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Abstract: Modern systems have become increasingly more complex, and their analysis becomes
significantly more complex. Many practical aspects of complex network tools have mainly been
applied to critical infrastructure, in particular, to study power systems’ resilience. Blackout
prevention, system resilience, and restoration consider the ability of the system’s self-healing.
The self-healing strategies depend, basically, on the existence of extra lines to re-route energy.
Some studies suggested that there is an optimum cost-benefit point when adding power
lines redundancies to a system considering the systems’ resilience. One method to solve this
optimisation problem is the use of a metaheuristic algorithm. These algorithms combine
exploration and exploitation on the search for a solution. In this paper, a Chu-Beasley genetic
algorithm is used to search for the optimum cost-benefit level of redundancy in a system. The
system used is from the Repository of Distribution Systems (REDS), and the function used to
evaluate the resilience considers an efficiency coefficient so that the resilience by cost curve would
have a maximum point. This experiment is executed as a topological analysis. The expected
results were obtained using estimated curves from Monte-Carlo simulations for a wide range of
combination of parameters. The results from three different parameters of efficiency coefficient
were compared to the expected values obtained. The results show that there is a best cost-
benefit level of redundancy when an efficiency level is determinate. Also, the GA used has
excellent performance for finding this point.
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1. INTRODUCTION

Modern systems have become increasingly bigger and
more complex as a result of the technological development
that has been happening (Gallos and Fefferman, 2015).
Consequently, their analysis became significantly more
complex. An useful modelling for this kind of system
is using complex networks (Bessani et al., 2018). The
complex network modelling is capable of integrating and
unifying the relationship between structure and dynamic
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(Costa et al., 2011). The usefulness of the complex network
modelling is shown by the wide number of applications
modelling systems such as cloud computation (Travieso
et al., 2015), an epidemic transmission system (Zhu et al.,
2017), global tourism flow (Lozano and Gutiérrez, 2018),
energy distribution networks (Bessani et al., 2018), optical
communication networks (Choji Freitas et al., 2012) and
others systems (Costa et al., 2011).

Many practical aspects of complex network tools have
mainly been applied to critical infrastructures, in partic-
ular, to study power systems’ resilience (Bessani et al.,
2019). Critical infrastructures are defined as systems with
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a major importance to maintain vital societal functions,
physical integrity and security, health, social and economic
welfare. The disruption of an critical infrastructure is likely
to have cascading effects on others critical infrastructures
(Yusta et al., 2011; Bessani et al., 2019). Thus, becoming
clear the need for resilience studies for such systems, as
resilience is most commonly defined as the capacity of a
system to retain its normal operation when failures, errors
and new conditions happen (Almoghathawi et al., 2019).

Blackout prevention, system resilience and restoration
consider the ability of the system to recover from possible
contingencies. This recovery capability depends, basically,
on the existence of backup lines to re-route the power flow.
The studies Ribeiro et al. (2018) and Ribeiro et al. (2019)
suggested that there is an optimum cost-benefit point
when adding lines redundancies to a system considering
the system’s resilience.

Every addition of lines redundancies to a system has a
cost. Also, after an amount of investment in the system’s
redundancy, the investment needed to have a significant
increase in the system’s resilience by adding redundancies
becomes higher. Considering that, if an efficiency level
limit for the investment is defined, it is possible to look for
the last point with higher or equal efficiency to the limit by
penalising the points with higher and lower efficiency. This
way, the problem is turned into an optimisation problem.

One method to solve optimisation problems that have
mathematical formulation with uncertain, stochastic and
dynamic information is the use of metaheuristic algorithms
(Bianchi et al., 2009). Some of the metaheuristic are
nature-inspired and some are not (Bianchi et al., 2009),
but all of them use two phases of the search process called
exploration and exploitation (Mandal, 2018). Exploration
is a global search that focus on finding promising areas of
the search space. Meanwhile, exploitation is a local search
that focus on searching over the promising areas of the
search space (Mandal, 2018).

Furthermore, the metaheuristics can be divided in two
categories based on the number of initial solutions used. In
the single-solution-based category the optimisation starts
with a single candidate solution that is evolved. In the
population-based category the optimisation starts with a
set of solutions (which is usually called population) and
this population is evolved (Mandal, 2018). The population-
based metaheuristics have advantages over the single-
solution-based, as they have a greater exploration capa-
bility and are less likely to stick in local optima (Mandal,
2018).

One example of population-based metaheuristics are the
Swarm Intelligence (SI) algorithms (Mandal, 2018). They
are based on the behaviour of swarms, flocks, herds or
schools of animals and insects, where one agent navigates
using a simulated social and collective intelligence (Man-
dal, 2018). Another example of a population-based meta-
heuristics is the Genetic Algorithms (GA) (Mandal, 2018).
In the GA a solution to the problem is called individual
and a set of them is called population. Every iteration of
the algorithm is called a generation, on it an operations is
applied to individuals of the current population to create
possible members of the next generation (Bianchi et al.,
2009).

One GA is the Chu-Beasley GA (CBGA) (Chu and
Beasley, 1997). On it a tournament is made with individ-
uals of the current population to select the parents (indi-
viduals used on the creation of new individuals) and their
combination will only provide one child (new individual)
(Chu and Beasley, 1997). Moreover, the next generation
is created of a combination of the current generation and
the children created. A child is only added to the current
population if it is more fit than the least fit individual of
the population. When a child is added to the population
the least fit individual of the current population is removed
of the population (Chu and Beasley, 1997).

In this paper, a Chu-Beasley genetic algorithm (CBGA)
is used to search for the optimum cost-benefit level of
redundancy in a distribution system. It is a topological
analysis without considering lines flow limit and nodes
consumption.

The remainder of this paper is organised as follows. Section
2 presents the CBGA used and the methodology of the
fitness function used. Moreover, it also shows the descrip-
tion of the simulations performed and explains how the
expected values used for comparison where obtained. Sec-
tion 3 shows the results obtained from the simulations and
the expected results obtained. Finally, section 4 presents
the conclusions of this paper.

2. METHODOLOGY

For this work the scenario analysed was an only topological
study were all kind of losses were not considered and the
simple existence of a route from the node to a source was
enough to supply the node’s demand. For it, the expected
results were obtained using estimated curves from Monte
Carlo simulations for a wide range of parameters combi-
nation.

In the following subsections the evaluation of resilience
used as fitness functions is explained. Also, the CBGA and
its use are addressed. The system used for the simulations
and the method for adding redundancy to the system
are shown. Finally, the simulations made, including the
experimental search and the way that the expected values
were obtained, are explained.

2.1 Evaluation of Resilience

The evaluation of resilience is based on Ribeiro et al.
(2018) and Quattrociocchi et al. (2014). On it the resilience
of three different topology of system (square grid, small-
world and scale-free) were analysed using the mean and
squared mean error of multiple runs of a number of
failures and self-healing executions. On Quattrociocchi
et al. (2014) the failure is the removal of an edge and on
Ribeiro et al. (2018) the failure could be the removal of an
edge, the removal of a node or an random choice between
the previous. At the end of each execution of a failure and
self-healing a variable FoS (the number of nodes connected
to a source over the total number of nodes) was saved and
used to evaluate the resilience of the system. The resilience
in Ribeiro et al. (2018) was measured by the number of fails
needed to make the system reach the values of FoS equal
to 0.9, 0.5 and 0.1.



For this work, the same process of obtaining the variable
FoS was used. However, the measure of resilience was
considered to be the integral of the curve FoS × number
of fails. Thus generating only one value as the measure of
the resilience. It must be noted that since the resilience
measure is obtained by mean of a number of simulations
its value is non-deterministic. This means, that the value
obtained is the actual value of resilience plus an error value
that converges to zero as the number of simulations done
increases.

2.2 Resilience × Cost Curve

Since the search is for the best cost-benefit redundancy
level, the curves used for analysis were based on the
resilience × cost curve. For this curve, an estimation
of the cost was needed. On that account the cost for a
redundancy level was considered to be proportional to the
total length of the redundancies added to the system. With
this cost estimation and using the resilience evaluation
before an resilience × cost curve was obtained.

This resilience × cost curve had a behaviour similar to
an log curve, and for that reason, an optimum cost-
benefit point was not clear. However, considering that the
resilience is a function of the cost, fres(cost), and if an
efficiency level a for the investment in resilience is specified,
then a new function f∗res = fres(cost) − a · cost can be
defined. This function’s derivative is f∗res

′ = fres(cost)
′−a,

which shows that the function f∗res will have a maximum
point, that is the point where the growth rate of the
resilience match the efficiency level. This point, is the
optimum cost-benefit point for the specified efficiency
level. This was adopted since most of companies have
policies that determinate the minimum investment return
rate (efficiency level) that an investment must have so that
the investment is made.

2.3 Chu-Beasley Genetic Algorithm (CBGA)

As it was explained in the introduction, the CBGA is a
population-based metaheuristic. The differences between
CBGA and others GAs are that on the CBGA only
one child is produced from a recombination operation
and instead of the children forming the new population,
the new population is formed by the combination of the
children and the current population. This combination
is done by only adding a child to the population if
the child is better fit than the least fit member of the
population. When a child is added to the population, the
least fit member of the population is removed from it
(Chu and Beasley, 1997). The general idea of the CBGA
implemented for this work is shown the flowchart in figure
1.

Specifically for this paper, the CBGA searched over the
redundancy levels between 0 and 1 with a precision of 0.01.
This was done, as for most problems the difference of 0.001
between redundancy levels does not make much difference
in the resilience and in the cost. This way an individual is
a redundancy level to be added to the system.

In addition to that, the fitness function used was the
f∗res described on the previous subsection. Moreover, the
recombination done to generate children was done by

calculating the mean of its two parents and rounding it
to the nearest value. The parents for the recombination
where chosen by tournament between five individuals.

Figure 1. Flowchart showing the operation of the CBGA
implemented for this work.

2.4 Repository of Distribution Systems (REDS)

The REDS is a repository of test-cases of distribution
systems publicly available for reporting and comparing re-
searches results on problems such as capacitor placement,
load balancing, power flow solution, network reconfigura-
tion, etc (Kavasseri and Ababei). The system used in this
paper is the bus 83 11, which topology can be seen in
the figure 2. This system has eleven sources, eight three
consumers nodes and thirteen backup edges.

Figure 2. Topology of the system bus 83 11 used for
analysis.

2.5 Small-world Method

The small-world method of adding redundancies to the
system its an adaptation of a small-world topology graph
generator. The small-world topology is where the graph
has high efficiency and small diameter and mean geodesic
distance Watts and Strogatz (1998).

The adaptation made is that instead of adding random
edges on a ring graph to create a small-world graph, the



random edges are added to the bus 83 11 graph. The
function adapted was the newman watts strogatz graph
from the NetworkX library of Python (Hagberg et al.,
2008). This function has a parameter p which is the
probability of adding a new edge for each edge in the
system. This variable controls the number of backup edges
added to the system, thus this variable was adopted as
being r the redundancy level.

This way, the small-world method adds new redundancy
edges to the graph in a way that for each edge (u, v) of the
base graph a random value between 0 and 1 is drawn.
If this value is smaller than the redundancy level r, a
new edge (u,w) is added. On this new edge (u,w), w is a
randomly chosen node of the graph. By doing that, it adds
new edges to the system in the same way as proposed in
(Newman and Watts, 1999).

2.6 Expected Results

To have a comparison reference for the results, it was
needed to estimate the expected results values. For that
purpose, the evaluation of resilience was run for values
of r varying from 0.00 to 1.00 with a step of 0.01. Then,
these 101 points were used to estimate the resilience × cost
and r × cost curves. The estimations were done using a
polynomial function of degree 120 through the function
polyfit of the NumPy library of Python (van der Walt
et al., 2011). From these estimations, it was possible to find
the maximum point of the function f∗res for the efficiency
level a equal to 0.3, 0.5 and 0.8, thus obtaining a value o
cost that would instantiate a level of redundancy.

2.7 Simulation Description

For the simulation and test of the efficiency of the CBGA
implemented the algorithm was run a number of times for
the efficiency levels of 0.3, 0.5 and 0.8. All executions were
made using the parameters of table 1. The results of the
runs were compared with the expected results values and
between themselves, calculating the mean and the mean
squared error (MSE). Moreover, the computational time
of the executions was also analysed using mean and MSE.
The convergence of the CBGA was analysed by plotting
the mean and MSE of the best scores for each generation
over the executions.

Table 1. Values of Parameters of the CBGA

Parameter Value

Evaluation repetition 100

Population size 10

Generation limit 10

Recombination rate 0.5

Mutation rate 0.2

3. RESULTS

The estimated curves used to estimate the results can
be seen in the figures 3 and 4. These figures show the
estimated curves of resilience × cost and r × cost and the
101 experimental points used to estimate them. On them,
it becomes clear that the resilience × cost curve has a
behaviour similar to a log curve.

The figure 5 shows the curves of the function f∗res for a
equal to 0.0, 0.3, 0.5 and 0.8. For a = 0.0 the function f∗res
is equal to the curve resilience × cost. In the figure it is
possible to see how the original estimated curve does not
have a maximum points, however when the efficiency level
is determined the resulting curves have clear maximum
points. The mathematical definition of the function f∗res
guarantees that the maximum point will be the point
where the return of resilience given an investment will be
equal to the efficiency coefficient a. The expected results
obtained from these estimated curves can be seen in the
table 2.

Figure 3. Resilience and
cost curve, experimen-
tal points in blue and
estimated curve in or-
ange.

Figure 4. Redundancy level
and cost curve, exper-
imental points in blue
and estimated curve in
orange.

Figure 5. Curves of the equation f∗res = resilience−a·cost
by cost with different values of a as shown in the
legend.

The results of the simulations made to test the precision
of the CBGA can be seen on the figure 6. In it the dashed
lines indicate the expected value and the dots the values
obtained. From it, it is clear that most of the iterations
reach values really close to the expected, and the ones that
are farthest, are not very far. A better analysis of this can
be seen on table 2, where the mean and the mean squared
error (MSE) of the results obtained are shown.

In the table 2 for the efficiency level of 0.3 the mean is 0.17
away from the expected value, however, it must be noted
that as it can be seen on the figure 5 the curve for a = 0.3
has a very smooth inclination, thus being more susceptible
to the resilience inference error. Considering it, it becomes
clear why for this efficiency level the results were not so
good as the other. For the efficiency levels of 0.5 and 0.8,
both means were really close to the expected value. For



all three efficiency levels the MSE was small, showing the
efficiency of the algorithm used.

Figure 6. Best cost-benefit redundancy levels obtained for
ten connectives runs of the GA. The dashed line are
the respective expected values and the values obtained
are represented by dots accordingly to the legend of
the image.

Table 2. Results Obtained and Expected

Efficiency
Level

Results
Obtained

Mean

Results
Obtained

MSE

Expected
Results

0.3 0.477 0.026 0.46

0.5 0.418 0.026 0.42

0.8 0.370 0.042 0.37

The convergence of the CBGA can be seen in the figure
7. The dots are the means of the best scores for the ten
executions of the AG and the shade is the MSE of the
best scores. As it can be seen on the figure, the CBGA
starts with a small MSE that in just a few iterations get
even smaller reaching the ending value. This shows that
the algorithm has a good convergence and probably could
be run with fewer generations without reducing the quality
of the final result.

Figure 7. Evolution of the best score over the interaction.
It is shown by the mean in points and the MSE in the
shade. Each efficiency level is plotted with a different
colour and shape as shown in the legend.

The table 3 shows the mean and MSE values of the
computational time for the three efficiency levels. From
it, it is seen that the mean time is very close for all the
levels, being that all of them took almost three hours. Also,
the MSE is very small for all simulations.

Table 3. Computational Time of the Simula-
tions

Efficiency Level Mean Time MSE

0.3 02:49:12 00:08:55

0.5 03:00:04 00:12:59

0.8 03:02:16 00:09:26

4. CONCLUSIONS

The results show that there are optimum cost-benefit point
when adding resilience to a system with the small-world
method for different investment efficiencies. Moreover, it
is clear that the Chu-Beasley Genetic Algorithm is a
good option to be used to find the optimum cost-benefit
point with a given efficiency level, as it has a low varying
execution time, presents a good convergence for a solution
and good final solution.

Referring specifically to the optimum cost-benefit point, it
can be seen from the expected result estimation and from
the actual results obtained that for a big band of efficiency
levels (from 0.3 to 0.8) the optimum point is between the
0.3 and 0.5 levels of redundancy. This result is consistent
with the observations of Ribeiro et al. (2018) and Ribeiro
et al. (2019).

Possibles followings works would be the analysis of other
methods of adding redundancies in the system (e.g. using a
method based on the scale-free topology), consider weighs
and limitations of the system and the use of other search
methods to make the search for the optimum point.
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