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Abstract: This paper provides an offline procedure for automatic tuning of robust PI controllers
applied to the control of LCL-filtered grid-tied inverters. A particle swarm optimization
algorithm is used to tune the control gains based on an objective function, which encompasses
frequency and time domain specifications, a limit for the control signal, together with a
theoretical assessment of robust stability, by means of Kharitonov’s Theorem. Experimental
results based on hardware-in-the-loop are provided, confirming that the proposed procedure
leads to controls gains that ensure robust stability and suitable grid-injected currents under
uncertain grid impedances, complying with the IEEE 1547 Standard and with superior
performance when compared to other design alternatives.
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1. INTRODUCTION

In the scenario of renewable energy systems, a key element
is the current control of grid-tied inverters (GTIs), which
allows to regulate the power flow between energy sources
and the mains (Teodorescu et al., 2011). Moreover, the grid
currents must comply with different requirements, such as
the limits for harmonic distortion of the IEEE 1547 Stan-
dard (IEEE, 2011). Therefore, considering the switched
nature of the voltage source inverters, output low-pass
filters are usually required to interface with the grid, being
the LCL filter topology widely used due to the ability to
provide suitable high frequency attenuation with reason-
able size of magnetics (Ben Säıd-Romdhane et al., 2017).

A widely used alternative for the current control of
GTIs with LCL filters are the grid current feedback with
proportional-integral (PI) controllers, implemented in syn-
chronous reference frame (Bao et al., 2013). In this context,
one important issue is to deal with the inherent resonance
peak of the filter, that must be damped by suitable passive
or active strategies in order to achieve a stable operation
(Dannehl et al., 2010; Hanif et al., 2014). Combined with
the appropriate damping technique, the PI controllers have
the advantage of being simple, and designs carried out
considering only nominal parameters can ensure good per-
formance under stiff grid conditions and when parametric
uncertainties are not significant (Chen et al., 2012). On
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the other hand, the low frequency gain and the crossover
frequency of the system have to be reduced to ensure
performance and stability when dealing with uncertain
parameters, such as the uncertain grid impedances. Thus,
the design becomes more difficult, relying on heuristic
choices, which usually demand more time from the control
designer in trial and error procedures (Pan et al., 2015).

In this context, metaheuristic algorithms are an alterna-
tive for the automatic tune of controllers that must cope
with multiple objectives and constraints, specially when
the objectives are difficult to be expressed analytically
(Deb, 2001; Haupt and Haupt, 2004). Among metaheuris-
tic techniques, one can highlight the particle swarm op-
timization (PSO), a bio-inspired algorithm with simple
computational implementation (Eberhart and Kennedy,
1995). The PSO is based on intelligent swarms of particles,
that moves in a search space guided by the minimization
of an objective function, without relying on its derivative
and with good ability to avoid local minima (Sebtahmadi
et al., 2017). The PSO algorithm has been used in the
literature to tune PI controllers for GTI applications. For
instance, in Althobaiti et al. (2016) and Al-Saedi et al.
(2011), online optimization algorithms are used to adapt
the control gains, while in Hassan and Abido (2011) and
de Oliveira et al. (2016), an offline optimization is used to
tune fixed controllers. A common point in these works is
not including frequency domain specifications in the objec-
tive functions, which are useful criteria, often employed in
control design of power converters. In Osório et al. (2019),
fixed control gains are tunned by the PSO based on the
phase margin and crossover frequency. However, although
the results illustrate suitable results against uncertain grid
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inductances, the paper does not include a theoretical cer-
tificate of robust stability.

In this direction, assuming that the plant is described by a
model whose coefficients are not precisely known, but be-
long to real intervals, the robust stability under uncertain
parameters can be theoretically certified by Kharitonov’s
Theorem (Bhattacharyya et al., 1995; Bernstein and Had-
dad, 1990). In the context of power electronics, for in-
stance, Kharitonov’s Theorem is used to assess robust
stability against circuit parametric uncertainties in Yang
et al. (2015) and Hote et al. (2009). Nevertheless, in these
previous works, Kharitonov’s Theorem has been applied to
define the regions of robust stability employed for choosing
the control gains, but the use of this tool during the
control tuning stage is still worthy of investigation. In this
sense, Borin et al. (2020) provides a procedure for robust
control design including Kharitonov’s Theorem, with ex-
perimental validation for permanent magnet synchronous
machines.

The main contribution of the present work is a procedure
for the automatic tunning of robust PI controllers applied
to current control of LCL-filtered GTIs, extending the
results in Borin et al. (2020) for a higher order plant
model. The procedure is executed offine and combines
PSO and Kharitonov’s Theorem to cope with multiple
practical design constraints and robustness against para-
metric uncertainties. The resulting PI controllers rely on
fixed gains that can be easily implemented, avoiding more
complex strategies (e.g. adaptive strategies) and also re-
ducing the time demanded from a control engineer during
the design stage. As performance criteria, the proposed
PSO algorithm encompass time and frequency domain
specifications, such as the deviation from reference values
for phase margin and crossover frequency and limits for
gain margin, overshoot, steady state error and control
signal saturation. The robust stability of the closed-loop
systems have a theoretical certificate through Kharitonov’s
Theorem, which is a sufficient condition that can be tested
in a fast way during the optimization, by evaluating the
stability of only four polynomials. Experimental results
based on hardware-in-the-loop are provided, validating the
proposed procedure and also establishing a comparison
with the results obtained based on other design alterna-
tives.

2. MODELING AND PROBLEM DESCRIPTION

Consider a three-phase inverter connected to the grid
through an LCL filter, as shown in Figure 1, where Lc and
Lg1 are the converter-side and grid-side filter inductances,
respectively. The filter parasitic resistances are given by
rc and rg1, Cf is the filter capacitance and Rf is the
damping resistance, in series with the capacitor. The grid
is modeled with a background voltage vg, in series with a
grid resistance rg2 and an uncertain grid impedance Lg2,
lying in a bounded interval whose limits are known.

In the synchronous reference frame, Figure 2 shows the
block diagram of the plant, where Lg = Lg1 + Lg2,
rg = rg1 + rg2 and ω is the grid angular frequency.

Assuming that the three-phase grid voltages are sinu-
soidal and balanced, they can be neglected at this point
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Figure 1. Three-phase grid-tied inverter with LCL filter.
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Figure 2. Block diagram of the plant in synchronous
reference frame.

(i.e., vgd = vgq = 0), being treated as external disturbances
(Hanif et al., 2014). Moreover, for the purpose of control
design in synchronous reference frame, an usual way to
derive the transfer function of the LCL system is to ne-
glect the coupling terms between d-axis and q-axis, also
considering them as external disturbance signals, which
greatly simplify the modeling (Xuetao et al., 2015).

Considering the previous assumptions, the transfer func-
tion from the inverter output voltage u(s) to the grid-
injected current ig(s), valid for both d-axis and q-axis, is
given by

G(s) =
ig(s)

u(s)
=

f1s+ 1

g3(Lg)s3 + g2(Lg)s2 + g1(Lg)s+ g0
(1)

where
f1 = CfRf ,
g3(Lg) = CfLcLg,
g2(Lg) = CfRf (Lc+Lg) + CfLcrg + CfLgrc,
g1(Lg) = Lc + Lg +RfrgCf + Cfrc (Rf +rg) ,
g0 = rg + rc

(2)

Notice that, due to the uncertainty in the grid inductance
Lg2, the parameter Lg is also uncertain, lying in the inter-
val [Lgmin, Lgmax]. Therefore, g3, g2 and g1 can be written
as interval coefficients lying in bounded real intervals, that
depend on Lg.

In order to control the grid-injected currents, a single-loop
grid current feedback control is employed here, for both
d-axis and q-axis, with a PI controller given by

C(s) =
KP s+KI

s
(3)

with fixed coefficients, defined by the vector

c = [KI KP ] (4)

The block diagram of the closed-loop system is shown
in Figure 3, for the d-axis. To mitigate the effect of the



grid voltage, this disturbance is feedforward in the control
action. Also, a compensation decoupling term is included,
given by dec = ω(Lc + Lg)igq, aiming to mitigate the
dynamic effect of the inherent coupling between the axes.
An analogous block diagram is valid for the q-axis.
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Figure 3. Block diagram of the closed-loop system for the
d-axis grid current control

It should be noted that the single-loop control method
for LCL filters is very susceptible to the resonance peak,
being performance and stability highly dependent on the
damping of the system. Moreover, the stability and perfor-
mance are also highly dependent on parameter uncertain-
ties, since the low frequency gain and control bandwidth
must be reduced to ensure stability of the system in the
entire range of the parameters (Pan et al., 2015; Sivadas
and Vasudevan, 2018).

In this context, the control problem to be solved for this
case study is to synthesize, with an offline and automatic
procedure, fixed gains for the PI controller in (3), that
ensure stability and suitable dynamic performance for the
entire range of Lg.

3. ASSESSMENT OF ROBUST STABILITY AND
PERFORMANCE

In order to develop an automatic procedure for the tunning
of the control gains in (4), it is important to assess the
robust stability and performance of the closed-loop system
depicted in Figure 3 in a computationally efficient way.

3.1 Robust stability based on Kharitonov’s Theorem

Considering a closed-loop system based on a plant subject
to uncertain parameters and a controller with fixed control
gains, the theoretical robust stability can be easily certified
by means of Kharitonov’s Theorem.

Given the plant (1), with interval coefficients, and the PI
controller (3), the characteristic polynomial of the closed-
loop system can be written in the interval form as

D(s) = d0 + d1s+ d2s
2 + d3s

3 + d4s
4 (5)

with coefficients lying in bounded real intervals

d` ∈
[
d`
−, d`

+
]
, ` = 0, · · · , 4 (6)

where

d0
−= d0

+ = KI ;
d1
−= d1

+ = g0 + f1KI +KP ; ,
d2
−= g1(Lgmin) + f1KP , d2

+= g1(Lgmax) + f1KP ;
d3
−= g2(Lgmin), d3

+= g2(Lgmax);
d4
−= g3(Lgmin), d4

+= g2(Lgmax).
(7)

According to Kharitonov’s Theorem, one has that if the
four polynomials (Bhattacharyya et al., 1995)

K1(s) = do
− + d1

−s+ d2
+s2 + d3

+s3 + d4
−s4

K2(s) = do
− + d1

+s+ d2
+s2 + d3

−s3 + d4
−s4

K3(s) = do
+ + d1

−s+ d2
−s2 + d3

+s3 + d4
+s4

K4(s) = do
+ + d1

+s+ d2
−s2 + d3

−s3 + d4
+s4

(8)

are Hurwitz, then D(s) in (5) is Hurwitz and thus, the
closed-loop system with control gains KP and KI is stable
for all values of the Lg ∈ [Lgmin, Lgmax].

Therefore, if (8) is satisfied in the scenario specified above,
the uncertain closed-loop system will be called from now
on, in this paper, as KT stable, i.e., stable based on
Kharitonov’s Theorem.

It should be mentioned that when the coefficients of D(s)
in (5) are not independent, i.e., the uncertain parameter
Lg appears in more than one coefficient of the transfer
function (1) at the same time, then Kharitonov’s Theorem
tested as in (8) is a sufficient condition for robust stability
of the closed-loop system with a given controller (3)
(Bhattacharyya et al., 1995). Therefore, although the
application of this theorem can lead to conservative results,
due to its computational simplicity, it is still worth to be
used for a fast evaluation of stability.

3.2 Performance criteria based on polytopic representation

In classical control design procedures for power convert-
ers, it is very common to specify performance in terms
of frequency domain criteria, such as crossover frequency
(ωco), phase margin (PM) and gain margin (GM) (Buso
and Mattavelli, 2006; Teodorescu et al., 2011). Moreover,
it is also desirable to shape the closed-loop system step
response based on time domain performance constraints,
such as overshoot (OV) and steady state error (ess). A
good trade-off among all these specifications can be a chal-
lenge, becoming more difficult when uncertain parameters
and control saturation (i.e., a limit for the amplitude of
the control signal u) must be taken into account in the
design stage.

Given a controller with fixed gains, one way to estimate
the above performance measures for plants affected by
uncertain parameters is from a polytopic representation
of the system (Karimi et al., 2007).

Considering the plant (1) and the controller (3), the closed-
loop system must be designed to ensure suitable perfor-
mance against the uncertain parameter Lg. By taking into
account the extreme values of this parameter, from (1),
the resulting polytopic model is limited to 2 vertices, i.e.,
considering Lgmin and Lgmax. Therefore, the measures of
PM, ωco, GM, OV, ess and the maximum value of u can
be carried out evaluating the time and frequency domain
responses at these vertices.

Notice that even though the worst case values of the above
measures may not be captured by only evaluating the
vertices of the polytope, the proposed procedure becomes
appealing from the computational point of view, leading
to effective results, as will be shown in the sequence.

4. PROPOSED CONTROL DESIGN PROCEDURE

In this Section, it is proposed an offline automatic pro-
cedure to find the control gains of the PI controller in



(4), such that: a) the closed-loop uncertain system (1)
with controller (3) is KT stable; b) an objective function
including performance specifications in terms of the time
and frequency domain criteria is optimized in the vertices
of the polytopic model.

To accomplish that, consider the optimization problem

c? = arg min
c∈C

f(c) (9)

where c? is the best controller associated with the vector c,
given in (4), which minimizes the objective function f(c)
in a given search space C.
The definition of the objective function, the search space
for the gains and the optimization algorithm is given in
the sequence.

4.1 Objective function

To measure the quality of the system performance with a
given controller candidate c, in (4), the objective function
proposed here is given by

f(c) = α(c) β(c) γ(c) (10)

returning a real positive scalar computed based on three
terms, α(c), β(c) and γ(c).

First, assume a reference value PM∗, for the phase margin,
and ωco

∗, for the crossover frequency. Then, the term α(c)
is given by

α(c) = max
j=1,2

( ∣∣∣∣PM∗ − PMj(c)

PM∗

∣∣∣∣+∣∣∣∣ωco
∗ − ωcoj(c)

ωco
∗

∣∣∣∣ ) (11)

and measures the worst case deviation of the phase mar-
gin and crossover frequency to the respective references.
The values of PMj(c) and ωcoj(c) are obtained from the
transfer function

Tj(s) = C(s)Gj(s) (12)

which is evaluated for each vertex of the polytopic model,
represented by the index j, with a given controller can-
didate C(s), whose coefficients are given by the vector c.
These values can be easily obtained by means of specialized
functions, such as the function margin, from MATLAB.

To improve the time and frequency responses, a term β(c)
is taken into account, including additional constraints to
the objective function, such that

β(c) =

 1,

if GMj(c) ≥ GM and OVj(c) ≤ OV
and |essj(c)| ≤ ess and |uj(c)| ≤ u
for j = 1, 2

106, otherwise
(13)

The term β(c) returns an unitary value if all the conditions
in (13) are satisfied, i.e., if the controller candidate c
ensures, for each vertex, compliance with prescribed lower
bound GM and upper bounds OV, ess and u. Otherwise,
β(c) returns the value 106, in order to penalize the objec-
tive function for this controller candidate. The indices in
(13) can be easily computed, for instance, by means of the
functions margin and step, from MATLAB.

The third term of the proposed objective function, γ(c),
is related with the robust stability ensured by means of
Kharitonov’s Theorem, and is given by

γ(c) =

{
1, if closed-loop system is KT stable
106, otherwise

(14)

Note that a positive evaluation of Kharitonov’s The-
orem is a theoretical guarantee of robust stability for
the closed-loop system under uncertain parameter Lg ∈
[Lgmin, Lgmax].

It is worth to mention that different objective functions
could be defined to guide the control design task. The
specifications in (10) were chosen here because, besides
considering traditional performance constrains in power
electronics (e.g., PM, GM, ωco), they include as a contri-
bution, the robust stability assessment (i.e. KT stability)
and actuator saturation evaluation in the control design
stage.

4.2 Search space

From the definition of the controller coefficients in (4), the
space for searching the control gains is given by

C =

{
(KI ,KP ) ∈ R2

KI
− ≤ KI ≤ KI

+, KP
− ≤ KP ≤ KP

+ (15)

and is defined here based on the positivity of the coeffi-
cients of polynomial (5), for all possible combinations of
Lg ∈ [Lgmin, Lgmax]. This choice is based on the well-
known necessary condition for Hurwitz stability. Although
it tends to produce a large search space, the advantage is
that this space can be systematically obtained in a fast
way from a set of linear inequalities, by solving a linear
programming problem, and then, including the resulting
region in a hyperrectangle, as describe in (15).

Therefore, from (5)–(7), the inequalities used to define the
search space are given by

KI > 0
CfRfKP > −(Lc + Lgmin +RfrgCf + Cfrc (Rf + rg))
CfRfKI +KP > −(rg + rc)

(16)
where the second inequality is evaluated for Lgmin since
this condition leads to the more restrictive search space.

It is worth to notice that belonging to this search space
is a necessary (but no sufficient) condition to the system
stability over the entire range of parameters. More accu-
rate search spaces could be obtained applying, for instance,
the complete Routh-Hurwitz criterion, but at the price of
more time-consuming and complex calculations to define
the search space.

Since C can be a large search space, exhaustive grid tech-
niques are usually unviable for a high resolution discretiza-
tion. In this scenario, metaheuristics such as the PSO
algorithm has proven to be useful.

4.3 Particle swarm optimization

In the context of the PSO applied to the design problem
in this paper, each possible control gain vector c, in (4),
can be associated with a particle i, whose position in the
search space is given by

si = [KIi,KPi] , i = 1, · · · , N (17)

where N is the number of particles in the swarm.



The particles are randomly initialized on the search space
C. In a given epoch k, the objective function (10) is
evaluated for each particle, based on its position ski . The
swarm of particles move in the search space from one epoch
k to the next epoch k+1, until reaching the stop criterion.
Therefore, each particle moves from the position ski to the

next position sk+1
i , with a velocity vk+1

i , according to the
equations

sk+1
i = ski + vk+1

i (18)

vk+1
i = λvki + φ1 r1(Pi.best − ski ) + φ2 r2(Gbest − ski ) (19)

The velocity of a given particle is influenced by the best
position that it got (Pi.best), and also by the best position
among all particles of the swarm (Gbest). φ1 is the cognitive
coefficient, φ2 is the social coefficient, λ is the inertia factor
and r1 and r2 are random values between [0, 1].

Regarding the configuration of the PSO algorithm, the
number of particles N and the coefficients φ1 and φ2
are set in order to ensure convergence of the objective
function with viable computational effort. The algorithm
stop criterion can be set as reaching a maximum number
of epochs M , or on stalling of the objective function. For
instance, using MATLAB, this algorithm can be easily
executed using the particleswarm function, which present
default values for these configurations.

4.4 Summary of the proposed procedure

The proposed design procedure can be summarized by the
following steps:

I. Define the system nominal and interval parameters
and obtain the plant model (1);

II. Define the control structure and the controller coeffi-
cients, as shown in (3) and (4), for the PI controller;

III. Choose the frequency and time domain specifications
of the objective function, in (11) and (13);

IV. Based on the characteristic polynomial of the closed-
loop system, in (5), determine the search space (15);

V. Set the PSO configurations and run the algorithm.

It is worth to recall that, in each iteration of the PSO,
each particle (candidate controller) is evaluated based on
the objective function (10), including the assessment of
robust stability using Kharitonov’s Theorem.

After the execution, if the algorithm converges to a con-
troller c? (best particle of the swarm), for which β(c?) = 1
and γ(c?) = 1, all the constraints in (13) are satisfied and
the closed-loop robust stability is successfully accessed by
Kharitonov’s Theorem. Thus, the procedure ends, provid-
ing c? as a viable robust controller.

If the algorithm converges to a KT stable controller, but it
is unable to satisfy the constraints in (13), one option is to
execute the procedure again, redefining the PSO param-
eters (for intance, increasing the number of particles and
epochs). Alternatively, if necessary, the objective function
specifications can be relaxed to obtain a viable controller.

5. DESIGN EXAMPLE

Following the first step of the proposed procedure, consider
the parameters of the LCL-filtered grid-tied inverter given

in Table 1. The parasitic resistances are neglected, and
the grid inductance is an uncertain parameter lying in a
bounded interval.

Table 1. System parameters

System description

Switching frequency fsw 10020 Hz

Sampling frequency fs 20040 Hz

DC-link Vdc 400 V

Grid voltage Vg 220 Vrms, 60 Hz

Converter inductance Lc 1 mH

Grid-side inductance Lg1 0.3 mH

Filter capacitor Cf 62 µF

Grid inductance [Lg2min, Lg2max] [0.1 1.5] mH

Grid resistance rg 0.1 Ω

Damping resistance Rf 1 Ω

For the second step, the control structure is defined as the
one given in Figure 3, with the PI controller.

The third step in the proposed procedure is to choose
the objective function specifications. Thus, the reference
values for system performance and stability margins are
specified as

ωco
∗ = 600 rad/s PM∗ = 60◦ GM = 5 (14 dB)

OV = 10% ess = 0% u = 1
(20)

Regarding the step IV, the limits of the search space
are defined based on (15) and (16). For simplicity, a
rectangular region with KP > 0 and KI > 0 is considered,
and the upper bounds are set as 104, in order to have a
large region for searching both control gains.

For the last step, the PSO is configured with parameters

N=200 particles, M=50 epochs, φ1 =0.5, φ2 =0.5 (21)

and the algorithm is executed.

To illustrate the success rate of the results, the algorithm
was executed 20 times, having always converged in about
3 minutes to a viable controller with low deviation of the
gains among the executions. For a typical execution, the
evolution of the best value of f(c) in each epoch (called
fitness) is depicted in Figure 4(a), and the control gains
are given by

c? = [KI KP ] = [102.13418 0.95822] (22)

The closed-loop system in Figure 3 was simulated with
the control gains in (22). The step responses of the closed-
loop system for the extreme values of grid inductances are
shown in Figure 4(b), where the maximum overshoot is
OVmax = 8.88% and there is no error in steady state.

The frequency responses of the open-loop transfer function
T (s) = C(s)G(s) is shown in Figure 5, for Lgmin and
Lgmax, which confirm system stability for the entire range
of parameters. The minimum values of the stability mar-
gins and crossover frequency were achieved with Lgmax,
for which GMmin = 14.1 dB, PMmin = 79.1◦, fcomin =
56.8 Hz (≈ 357 rad/s). From the results shown in Figures 4
and 5, it is possible to confirm that all constraints in (20)
were satisfied.
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5.1 Experimental Results based on HIL

Real-time tests based on hardware-in-the-loop (HIL) are
presented to validate the control gains designed with the
proposed procedure. The LCL-filtered GTI depicted in
Figure 1 was emulated with parameters in Table 1, using
a Typhoon HIL, model 402.

For the digital implementation, consider the discretiza-
tion of the PI controller (22) using the Tustin method,
with the sampling frequency given in Table 1. The DSP
TMS32F28335, from Texas Instruments, is used to imple-
ment the controllers, assuming the same gains for both d
and q axes, including the feedforward of the grid voltage
and also the decoupling terms, as shown in Section 2. The
angle for the Park transform (i.e., to obtain the signals
in dq coordinates) is obtained using a Kalman Filter al-
gorithm, ensuring that the three-phase grid currents are
synchronized with the voltages at the point of common
coupling (Cardoso et al., 2008). To drive the inverter
switches, a space vector modulation is employed.

Figure 6 shows the grid current responses, in d-axis and
q-axis, for sudden variations in the grid current references,
considering the extremes of the uncertain parameter Lg.
The first variation represents the start-up of the system,
injecting active power into the grid, while the second
variation represents a transient from active to reactive
power. It is possible to verify that, with the PSO-based
PI controller, the closed-loop system is able to track the
references respecting the performance constraints estab-
lished in the design and also with suitable settling times,
for both grid conditions. The transient responses for Lgmax
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Figure 6. Step responses with the PSO-based and the
pidtune PI controllers, for: (a) Lgmin; (b) Lgmax.

are slower than the responses for Lgmin, which is expected
due to the need of ensuring robustness over the entire range
of parameters with a simple fixed gain controller.

In order to establish a comparison between the proposed
procedure and an well-known tuning technique, Figure 6
also shows the responses with a PI controller designed
using the pidtune function, from MATLAB. In this case,
the controller was designed for Lgmax, and considering the
same specifications used for the PSO: ωco

∗ = 600 rad/s
and PM∗ = 60◦. It is possible to verify superior perfor-
mance of the closed-loop system with the PI controller de-
signed based on the proposed procedure. A more detailed
performance comparison will be presented in Table 2, in
the next section.

For the system operating with the PSO-based controller,
the three-phase grid currents with respect to the transient
responses presented in Figure 6(a) and (b) are shown
in Figure 7(a) and Figure 7(a), respectively. From these
results, it is possible to confirm robust stability and
suitable transient performances for both extreme values
of the grid inductances.

The grid currents in steady-state are highlighted in Fig-
ure 8(a), for Lg = Lgmin, and in Figure 8(b), for Lg =



(a) (b)

Figure 7. Transient responses of the three-phase grid
currents for the system operating with the PSO-based
PI controller and: (a) Lg = Lgmin; (b) Lg = Lgmax

(a) (b)

Figure 8. Three-phase grid currents in steady-state for the
system operating with the PSO-based PI controller
and: (a) Lg = Lgmin; (b) Lg = Lgmax.
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Figure 9. Steady-state responses: current harmonic spec-
trum and limits from IEEE 1547.

Lgmax. From these waveforms, Figure 9 shows that the
harmonic spectra of the grid currents comply with the
requirements of the IEEE 1547 Standard, for both extreme
values of Lg. Moreover, the total harmonic distortion
(THD) is equal to 2.13%, for Lgmin, and 1.59%, for Lgmax,
also complying with this standard (THD ≤ 5%).

6. COMPARATIVE ANALYSIS

For a comparative analysis, Table 2 shows performance cri-
teria obtained with controllers designed using the proposed
procedure and two other control tunning strategies. The
measures given in the Table 2 are the worst case values for
each design specification, obtained based on simulations
for the vertices of the polytopic model.

First, consider the controller designed using the pidtune
function, from MATLAB, with experimental results al-
ready shown in Figure 6. The measurement of the perfor-
mance criteria with this controller is better detailed in the
second column of Table 2, from which it is possible to verify
that it led to acceptable closed-loop responses. On the

other hand, in comparison with the proposed PSO-based
controller, the performance are inferior in terms of gain
margin and overshoot. Moreover, the pidtune controllers
do not have a theoretical certificate of robust stability un-
der parametric uncertainties and also may lead to control
saturation.

In order to provide a comparison between the PSO and a
different optimization tool, consider the genetic algorithms
(GA), which are a well established metaheuristic that
could have been used in the proposed procedure (Haupt
and Haupt, 2004). In this sense, a GA is configured here
using the same objective function proposed in (10) and
with parameters similar to the ones used for the PSO (e.g.
same number of particles for PSO and chromosomes for
GA, epochs for PSO and generations for GA). Columns 1
and 3 of Table 2 show that both PSO and GA lead to sim-
ilar results in terms of phase margin, crossover frequency,
gain margin and overshoot. On the other hand, a statistical
analysis performed when repeating 20 times the execution
of both algorithms shows that, in comparison to the GA,
the PSO has the advantage of converging, in average, in
half the time. Moreover the PSO executions present a
higher success rate and a lower dispersion of the solutions.
This analysis is summarized in Table 3, confirming that the
PSO is a suitable optimization algorithm for the proposed
procedure.

To obtain the statistics in Table 3, the success rate was
defined by the ratio between the number of successful
executions and the total number of executions, where a
successful execution is when the algorithm converged to
a controller c? that has β(c?) = 1 and γ(c?) = 1. The
dispersion was defined as the standard deviation of the
value f(c?) divided by its average value.

Table 2. Design comparisons

PSO Pidtune GA

PM (deg) 79.13 60.1 79.24

ωc (rad/s) 356.88 955.04 354.75

GM (dB) 14.1 6.34 14

OV (%) 8.88 27.0 8.75

Saturation No Yes No

KT stable Yes No Yes

KP 0.958 2.190 0.952

KI 102.1 1300 99.99

Table 3. Statistics Comparison between GA
and PSO Algorithms

PSO GA

Success rate 100% 60%

Dispersion 0.824% 4.52%

7. CONCLUSION

This paper proposed a procedure for the automatic tun-
ning of robust PI controllers applied to LCL-filtered GTIs.
A PSO algorithm is employed to optimize an objective
function for the vertices of a polytope, taking into account
important frequency and time-domains criteria. During
the optimization, the PSO is capable of finding PI con-
trol gains which ensure, for the entire domain of grid
impedances, suitable performances and the robust stability



certified by Kharitonov’s Theorem. This theorem is used
here within the optimization procedure, and not in an a
priori fashion to determine the region for the search of the
control gains. Experimental results based on HIL confirm
that the proposed procedure leads to viable controllers,
ensuring robust stability, suitable dynamic performance
and compliance with the IEEE 1547 Standard. Therefore,
the proposed procedure can be seen as an alternative
for automatic tunning of controllers that must cope with
multiple specifications, avoiding time-consuming design
stages, specially considering robust stability against un-
certain parameters.
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