliography have no direct
application in any real plant, due to the particularities of
each steel industry. Some reasons for this are: the capacity
differences of ladle and tundish, different qualities of steel
produced, variations in raw materials and characteristics of
primary and secondary refining, as well as the steelmaking
layout. Being aware of the complexity involved and adding
technical knowledge of the particularities of each specific
plant, it is possible to develop an effective methodology for
solving the problem.

In general, the modeling methods are based on metal-
lurgical and thermodynamic rules for idealized systems.
In contrast, statistical or data-driven models are based
on partially hidden relationships that are systematically
determined by applying certain algorithms to a data set.
These characteristics allow the application of variables
that, although they influence the metallurgical process,
are not present in the metallurgical equations. In addition,

the data-oriented models based on machine learning can
be easily adapted to the current process conditions during
training, unlike what occurs with traditional metallurgical
models. Therefore, due to the ability to generalize of the
models based on machine learning, this type of modeling
should be better explored in order to guarantee the via-
bility of real-time applications, according to the demands
especially of industry 4.0.
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