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Abstract: An aeropendulum system built at the Control Research Laboratory of UNESP-Ilha
Solteira is presented, identified and controlled. The system has nonlinear dynamics and unknown
parameters. An identification method using MatLabr software is used to obtain local linear
models and enable the design of automatic controllers using Linear Matrix Inequalities (LMIs).
Therefore, the dynamic of the system can be approximated by local linear models at different
points of operation combined by membership functions which are unknown in this case. From the
approximated mathematical model of the system and the Lyapunov’s stability theory, switched
controllers considering decay rate and bounds on norm of the state feedback matrices Ki are
designed. The switched control does not require knowledge of the membership functions to
compose the control signal and it is an important characteristic that solve the control problem
of aeropendulum modelled by Takagi-Sugeno fuzzy models. Practical applications illustrate the
efficiency of the methodology used, the results of the implementations are shown and compared.

Keywords: Aeropendulum; Identification; Switched control; Takagi-Sugeno fuzzy systems;
Uncertain systems; Nonlinear systems; Norm constraint.

1. INTRODUCTION

Pendulums are classic control problems (Job and Jose,
2015) and are naturally nonlinear systems that can be
approximated, in some cases, by linear systems around the
respective equilibrium point (Enikov and Campa, 2012).
There are some variations of pendulums, such as the
aeropendulum, which consists of a propeller attached to
the motor shaft to produce a thrust force in order to move
a rod to a desired position. A description of the aeropen-
dulum system can be found in Veiga (2016). In Job and
Jose (2015), besides the description of an aeropendulum,
the proportional-integral-derivative (PID) control and lin-
ear–quadratic regulator (LQR) control are presented with
comparison in terms of the performance obtained for each
controller. An observer-based fuzzy regulator for aeropen-
dulum with output feedback is presented in Farooq et al.
(2015). In Enikov and Campa (2012), the aeropendulum
is presented as a good alternative for a low-cost hands-on
experiment with modeling and feedback linearization. The
aeropendulum is the focus of discussion in this work with
identification and operation of the system with switched
control (Souza et al., 2014), that is, the uncertain nonlin-
ear aeropendulum system is identified and described by
Takagi-Sugeno fuzzy models.

The physical parameters of the aeropendulum system used
in this work are different from the parameters considered in
the mentioned works. Therefore, it is necessary to identify
them to carry out the controller design. The aeropen-
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dulum identification is based on the modeling presented
in Job and Jose (2015) considering that the parameters
are unknown. The local linear models are obtained for
each operation point (Santim et al., 2012). The method
of system identification used in this work is similar to
the method used to identify a biomechanical system for
lower limbs (Teodoro et al., 2019) describing the system
in a convex combination of polytopic uncertainties. The
lower limb system can be considered similar to pendulum
systems.

The description of nonlinear systems by Takagi-Sugeno
fuzzy models (Takagi and Sugeno, 1985) is used in modern
control theory and allows the representation of nonlinear
systems as a convex combination of local linear models
(Takagi and Sugeno, 1985) weighted by a membership
function (Taniguchi et al., 2001; Santim et al., 2012). A
classic control technique applied to the systems described
by Takagi-Sugeno fuzzy models is the Parallel Distributed
Compensation (PDC) (Wang et al., 1995). However, the
membership function needs to be known or estimated
for PDC control. For the aeropendulum system used in
this work, the membership function is unknown making it
impossible to use fuzzy controllers via PDC. A solution to
this problem is the use of controllers that do not require
the knowledge of the membership functions. Some of the
controllers that do not need this knowledge are the robust
single gain (Boyd et al., 1994) and the switched controllers
(Souza et al., 2014). An explanation and comparison be-
tween both the controllers considering actuator saturation
and guaranteed cost function is presented in Silva et al.
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(2020). In this paper only the switched controller is used.
The switched controller uses the switching law and it is
based on minimizing of the derivative of the Lyapunov
function and selects the best feedback gain for each instant
from a set of pre-calculated gains Ki (Souza et al., 2014).
The practical implementation of the switched controller in
an uncertain nonlinear aeropendulum system identified by
Takagi-Sugeno fuzzy models is presented and the insertion
of the bounds on the norm of the state feedback matrices
Ki is also presented and allows to obtain better results.
The design of the controllers includes decay rate (Boyd
et al., 1994), bounds on norm of the state feedback matri-
ces and Linear Matrix Inequalities (Boyd et al., 1994). The
numerical resolution of the LMIs is done with the LMILab
solver (Gahinet et al., 1994) with MatLabr and Yalmip
interface (Löfberg, 2004).

The following notation will be used in the work x(t) = x,

y(t) = y, u(t) = u, z(t) = z, θ(t) = θ, θ̇(t) = θ̇,
Knr

= {1, 2, 3, ..., nr}, nr ∈ N, is the set of natural
numbers. α = α(z) is the system membership function
and it is dependent on the premise variable vector z.

2. PRELIMINARY CONCEPTS

2.1 Switched Control for Uncertain Systems Described by
Takagi-Sugeno Fuzzy Models

Takagi-Sugeno fuzzy models are described by IF-THEN
rules. Such models relate each inputs and outputs of a
nonlinear system locally.

Rule i : IF z1 is Mi
1 and . . . and znz

is Mi
nz
,

THEN

{

ẋ = Aix+Biu,
y = Cix,

(1)

where i ∈ Knr
, j ∈ Knz

, Mi
j is the fuzzy set j of the

rule i, Ai ∈ R
nx×nx , Bi ∈ R

nx×nu and Ci ∈ R
ny×nx are

the matrices of the local linear models, z1 · · · znz
are the

premise variables and correspond to state variables and
uncertain system parameters, x ∈ R

nx is the state vector,
u ∈ R

nu is the input vector and y ∈ R
ny is the output

vector.

Takagi-Sugeno fuzzy modeling consists of the combination
of local linear models by means of normalized weights
called membership functions αi(z), i ∈ Knr

,

αi(z) =
ωi(z)

∑r

i=1
ωi(z)

, (2)

where ωi(z) =
∏nz

j=1
Mi

j(zj),
∑nr

i=1
ωi(z) > 0, ωi(z) ≥ 0,

∑nr

i=1
αi(z) = 1 and αi(z) ≥ 0 for all i ∈ Knr

and j ∈ Knz
.

Mi
j(zj) is the weight of the fuzzy set Mi

j associated to the
premise variable zj .

The nonlinear system combined by local linear models is


















ẋ =

nr
∑

i=1

αi(z)(Aix+Biu) = A(α)x +B(α)u,

y =

nr
∑

i=1

αi(z)Cix = C (α)x.

(3)

The settling time of a system can be related to the decay
rate (Boyd et al., 1994) and is defined as a real number
γ ≥ 0, such that

lim
t→∞

eγt||x|| = 0, (4)

for all trajectory x. Using a quadratic Lyapunov candidate,
a lower limit can be established for the decay rate of the
feedback system. The condition V̇ (x) ≤ −2γV (x), for all
trajectories x, is equivalent to the specifications of a decay
rate greater than or equal to γ (Boyd et al., 1994).

The switched controller (Souza et al., 2014) selects a
feedback gain Ki, i ∈ Knr

, from a set of pre-calculated
gains. The selection is made through the switching law
and it is based on minimizing of the derivative Lyapunov
function that returns the value of index σ(t). The switched
controller and the switching law are presented

u = uσ = −Kσx,

σ(t) = arg∗ min
j∈Knr

{

xT Q̄jx
}

. (5)

where Q̄j ∈ R
nx×nx , j ∈ Knr

is an auxiliary matrix used
to obtain the index σ(t) ∈ Knr

which results in the lowest
value of xT Q̄jx.

The Takagi-Sugeno fuzzy model (3) with the feedback
control law (5) is

ẋ =

r
∑

i=1

αi(z) {Ai −BiKσ} x. (6)

The Theorem 1 presents sufficient conditions for the sta-
bility of the nonlinear system (6) with decay rate greater
than or equal to γ and it is a particular solution of the
result of Souza et al. (2014).

Theorem 1. (Souza et al., 2014) Consider a nonlinear
system (6). Assume defined positive symmetric matrix
X ∈ R

nx×nx , symmetric matrices Zi, Qi ∈ R
nx×nx ,

matrices Mj ∈ R
nu×nx and a scalar γ ≥ 0 such that the

conditions

−BiMj −MT
j BT

i − Zi −Qj < 0, (7)

XAT
i +AiX + Zi +Qi + 2γX < 0, (8)

are feasible, for all i, j ∈ Knr
. Then the switched control

law (5) makes the origin of the system (6) asymptotically
stable with a decay rate greater than or equal to γ.
P = X−1, Q̄j = X−1QjX

−1 and the controller gains are
Kj = MjX

−1.

Proof. Considering the following quadratic Lyapunov
function

V (x) = xTPx. (9)

A lower limit can be established for the decay rate γ (Boyd
et al., 1994) of the system (6), then

V̇ (x) + 2γV (x)

= xT (AT
i P + PAi + 2γP −KT

σ B
T
i P − PBiKσ)x.

(10)

Consider the existence of symmetric matrices Z̄i, Q̄j ∈
R

nx×nx such that (Souza et al., 2014)

−(PBiKj +KT
j B

T
i P ) ≤ Z̄i + Q̄j, (11)

for all i and j ∈ Knr
.

Then, multiplying (11) by αi, pre and post multiplying by
xT and x, adding from i = 1 to nr and replacing j by σ,
one obtains



−xT (PBiKσ +KT
σ B

T
i P )x

= −∑r

i=1
αix

T (PBiKσ +KT
σ B

T
i P )x

≤ ∑r

i=1
αix

T Z̄ix+ xT Q̄σx.

(12)

From the control law (5), and knowing that the minimum
of a set of real numbers is less than or equal to the convex
combination of the elements of this set, note that

xT Q̄σx = min
j∈Knr

{

xT Q̄jx
}

≤
nr
∑

i=1

αix
T Q̄ix. (13)

From (12) and (13), we have

−xT (PBiKσ +KT
σ B

T
i P )x ≤

nr
∑

i=1

αix
T (Z̄i + Q̄i)x. (14)

From (10) and (14), for all x 6= 0, one has

V̇ (x) + 2γV (x) < 0, (15)

if
AT

i P + PAi + Z̄i + Q̄i + 2γP < 0. (16)

Define X = P−1, Zi = XZ̄iX , Qi = XQ̄iX and Mj =
KjX . Pre and post multiplying (14) and (16) by X the
LMIs (7) and (8) are obtained. The proof is concluded.

In the implementations, one can observe that the gain
values can be high and make the practical implementations
infeasible. In view of this problem, it is necessary to limit
the norm of the state feedback matrices Ki . Therefore, an
upper limit to controllers norm is imposed (Assunção et al.,
2007) and consequently lower gains are obtained with no
occurrence of actuator saturation during implementations.
The Theorem 2, proposed in the sequence, imposes a
bound on the norm of switched controllers and it is based
in Assunção et al. (2007) and Buzetti (2017).

Theorem 2. The specification of bounds on the state feed-
back matricesKj of the switched controllers, for all j ∈ Kr,
can be described finding the minimum of η, η > 0, such
that KjK

T
j < ηI. The optimal value of η can be obtained

by the solution of the following optimization problem

minimize
X,Mj

η

subject to

X > I, (17)
[

ηI Mj

MT
j I

]

> 0, (18)

(set of LMIs)

where the set of LMIs is equal to (7) and (8).

Proof. Using Schur’s complement in (18), we have

MjM
T
j < ηI. (19)

Pre and post multiplying (17) by
√
X one has√

XI
√
X <

√
XX

√
X ⇒ X < XX. (20)

Pre and post multiplying (17) by Kj and KT
j , respectively,

we have
KjIK

T
j < KjXKT

j . (21)

From (19)-(21) and Mj = KjX , follows that

KjIK
T
j < KjXKT

j < KjXXKT
j = MjM

T
j < ηI. (22)

Then KjK
T
j < ηI. The proof is concluded.

2.2 Description of Aeropendulum System

The aeropendulum system, shown in Figure 1, is composed
of a rod with rotational movement of approximately 90o

of rotation. The rod is fixed on a pivot and the inert
position is considered as reference. At one end, there is
a propeller attached to a brushless motor shaft to produce
a thrust force in order to control the angular position of
the pendulum. At the other end, there is a counterweight
with variable position and mass that allows to increase or
reduce the produced torque. A linear potentiometer is used
as a sensor to provide the angular position and it is fixed at
the pivot. This system was built at the Control Research
Laboratory of São Paulo State University (UNESP).

The rod of the aeropendulum is made of aluminum and it is
1 meter long. The pivot is positioned 0.6 meters away from
the propellant and 0.4 meters from the variable mass. This
asymmetry creates a center of mass that does not coincide
with the position of the pivot. The potentiometer rotates
by means of a gear system whose mechanical ratio provides
better sensitivity and increases the range rotation from 90o

to 300o. More specification about making of aeropendulum
is shown in Veiga (2016).

Figure 1. Aeropendulum system.

θ(t)

0o

90o

Propulsion

Counterweight

Pivot

The brushless motor is common in unmanned aerial vehi-
cles because it does not use commutator brushes ensuring
high durability and power with low weight and volume.
The motor is able to rotate only in one direction and it
is driven by an Electronic Speed Controller (ESC) driver
powered by a 12V DC source attached inside the rod. The
ESC converts the 12V DC into an alternating signal to
power the motor. The input signal control u(t) corresponds
to ESC signal with a 5V pulse-width modulated signal
between 1000µs and 1800µs with frequency of 500Hz.
Finally, a Q2-USB data acquisition device is used for
real-time control and communication of the system with
Simulink interface from MatLabr and Quarcr.

3. AEROPENDULUM SYSTEM IDENTIFICATION
AND CONTROL

3.1 Aeropendulum System Identification

This section presents the method for obtaining local linear
models used to design the controllers of the aeropendulum



system. The dynamics of the system is nonlinear and, in
Job and Jose (2015), a state space model for the aeropen-
dulum is presented. However the system parameters are
unknown, and thus have to be identified. The state space
model for the aeropendulum is

[

θ̇

θ̈

]

=

[

0 1

−ml g d sin(θ)

J θ

c

J

]

[

θ

θ̇

]

+

[

0
Km

J

]

u,

y = [1 0]

[

θ

θ̇

]

, (23)

where u is the system input, y is the system output and,
finally, θ and θ̇ are the system state variables angular
displacement and angular velocity, respectively. Note that
in (23) one has a nonlinear dynamic in the state space
model structure ẋ = f(x, u) with the term sin(θ). The
system parameters are described in Table 1.

Table 1. Aeropendulum system parameters.

Description

m Pendulum mass (kg)
l Pendulum length (m)
d Distance from pivot to center of mass (m)
c Viscous damping Coefficient (Nms/rad)
J Moment of inertia (Kgm2)
g Gravity acceleration (m/s2)
Km Gain of propeller (Nm/µs)

The system is linearised around the operating point and
described by the corresponding transfer function

Θ(s)

U(s)
=

Km/J

s2 + (c/J)s+ (ml g d/J)
. (24)

The parameters of the transfer function are unknown and
simplified by the coefficients a21 = ml g d/J , a22 = c/J
and b21 = Km/J . These coefficients are estimated using

the MatLab
®

software for ramp-type entries. Besides the
system not being modelled, it has a dead zone, that is,
an initial input ud is required to take the system out of
the rest. For each test, different values ud are observed
to take the aeropendulum out of the dead zone. The first
step is determining the time and the corresponding value
ud that system comes out of the rest. The input u(t) used
in identification is obtained from u(t) = ut(t)− ud, where
ut(t) is the total input including dead zone. In Figure 2 the
entries used in identification can be seen. Figure 3 presents
the corresponding output for each test.

The procedure for obtaining the input and output data
of the open-loop system are also repeated for other values
of ut(t) respecting the physical limitations of the system.
Hereupon the number of identified points is increased.
Input values ut(t) are varied between 1145µs to 1162µs.
The transfer function coefficients (24) are identified for
all curves similar to Figures 2 and 3. Among all the
coefficients obtained in the identification, the respective
maximum and minimum were selected. The maximum and
the minimum found are presented following

a211 = 2.9138, a221 = 1.9776, b211 = 0.0481,

a212 = 1.6243, a222 = 0.8289, b212 = 0.1076. (25)

All possible combinations between maximum and mini-
mum coefficients (25) are combined. The transfer functions
for each combination are obtained and transformed into

Figure 2. Inputs u(t) used to identify the aeropendulum
for ut(t) = 1160µs in open-loop system.
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Figure 3. Outputs θ(t) of open-loop system used to identify
the aeropendulum.
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a state space system through realization in controllable
canonical form. In this way, a Takagi-Sugeno fuzzy model
is obtained with nr = 23 rules considering the number of
possible combinations between maximum and minimum
values. The vertices Ai and Bi, i ∈ Knr

, for each local
model of the Takagi-Sugeno fuzzy system (1) are

A1 = A2

[

0 1
−2.9138 −1.9776

]

,

A3 = A4

[

0 1
−2.9138 −0.1076

]

,

A5 = A6

[

0 1
−1.6243 −1.9776

]

, (26)

A7 = A8

[

0 1
−1.6243 −0.1076

]

,

B1 = B3 = B5 = B7 =

[

0
0.0481

]

,

B2 = B4 = B6 = B8 =

[

0
0.1076

]

.



3.2 Switched Control Implementation in Aeropendulum
System

The switched control, shown in Subsection 2.1, is ap-
plied to the nonlinear system aeropendulum described by
Takagi-Sugeno fuzzy model.

Remark 1. A reference tracking control is desired for the
aeropendulum control. The equilibrium states for the
system (23) is x0 =

[

θd 0
]

, where θd is θ desired. For
the equilibrium states to be the origin of the system, a
constant is subtracted in θ in order to track a reference
angle

[

θ̄

θ̇

]

=

[

θ − θd
θ̇

]

. (27)

The first implementation is related to a controller design
without norm constraint, that is, the Theorem 1 is used
with decay rate γ = 0.5. In the second implementation,
the norm constraint is included to controller design. The
Theorem 2 is used and a parameter related to the bound on
norm of the state feedback matrices Ki is minimized with
decay rate γ = 2. For both implementations, the local
models (26) is used. After that, it is possible to analyse
and compare the results for each implementation.

The solution using Theorem 1 with γ = 0.5 is

K1 = [667.5933 374.5367] ,

K2 = [453.0564 255, 0055] ,

K3 = [672.9152 371.3710] ,

K4 = [519.7875 288.6839] , (28)

K5 = [708.6723 405, 6153] ,

K6 = [394.0755 226.7174] ,

K7 = [646.8805 360.1018] ,

K8 = [479.6544 267.9240] .

In Figures 4 and 5, the implementation of the switched
control with gains (28) applied to the aeropendulum sys-
tem is presented. The Figure 4 shows angular position θ(t)
and angular difference θ̄(t) between measured and desired
values. Figure 5 shows the control signal ut(t) and the
switching index σ(t).

Figure 4. Angle θ(t) and angular difference θ̄(t) for
switched control desired with Theorem 1.
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Analysing Figures 4 and 5, one can observe a small steady-
state error, saturation of the control signal and a high
value of settling time. In order to improve results and

eliminate the actuator saturation, a norm constraint is now
considered in the controller design. For that, the Theorem
2 is used in the next controller design.

The solution using Theorem 2 with a suitable decay rate
γ = 2 is

K1 = [190.9680 72.8494] ,

K2 = [142.6710 62.3343] ,

K3 = [241.7246 82.8745] ,

K4 = [186.6029 69.7999] , (29)

K5 = [154.8685 66.5432] ,

K6 = [116.5921 59.0799] ,

K7 = [208.8359 75.7092] ,

K8 = [161.1946 64.8745] .

Figure 5. Switched control ut(t) and index σ(t) desired
with Theorem 1.
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In Figures 6 and 7, the implementation of the switched
control with norm constraint is applied to aeropendulum
system. The gains (29) are used in the implementation.

Figure 6. Angle θ(t) and angular difference θ̄(t) for
switched control desired with Theorem 2.

A
n
g
le

θ(
t)

D
iff
er
en
ce

θ̄(
t)

Time (s)

Desired Measured

From the Figures 6 and 7, one can observe that the steady-
state error is slightly bigger than the Figure 4, however the
control signal is smoother and the actuator saturation is
eliminated. The inclusion of the norm constraint decreases
the settling time because it makes possible to use higher
decay rates. The controller effort without norm constraint
is greater than controller effort with norm constraint as it
can be seen from Figures 5 and 7.

Remark 2. Just a referencial changing is used in order to
obtain the desired values in implementations. The steady-
state error observed in implementaions can be explained



by the fact of the identification method does not consider
the system as a reference tracking problem. The further
away the desired position is from the origin the greater is
the steady-state error.

Figure 7. Switched control ut(t) and index σ(t) desired
with Theorem 2.
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4. CONCLUSIONS

The aeropendulum system built at the Engineering College
of UNESP Ilha Solteira presents a good operation and the
identification obtained allows to control the aeropendulum
system with switched control becoming it stable. The
optimization of the bound on norm of the state feedback
matrices Ki allows to obtain better results with grater
decay rate. The transient response is better and the
elimination of actuator saturation is observed due to the
decrease of the bound on norm of the state feedback
matrices. As future works to further improve the results,
other restrictions in the design of switched controller can
be considered as actuator saturation and performance
indices, the system can be modelled as a reference tracking
problem and integrators can be also added to the controller
design in order to mitigate the observed steady-state error.
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Löfberg, J. (2004). YALMIP: A toolbox for modeling and
optimization in MatLab. Proceedings of the CACSD
Conference, 3.

Santim, M.P.A., Teixeira, M.C.M., Souza, W.A., Cardim,
R., and Assunção, E. (2012). Design of a Takagi-
Sugeno fuzzy regulator for a set of operation points.
Mathematical Problems in Engineering, 2012(1), 1–17.

Silva, H.R.M., Ramos, I.T.M., Alves, U.N.L.T., Cardim,
R., Teixeira, M.C.M., and Assunção, E. (2020).
Switched control design with guaranteed cost for uncer-
tain nonlinear systems subject to actuator saturation.
In 21st IFAC World Congress Virtual (IFAC-V 2020),
8123–8128. Elsevier.

Souza, W.A., Teixeira, M.C.M., Cardim, R., and As-
sunção, E. (2014). On switched regulator design of
uncertain nonlinear systems using Takagi-Sugeno fuzzy
models. IEEE Trans. on Fuzzy Syst., 22(6), 1720–1727.

Takagi, T. and Sugeno, M. (1985). Fuzzy identification of
systems and its applications to modeling and control.
IEEE Transactions on Systems, Man, and Cybernetics,
15(1), 116–132.

Taniguchi, T., Tanaka, K., Ohtake, H., and Wang, H.O.
(2001). Model construction, rule reduction, and robust
compensation for generalized form of Takagi-Sugeno
fuzzy systems. IEEE Transactions on Fuzzy Systems,
9(4), 525–538.

Teodoro, R.G., Nunes, W.R.B.M., Sanches, M.A.A.,
Araujo, R.A., Teixeira, M.C.M., and Carvalho, A.A.
(2019). Polytopic uncertainties identification for elec-
trically stimulated lower limbs. In XXVI Brazilian
Congress on Biomedical Engineering, 337–342. Springer.

Veiga, D.V.V. (2016). Projeto de controle e implementação
de um sistema viga-hélice. Technical report, Trabalho de
Graduação – Universidade Estadual Paulista (UNESP),
Universidade Estadual Paulista – Júlio de Mesquita
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