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Abstract: In the area of black-box identification, NARMAX models are of great interest. The
main difficulty faced when working with such models is the selection of the correct structure
to represent the underlying system in the data. Orthogonal Least Squares (OLS) methods are
widely used for this task, however, there are systems with a high degree of non-linearity and
long term dependencies, which makes the use of traditional OLS methods computationally
impracticable. In this sense, this paper studies the use of Multi-Gene Genetic Programing
(MGGP) together with the traditional OLS method to increase the search space and turn the
structure selection practicable for average performance computer. It is shown that, in real-life
problem data, the algorithm can find better models than previous works’ models. The MGGP
found a model for a hydraulic pumping system with a better one-step-ahead prediction error
(0.058 mlc2 against 0.070 mlc2) using PEM technique and better free-run simulation error
(0.997 mlc2 against 1.120 mlc2) using SEM technique. The MGGP found a model with such a
degree of non-linearity and maximum input-output lags that totalizes 142505 candidate terms
for traditional OLS analysis, which is impracticable for average performance computers.

Keywords: Nonlinear system identification, Evolutionary algorithms, Polynomial NARMAX
models

1. INTRODUCTION

Building dynamical models directly from input and output
data is a process known as System Identification. The
system to be modeled can be a manufacturing process,
an energy production system, stock market, or climatic
phenomena, among others. A model allows the under-
standing of the system characteristics and the prediction
of its behavior (Garg et al., 2017). In order to solve an
identification problem, one must follow the steps: 1 - dy-
namic tests; 2 - choice of mathematical representation; 3 -
model structure determination; 4 - parameter estimation;
and 5 - model validation (Aguirre, 2015).

Generally, most of the real systems of interest are non-
linear (Pope and Rayner, 1994). In this sense, NARMAX
models (Nonlinear AutoRegressive Moving Average with
eXogenous variables)(Leontaritis and Billings, 1985) are of
great interest in the area, due to its flexibility and repre-
sentation capacity. Even with its advantages, working with
NARMAX models has its difficulties. The main problem
encountered in doing so is to select the appropriate model
structure, that is, detecting the regressors that together
best represent the system. The key point of structure
selection is to choose a model structure as simple as
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possible, but sufficiently complex to capture the dynamics
underlying the data (Aguirre and Letellier, 2009).

A widely used criterion for NARMAX model structure
selection is the Error Reduction Ratio (ERR) (Billings
et al., 1989), which evaluates how good each single model
term is to explain the output data variance. It is considered
a one-step-ahead prediction error minimization (PEM)
technique. Some algorithms were built based on ERR cri-
terion for structure selection, as for example the Forward
Regression Orthogonal Estimator (FROE) (Billings et al.,
1989) and others Orthogonal Least Squares (OLS) based
methods (Chen et al., 1989). Piroddi and Spinelli (2003)
discuss the limitations of ERR based algorithms, mainly
for training data with the presence of certain input char-
acteristic, and the use of simulation error minimization
(SEM) techniques. Another issue is that such techniques
suffer from the curse of dimensionality with the increment
of the degree of non-linearity and higher long term depen-
dencies.

Alternative methods to solve the structure selection prob-
lem can be derived from Evolutionary Algorithms, as Ge-
netic Algorithms (GA) (Holland, 1975; Goldberg and Hol-
land, 1988) and Genetic Programming (GP) (Koza, 1992).
Some examples of such methods can be seen in Li and
Jeon (1993), Madar et al. (2005), Chen et al. (2007) and
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Castro and Barbosa (2020). However, these methods also
depend on the assembling of a full regressors matrix for
given maximum delays and non-linearity degree, which
may become computationally impracticable.

One very flexible algorithm to be used in System Identifi-
cation is the Multi-Gene Genetic Programming (MGGP)
(Hinchliffe et al., 1996; Hinchliffe, 2001; Hinchliffe and
Willis, 2003), that can be seen as a GA in which each gene
is composed by a GP. Hinchliffe et al. also introduce an in-
teresting feature in their algorithm that is a delay function
operator (or back-shift operator) capable of increment the
lag of a variable. This feature allows the evolution of pro-
grammings without the need for assembling a regressors
matrix with all possible terms, which avoids the curse of
dimensionality.

Recently, several modeling and forecasting works have
been developed with the use of MGGP (as in Ghareeb
and El Saadany (2013), Mehr and Kahya (2017), Safari
and Mehr (2018) and Riahi-Madvar et al. (2019)). The
algorithm has shown itself to be very flexible and to present
good performance. In it, the user is able to determine
the set of functions to be used in the modeling (as
multiplication, division, exponential function, etc) and
change it very easily, without the need for modifications
in the algorithm itself. However, none could be found
applying MGGP in a NARX/NARMAX modeling context,
apart from the original work of Hinchliffe et al. (hence, the
back-shift operator has not been worked with).

Therefore, this paper proposes the use of MGGP together
with OLS/ERR for the structure selection problem of poly-
nomial NARMAX models. It is used the back-shift opera-
tor for variable lag determination and the OLS/ERR struc-
ture selection is applied before the evaluation step. Both
algorithms (MGGP and OLS/ERR) work in a symbiotic
way, that can be interpreted as: i) the MGGP algorithm se-
lects groups of terms from the candidate regressors space.
Over those groups is applied the OLS/ERR structure selec-
tion algorithm and the resultant models are assessed by a
cost function. This interaction is supposed to facilitate the
OLS/ERR task in a ”divide and conquer” manner when
the search space is very large, which avoids the curse of
dimensionality; and ii) the OLS/ERR algorithm works as
a pruning method over the MGGP individuals. It leaves
only relevant terms in all models. So, this interaction is
supposed to guide the population evolution towards a
promising region in the search space. The results show
that the hybridization MGGP/ERR explores a very wide
search space in which traditional OLS algorithms would
require high computational power and memory.

The remainder of this paper is organized as follows:
Section 2 presents a theoretical foundation for a basic
understanding of the features included into the proposed
algorithm; Section 3 presents the methodology applied on
this research; Section 4 discuss the results and Section 5
the conclusions.

2. THEORETICAL FOUNDATION

2.1 Polynomial NARMAX models

The NARMAX models can be understood as a combina-
tion of delayed input and output signals. In other words,
the current value of the model output is a combination of
past input and output values. They can be represented by
the following equation:

y(k) =f l[y(k − 1), ..., y(k − ny), u(k − 1), ...,

u(k − nu), e(k − 1)...e(k − ne)] + e(k),
(1)

where f is a non-linear function, y(k), u(k) and e(k) are
the output, input and noise, and ny, nu and ne their
corresponding maximum delays. In the case of polynomial
models, the non-linear function is a polynomial function
of degree l (f l). NARX models are characterized by the
absence of noise terms. For one-step-ahead predictions, the
terms y(k−n) are from system output and the residuals in
this case are called one-step-ahead prediction error (PE).
As for free-run simulations, the model is defined as:

y(k) =f l[ŷ(k − 1), ..., ŷ(k − ny), u(k − 1), ...,

u(k − nu), e(k − 1)...e(k − ne)] + e(k),
(2)

where ŷ(k − n) is the model output and the residuals are
called free-run simulation error (SE).

It is important to notice that the amount of terms the
model contains increases exponentially with the raising of
non-linearity degrees and the input and output maximum
lags. Moreover, an over parametrized model can lead to
numerical instability in parameter estimation, unnecessary
computational cost and the representation of dynamics
that do not exist in the real system (Aguirre and Letellier,
2009). The aforementioned issues justify the importance
of the structure selection step in system identification.

2.2 Forward Regression Orthogonal Estimator

In FROE algorithms, the model structure is incremented
iteratively until it is achieved a certain precision of one-
step-ahead prediction. The model parameters are esti-
mated via Orthogonal Least Squares (OLS). These orthog-
onalization techniques are made in such a way that, at
each step, the relevance of each regressor candidate can be
assessed separately via ERR:

[ERR]j =
ĝ2j
∑N
i=1 w

2
j (i)∑N

i=1 y
2(i)

(3)

where wj is the j-th auxiliary orthogonal regressor and
ĝj its corresponding estimated parameter. The regressors
with the highest ERR are included in the model (see
more in Chen et al. (1989)). Several similar techniques are
proposed in the literature to accomplish structure selection
and parameter estimation at the same time and they will
be referred to as OLS/ERR in this paper.

2.3 Evolutionary Algorithms

The Evolutionary Algorithms (EA) are based on metaphors
of natural processes to build computational models ca-
pable of solving problems. There is a wide variety of
proposed algorithms that simulate the evolution of species
through the natural phenomena of selection, mutation and



reproduction that occur in a given population of individ-
uals. Generally, EA have a standard behavior: it begins
with a initial population of random individuals (chro-
mosomes) and at each generation (main loop) the best
solutions are sought (selection), then combined (recombi-
nation/reproduction/crossover and mutation) in order to
generate even better individuals.

There are two points of extreme significance in EA: the
representation of the individuals and the evaluation func-
tion (or cost function). In terms of representation, several
algorithms are proposed. This paper requires the under-
standing of three of them:

- The Genetic Algorithms (GA) were introduced and en-
hanced by Holland (1975); Goldberg and Holland (1988).
In its simplest form, GA has a binary representation, that
is, an individual is codified by a binary vector in which
each bit or a group of bits represents one variable of
the problem. For example, an individual I represented
by a 5 bit vector is codified as I = [ 1 0 0 1 0 ]. In a
NARMAX structure selection context, each bit can be
interpreted as a Boolean variable which indicates whether
the corresponding candidate term will be included in the
model or not.

- The Genetic Programming (GP) (Koza, 1992; Eiben
et al., 2003; Poli et al., 2008) is an evolutionary algorithm
in which the programmer does not need to know or specify
the structure of the solution in advance. The individuals of
a population are computer programs that randomly evolve
into new programs. The most common representation in
GP is the tree one. In this representation, from a root node,
the tree is divided into several branches in which internal
nodes have arithmetic functions (+, -, *, /, max, ...) and
terminals, also called leaves, have variables and constants.
As a result, the tree representation hierarchically synthe-
sizes a mathematical function.

- The Multi-Gene Genetic Programming (MGGP) was
introduced by Hinchliffe et al. (1996). It is based on
methods already established in Systems Identification in
which the models are constructed by combining a number
of functions to generate the model output. MGGP can be
represented as the combination of separate basis functions:

g(ϕ,Θ) =

m∑
i=1

θigi(ϕ), (4)

where m is the number of basis functions, gi represents
individual functions and θi the model parameters. It can
be seen as a GA in which each gene contains one GP as the
basis function (see more in Hinchliffe (2001) and Hinchliffe
and Willis (2003)).

2.4 Extended Least Squares

As NARX models are linear-in-parameters, the parameter
estimation can be made by the Least Squares estimator
(LS) as follows:

θ̂LS = [ΨTΨ]−1ΨT y (5)

where Ψ is the regressors matrix, y is the output data

vector and θ̂LS the parameters estimated via LS.

For problems with output error, LS gives a biased param-
eter estimation. In these cases, it is necessary to identify

a noise model. The NARX model becomes a NARMAX
model, which parameters can not be estimated via the
traditional LS estimator. A method that can be used to
estimate these parameters is the Extended Least Squares
(ELS) (Young, 1968; Aguirre, 2015). For this case, consider

that the prediction residuals (ξ = y − Ψθ̂LS) can be
modeled as:

ξ(k) = ciυ(k − i) + υ(k), (6)

where υ(k) is white noise and ci the parameter of the
corresponding noise model term. The υ(k − 1) term is
included into the regressors matrix:

Ψ∗ =


υ(k − 1)
υ(k)

Ψ υ(k + 1)
...

υ(k +N − 2)

 , (7)

which is called extended matrix. A new vector of param-
eters is defined as θ∗ = [ θ ci ] and its values are to be
estimated via LS. As υ(k) is unknown, the process must
be iterative and the residuals vector calculated at each
iteration.

2.5 The NARMAX model for a White Noise Output Error
Problem

According to Aguirre (2015), a white noise is a signal char-
acterized by a function of auto-correlation that satisfies
rξξ(x) = 0, ∀k 6= 0, with power spectrum that contains
energy in all frequencies, which are all equally important.
On the other hand, in a colored noise not all frequencies
are equally important. This kind of noise can be modeled
by an AR process excited by a white noise signal. The
power spectrum of a colored noise does not have energy
in all frequencies, its power density is concentrated in a
relatively narrow range of frequencies.

Let an example system Sex be:

Sex :

{
w(k) = θ1w(k − 2) + θ2u(k − 1) + v(k)

y(k) = w(k) + e(k)
(8)

where v(k) represents equation error (EE), and e(k) rep-
resents output error (OE).

A white noise output error problem considers v(k) = 0 and
e(k) a White Gaussian Noise (WGN) with zero mean. The
white noise OE becomes a colored EE noise, so that, the
residuals from the model will have some correlation with
previous values. This can be mathematically understood
by isolating w(k) from the second equation of the system
(8) and replacing it on the first equation.

The NARMAX model to represent system Sex is:

y(k) = θ1y(k − 2) + θ2u(k − 1)− θ1e(k − 2) + e(k). (9)

3. MATERIALS AND METHODS

This paper proposes a hybrid MGGP/ERR algorithm to
solve the structure selection problem of polynomial NAR-
MAX models. The set of primitive functions (correspond-
ing to the nodes of a GP individual) is restricted to the
multiplication operator and the delay function operator
(or back-shift operator), so that, each gene represents a
single polynomial term which degree of non-linearity is



(a) MGGP (b) GP

Figure 1. The MGGP representation (a) is a chromosome
in which each gene contains one GP individual (b).
The GP individual contains nodes with multiplication
operators (∗) and the delay function operator (q1) and
represents the mathematical function y(k− 1) · u(k−
1) · y(k − 2).

determined by the multiplication of variables (leaves or
terminals). The back-shift operator is a technique pro-
posed by Hinchliffe and Willis (2003) that adjusts the
variables lags. As for the set of terminals, it is composed
of the one-step delayed input (u(k−1)) and output (y(k−
1)) and a constant value ”1”. The latter is responsible to
determine whether a constant value will be included in the
model or not. Figure 1 shows the MGGP representation
(Figure 1(a)) as a 4 gene individual in which each gene is
a GP individual (Figure 1(b)). The GP tree represented
shows an example of the delay function operator use. In
this case, q1 is responsible for applying 1-step lag over the
variable y(k − 1), that becomes y(k − 2). The use of the
back-shift operator confers flexibility to the algorithm. The
variable lag can be incremented by just stacking another
operator at the variable sub-tree.

The user must set 3 parameters to constrain the individual
representation, which are:

- the maximum GP height. This parameter restrains
the terms maximum non-linearity degree and maxi-
mum lags. For example, Figure 1(b) represents a GP
of height 2, which is able to represent a maximum of
fourth order polynomial with on-step lagged variable(
mul(mul(x1, x1),mul(x1, x1)) = x4(k − 1)

)
or one vari-

able with a maximum lag determined by the use of two
delay function operators (q−1q−1x1 = x(k − 3));

- the maximum number of MGGP terms. This parameter
corresponds to the maximum number of genes in a chro-
mosome. MGGP population differs from GA population
as the first has no fixed chromosome size. This size must
be constrained to avoid large individuals which could lead
to high computational cost.

- the set of delay functions. It will constrain the search
space regarding the variable lags. A GP of maximum
height 2 and a set of delay functions restricted to
q−1 is able to represent a maximum 3 lagged variable
(q−1q−1x(k − 1)), whereas with a q−2 function, it is able
to represent a 5 lagged variable (q−2q−2x(k − 1)). The
user can use a set of different back-shift operator, e.g.[
q−1, q−2, q−3

]
.

About the genetic operators, MGGP works with two lev-
els of crossover: the low level crossover and high level
crossover. In the first, one gene is randomly selected from

Figure 2. Algorithm flowchart

each parent and its GP individuals exchange sub-trees as
genetic material. While in the second, the genetic materials
are exchanged as entire basis functions, that is, the MGGP
parents exchanges its GP individuals in a way similar to
the GA one-point crossover. It is important to notice that,
in high level crossover, the resultant offspring can have
different sizes, even from its parents. It occurs because the
selected point of crossover is chosen for each parent. In
this sense, the MGGP algorithm works with fluctuating
individuals size, which increases its flexibility. It is used
two kinds of mutation as well, an inner mutation, that
occurs as a GP sub-tree mutation, and an outer mutation,
which swaps a gene for a new one, with an entirely new
GP. As recommended for GP evolution (Poli et al., 2008),
either the individual suffers crossover or mutation. Both
operators will not be applied to the same individual. Figure
2 exhibits the algorithm flowchart. It begins with an initial
population that is evaluated. Then, the generations loop
starts: i) parent individuals are selected via tournament;
ii) each parent couple has a chance to be recombined
(CXPB); iii) each individual which has not been recom-
bined has a chance to be mutated (MTPB); iv) individuals
are evaluated; and v) elitism operator is applied.

The evaluation process is composed of three steps: i) clas-
sical Gram-Smith OLS/ERR structure selection is applied
to remove spurious terms and to estimate the parameters,
which are equivalent to the ones from traditional Least
Squares; ii) those parameters are used to simulate the
one-step-ahead prediction and the residuals are used in a
five iteration ELS process to remove parameter estimation



(a) Pump speed reference (b) System output pressure

Figure 3. Experimental data from a hydraulic pumping
system

bias; and iii) fitness calculation. It follows the function
definition script:

Evaluation(individual):
theta,individual = OLS/ERR(individual)
theta = ELS(individual, theta)
fitness = score_MSE(individual, theta)

The OLS/ERR method returns an estimate for the pa-
rameters and a pruned model. The ELS method removes
estimation biases. score MSE applies the fitness function
over the pruned individual using the unbiased parameters.

Two fitness functions are implemented: i) the one-step-
ahead prediction error (PE) of the NARMAX model, in
which the MA part is extended considering the problem
as a white noise OE problem (see 2.5); and ii) the free-run
simulation error (SE), in which the MA part is neglected.
Both of them are mean squared error (MSE).

In order to assess the algorithm performance, it is run
20 Monte Carlo simulations for the following test systems
(from Madar et al. (2005) and Piroddi and Spinelli (2003)):

S1 : y(k) =0.8u(k − 1)2 + 1.2y(k − 1)

− 0.9y(k − 2)− 0.2,

S2 : y(k) =0.75y(k − 2) + 0.25u(k − 1)

− 0.2y(k − 2)u(k − 1),

where the input signal u(k) is a white Gaussian noise
with zero mean and variance one (u(k) = WGN(0, 1)).
The assessment is yielded for output error problem -
varying OE level with EE level fixed to zero (v(k) =
0) - and for equation error problem - varying EE level
with OE level fixed to zero (e(k) = 0). The results
are compared to the ones from other 20 Monte Carlo
simulations in which is applied only the classical Gram-
Smith OLS algorithm (Chen et al., 1989) for structure
selection using the parameters (l = 3, ny = 3, nu = 3)
to build the whole candidate regressors matrix. Only PE
fitness function is used in this test.

The following set up was used for training:

population size = 300
crossover probability = 0.8
mutation probability = 0.2 (if not crossover)
OLS tolerance = 1e-3
generations = 100
maximum GP height = 3
maximum MGGP terms = 10

elitism = 10%
delay functions = q1, q2, q3
fitness function = PE

Then, the algorithm is tested in an experimental hydraulic
pumping system data presented in Barbosa et al. (2011)
and Barbosa et al. (2019). Figure 3 shows part of the input
and output training data. In this case, a different set-
up was used. At each evaluation step, there is a chance
(OLSPB) of being applied the OLS/ERR method, in
which tolerance is randomly selected between 0 and 10−7.
This randomness in the OLS/ERR tolerance includes
the possibility of having different levels of pruning. The
maximum value of tolerance is empirically defined. This
experiment is conducted for both fitness functions (PE and
SE).

population size = 500
crossover probability = 0.8
mutation probability = 0.2 (if not crossover)
OLSPB = 0.2
OLS tolerance = random()*1e-7
generations = 20*
maximum GP height = 5
maximum MGGP terms = 50
elitism = 10%
delay functions = q1, q2, q3, q4, q5
fitness function = PE or SE

*The algorithm was run several times until the fittest
individual stopped evolving. At each execution, the elite
from the previous result was included in the next initial
population.

4. RESULTS

4.1 Test Systems

The Tables 1 and 2 show the performance of the proposed
MGGP/ERR algorithm and the OLS/ERR algorithm,
respectively, regarding the number of times the algorithms
were able to select every term present in the model (in
20 Monte Carlo executions) and the average size of the
selected models for increasing the noise level in OE (e) and
EE (v) problems. Figure 4 presents the free-run simulation
errors of the selected models for validation data.

Some considerations can be made from those results:

- increasing the noise level in OE and EE has no effect
over the structure selection for both MGGP and OLS
algorithms, since the number of times they select all
correct terms does not correlate with the noise level;

- considering the Tables 1 and 2, the MGGP algorithm has
better performance than the OLS for system S1, and the
opposite for system S2. In the first, the mean of correct
selected models for OE and EE problems, respectively, are
15.25 and 19.50 for MGGP and 13.00 and 12.75 for OLS
(out of 20). As for the second, it is 17.00 and 16.75 for
MGGP against 20.00 and 20.00 for OLS. These results
could lead to the understanding that the best algorithm to
be used depends on the system and data quality; however,

- from Figure 4, the OLS algorithm had better performance
for both systems S1 and S2 in the OE problem, regarding
the interquartile range for higher noisy data. Although the



(a) System S1 - OE problem (b) System S1 - EE problem

(c) System S2 - OE problem (d) System S2 - EE problem

Figure 4. The free-run mean squared errors (or simulation
errors) for the selected models via OLS (dark gray)
and MGGP (light gray) algorithms for the cases of
increasing output error (OE) and increasing equation
error (EE). The shaded plots represent the inter-
quartile range and the inner lines represent the me-
dian value.

Table 1. MGGP selection results

Models with correct terms

std(e) - OE
0.02 0.04 0.06 0.08

S1 (4 terms) 14/20 18/20 15/20 14/20
average size 4.7 4.85 4.75 4.75

S2 (3 terms) 18/20 17/20 17/20 16/20
average size 3.05 3.25 3.2 4

std(v) - EE
0.02 0.04 0.06 0.08

S1 (4 terms) 20/20 20/20 20/20 18/20
average size 4.6 4.95 4.55 4.55

S2 (3 terms) 15/20 17/20 16/20 19/20
average size 3.1 3.1 3.1 3.05

MGGP algorithm selected more times the correct terms
(mean of 15.25 times against 13.00 from OLS algorithm)
it got more spurious terms that affect negatively the
modeling of the system underlying the data. The ’MGGP’
upper quartile for std(e) = 0.08 is around 0.0007, while
the ’OLS’ upper quartile is around 0.0004. Depending on
the application this difference can be neglected. Anyhow,
the MGGP algorithm can be run again to look for a better
result. As for the increasing noise level in the EE problem,
both algorithms had similar performances.

4.2 Hydraulic pumping system

Barbosa et al. (2011) work with two models which param-
eters were estimated by ELS method. Their performances
are described in Table 3. The model“OLS (15)” was found
via OLS algorithm for l = 2, ny = 6 and nu = 6; and the
model “OLS (17)” for l = 3, ny = 6 and nu = 6. In this
paper, two models were sought by MGGP algorithm. The
first from PEM technique (using PE cost function) and

Table 2. OLS selection results

Models with correct terms

std(e) - OE
0.02 0.04 0.06 0.08

S1 (4 terms) 13/20 13/20 13/20 13/20
average size 4.75 4.7 4.85 4.9

S2 (3 terms) 20/20 20/20 20/20 20/20
average size 3 3 3 3

std(v) - EE
0.02 0.04 0.06 0.08

S1 (4 terms) 12/20 13/20 14/20 12/20
average size 4.8 4.75 4.75 4.85

S2 (3 terms) 20/20 20/20 20/20 20/20
average size 3 3 3 3 3

the second from SEM technique (using SE cost function).
These models are, respectively, defined by the equations:

y(k) = θ1y(k − 1) + θ2y(k − 4) + θ3y(k − 12)

+ θ4u(k − 4) + θ5u(k − 13) + θ6y(k − 1)y(k − 2)

+ θ7y(k − 1)y(k − 3) + θ8y(k − 1)u(k − 4)

+ θ9y(k − 1)u(k − 6) + θ10y(k − 5)u(k − 2)

+ θ11y(k − 5)u(k − 7) + θ12y(k − 8)u(k − 7)

+ θ13u(k − 1)u(k − 4) + θ14u(k − 1)u(k − 6)

+ θ15u(k − 4)u(k − 6) + θ16y(k − 1)2y(k − 2)

+ θ17y(k − 1)y(k − 3)2 + θ18y(k − 1)y(k − 5)2

+ θ19y(k − 3)2u(k − 3) + θ20y(k − 1)u(k − 2)2

+ θ21y(k − 1)y(k − 3)u(k − 4)

+ θ22y(k − 1)u(k − 3)u(k − 5)

+ θ23y(k − 7)2u(k − 2) + θ24y(k − 1)3u(k − 6)

+ θ25y(k − 1)y(k − 8)2u(k − 1)

+ θ26y(k − 1)y(k − 3)2u(k − 3)

+ θ27y(k − 2)y(k − 5)2u(k − 5)

+ θ28y(k − 3)2u(k − 4)2

+ θ29y(k − 3)2y(k − 5)u(k − 5)

+ θ30y(k − 8)2u(k − 1)u(k − 6)

+ θ31y(k − 2)y(k − 3)y(k − 5)u(k − 4)

+ θ32y(k − 1)3y(k − 7)u(k − 7) + ξMA (k),

(10)

y(k) = θ1y(k − 7) + θ2u(k − 4) + θ3u(k − 10)

+ θ4u(k − 11) + θ5y(k − 1)y(k − 3)

+ θ6y(k − 1)y(k − 2) + θ7y(k − 1)u(k − 4)

+ θ8y(k − 5)u(k − 7) + θ9y(k − 6)u(k − 4)

+ θ10y(k − 6)u(k − 10) + θ11y(k − 3)3

+ θ12y(k − 1)2y(k − 2) + θ13y(k − 3)2u(k − 4)

+ θ14y(k − 2)y(k − 4)y(k − 7)

+ θ15y(k − 1)y(k − 4)u(k − 6)

+ θ16y(k − 6)y(k − 9)u(k − 12)

+ θ17y(k − 1)u(k − 5)u(k − 12) + θ18u(k − 4)3

+ θ19u(k − 5)2u(k − 10) + θ20y(k − 3)2u(k − 4)2

+ θ21y(k − 3)y(k − 4)y(k − 7)u(k − 10)

+ θ22y(k − 2)y(k − 3)y(k − 5)u(k − 4)

+ θ23y(k − 2)y(k − 3)2u(k − 6)

+ θ24y(k − 5)2u(k − 5)u(k − 6)

+ θ25y(k − 1)3y(k − 5)u(k − 4)

+ ξMA (k),

(11)



Table 3. Hydraulic pump models. The first two are from Barbosa et al. (2011) obtained via OLS
method. JP is the one-step-ahead MSE (mlc2); JS is the free-run MSE (mlc2); NP the number
of parameters present in the model; and max. NP is the number of all possible regressors for

given (l,ny,nu).

Model JP (Ident.) JP (Val.) JS(Ident.) JS(Val.) NP (l, ny , nu) max. NP

OLS (15) 0.100 0.082 2.600 2.243 17 (2, 6, 6) 90

OLS (17) 0.086 0.070 1.447 1.120 23 (3, 6, 6) 454

MGGP (10) 0.067 0.058 1.910 1.150 32 (5, 12, 13) 142505

MGGP (11) 0.088 0.068 1.221 0.997 25 (5, 9, 12) 65779

(a)

(b)

Figure 5. Free-run simulation of models obtained by
MGGP algorithm for the hydraulic pump validation
data: (a) Model (10) - PEM technique and (b) Model
(11) - SEM technique

where ξ
MA

represents the noise model. The models per-
formances are described in Table 3. Figures 5(a) and 5(b)
show the models free-run simulation in comparison with
the expected validation data.

Model (10) has the best one-step-ahead prediction results.
Comparing with the best model from Barbosa et al. (2011),
Model (10) has JP = 0.067 mlc2 against JP = 0.086 mlc2

for training data and JP = 0.058 mlc2 against JP = 0.070
mlc2 for validation data. However, its free-run simulation
error got worsen (from JS = 1.447 mlc2 to JS = 1.910 mlc2

for training data and from JS = 1.120 mlc2 to JS = 1.150
mlc2 for validation data). Still, the algorithm was trained
with PE cost function, which means it accomplished its
objective and found a better one-step-ahead predictor
model for the hydraulic pump under analysis without
critically worsen its free-run prediction.

Model (11) has better one-step-ahead prediction error and
free-run simulation error than the best OLS models from
Barbosa et al. (2011) for validation data. The errors are

Table 4. Memory usage for building one full
candidate regressors matrix for the hydraulic

pumping training data (3200 samples)

(l, ny , nu)

(3, 3, 3) (5, 5, 5) (5, 10, 10) (5, 12, 12)

Memory (mb) 2.02 73.18 1293.04 ≈ 2820.00

JP = 0.068 mlc2 against JP = 0.070 mlc2 and JS = 0.997
mlc2 against JS = 1.120 mlc2. However, the gain in
prediction error is not as good as it is for model (10). Still,
the algorithm was trained with SE cost function and it
found a model with the best free-run prediction. The choice
of which model to use depends on the application. Whether
it is necessary better one-step-ahead error or better free-
run simulation error.

It is imperative to highlight that the proposed algorithm
built a model of non-linearity degree 5 and maximum
input and output delays 13 and 12, respectively (l = 5,
nu = 13, ny = 12). That means a total of 142505 possible
regressors for a traditional OLS analysis (not considering
the constant term). Building a matrix this size is already
impracticable with the resources applied in this research
(personal laptop). Table 4 presents the memory usage
for building the full candidate regressor matrix for differ-
ent sets of the degree of non-linearity, maximum output
and input lags (l, ny, nu). The memory usage increases
exponentially and for the last set (5, 12, 12) a memory
error was raised in trying to build the matrix of shape
(3188 x 118754). It is shown that the proposed MGGP
algorithm can explore a considerably higher search space
in comparison to the traditional OLS method without the
need for high-performance computers.

5. CONCLUSION

This paper introduced the use of a hybrid MGGP/ERR
algorithm for the structure selection of polynomial NAR-
MAX models. It is used a very flexible GP feature (back-
shift operator) to determine variable lags that dispenses
the need of building a whole candidate regressors matrix.
The algorithm is assessed in two well-known test systems
with short-term dependencies and in a real-life hydraulic
pumping identification problem. The OLS/ERR algorithm
had better performance than the MGGP/ERR algorithm
in selecting the structure for systems with short-term de-
pendencies. However, for the hydraulic pumping identifi-
cation problem, the MGGP/ERR algorithm was able to
find models with better performance than previous works
models for prediction error (using PEM technique) and for
simulation error (using SEM technique) using longer-term
dependencies and higher degree of non-linearity in such a
way that OLS/ERR algorithms would require much more



computational power. An extension of this work intends
to analyze the integration between MGGP and OLS/ERR
algorithms by varying the probability of applying the
OLS/ERR algorithm in a more complex test system for
PEM and SEM techniques to testify the improvement in
using the hybridization of the two algorithms.
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