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Abstract:

With the coming of the complex industrial plants, the majority of control rooms sharing a
common scenario involve operators faced amount of alarms during an overload. Besides, were
often unable to determine which were important in an alarm widespread flooding scenario is
an increasingly frequent situation. To solve this issue, proper handling of industrial processes
requires designing, implementing and updating Process Malfunction Prediction (PMP) systems
able to give advice to the operators being a recommendation to make necessary adjustments
in operating variables. From the wide range of models, we apply Recurrent Neural Networks
(RNNs) using Long Short-Term Memory (LSTM) units, built was a regressor trained to predict
the behavior of failures in an industrial process. The activity values of LSTM units can give
recommendations for the monitoring of malfunctions. To this end, data mining and machine
learning techniques are used, which allow the implementation of a regression. The distinctive
feature of PMP is that dynamically provides information using the data process. Further,
proposed approach was evaluated in a simulated industrial process case study scenario. Lastly,

the evaluation of the experimental results demonstrate the contribution of this work.

Keywords: Regression, Recurrent Neural Network, Long Short-Term Memory, Process
Malfunction Prediction, Industrial Alarm Systems

1. INTRODUCTION

An alarm should be triggered when a process vari-
able exceeds their corresponding control limits (Izadi
et al. (2009), Habibi and Hollifield (2006)). To under-
stand how operators monitoring processes through de-
vices as a Human-Machine Interface (HMI) (ANSI/ISA-
101.01:2015. (2015), ISO-11064-5:2008. (2015)) might ap-
proach such alarms and events, it is important to have
some knowledge about how control and monitoring prac-
tices in process industries changed after the advent
of a Distributed Control System (DCS)-based annuncia-
tors (Kazemi et al. (2019)). More recently, these alarms
are created or changed by configuring a setting in a Super-
visory Control and Data Acquisition (SCADA). An alarm
requires operator action, and the time for human analysis
is short in contrast with the amount of generating data.
Moreover, the emphasis is on the actions taken in response
to normal and upset contexts as shown in Figure 1. Never-
theless, during an abnormal scenario, an operator may be
required to perform a series of actions in time (Silva et al.
(2019)).

The industrial automation level achieved in the last
decades has often been scared against to derive insight
from their event generated. In industry, an event consists
of any relevant occurrence within the operational scope
of the system. Events detail the general plant operation
circumstances and generally do not require acknowledge-
ment or intervening actions. Alarms, in turn, are audible
or visible means of indicating an equipment malfunction,

deviations in the process or abnormal conditions, requiring
a response from operators as shown in Figure 1.

According to ANSI/ISA-18.2:2016. (2016), the alarms
must be configured to inform only the most necessary
events, following a prioritization that can be carried out
through rationalization, since alert rates can exceed levels
that can be managed by the human being. Regarding
Three Mile Island accident in 1979, or the Milford Haven
in 1994, or on March 20, 2001, the Petrobras Platform
36 (P36) sink into the Atlantic Ocean (NASA (2008)).
The series of alarms and events, which are explained by
the poor performance of alarm systems, human factors are
not taken into consideration during the design or aid the
control operators in addressing the overload situations and
further incidents (Wang et al. (2016), Kourti (2002)).

According to the Engineering Equipment and Materi-
als Users Association (EEMUA), the purpose of an
alarm system is to redirect the operator’s attention to-
wards plant conditions requiring timely assessment or
actions (EEMUA-191:2007. (2007)). This huge amount
of data is wused for control and monitoring of the
plant (Schneider et al. (2017)). Although many variables
are measured in a plant, they are not all independent.
A single fault could cause many system signals to exceed
their limits and appear as multiple faults, and hence the
fault isolation is very difficult. According to (Frank and
Blanke (2007)), faults occur in the industrial processes
that cause undesired or unacceptable system behavior. For
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1-pl pl Operator action in
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Figure 1. Illustration of the alarm with labels for each
context.

instance, in hazardous processes as e.g. chemical plants,
the consequences of a fault can be disastrous.

Faults in devices as sensors represent discrepancies be-
tween the measured and real values of system variables.
Actuators fault, represent discrepancies between input
commands for actuators and their real output (Zaytonn
and Lafortune (2013)). Consider how the alarm system
might be designed to handle events. A fault can generate
an alert signal as alarms and hundred discrete data are
generated. According to the ISA 18.2 and EEMUA 191,
an alarm annunciation rate should be no more than 10
alarms per 10 minutes. By analysing the industrial process,
after collecting the historical data, and choose a witch
fault detection model is more useful. The model costs
and performance values to ensure the best cost-effective
relation.

The detection of failures in industrial systems is closely
linked to the temporal relations that occur in the pro-
cess (Silva et al. (2019)). This work proposes a study of
the literature concerning the use of Al based on techniques
to pattern recognition. In short, Recurrent neural network
layer with LSTM units was applied from the wide range of
models used for time series analysis after defining a sliding
window. The new method is based on the behavior of
process variables, using multi-temporal sequences of input
signals will later be applied as inputs of LSTM (Yang et al.
(2019), Tian et al. (2018)).

The rest of the paper is structured as follows. Section
2 provides a review of the literature and describes the
background. Section 3 provides a graphical representation
of the event based environment. Section 4 presents the
relevant information in order to implement the proposed
approach. Section 5 presents the results, while discussing
these results and their application to actual setups. Section
6 concludes the paper providing directions for future work.

2. BACKGROUND AND RELATED WORK

A paradigm of Artificial Intelligence (Al) is the Artificial
Neural Networks (ANNs) formed by a set of neurons and
their interconnections used for regression and classifica-
tion (Jia et al. (2016)), which are responsible for pro-
cessing information. Artificial neural networks comprised
in the AI paradigm that seeks the solution of problems

through the computational simulation of the mechanisms
and structures of the human brain. A neural network
consists basically in the interconnection of artificial neu-
rons, forming a mesh composed of some or several signal
processing units. The ANN structure adopted, implies
the learning algorithm directly to be used. It is through
the learning algorithm that ANN obtains the knowledge
necessary to solve the problem (Haykin (1998)). Conse-
quently, this algorithm ultimately determines the ability to
detect faults (Himmelblau (1980), Moseler and Isermann
(2000), Blanke et al. (2006), Dubrova (2013), Venkatasub-
ramanian et al. (2003)).

A context knowledge can be further applied in a PMP.
The working hypothesis is that the context should improve
performance by a perspective from the one presented
in (Graves et al. (2005) and Greff et al. (2016)).

RNNS5 are designed to capture time-dependency in sequen-
tial data. These models were popular after the introduction
of RNNs with LSTM units, proposed to overcome the dif-
ficulties of handling long-term dependency and vanishing
gradient (Razvan et al. (2013), Sepp and Jiirgen (1997)).

According to (Greff et al. (2015)) the central idea behind
the LSTM architecture is a memory cell which can main-
tain its state over time, and non-linear gating units which
regulate the information flow into and out of the cell.

The LSTM is structured and the results are compared even
with a distinct activation function where each visible unit
has a bias scalar multiplication of the activation function
input.
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Figure 2. Structure of LSTM cell. Source: Adapted
from (Sepp and Jiirgen (1997)).

The activation function can be expressed as (Su et al.
(2017), Ravanbakhsh et al. (2016), Martens et al. (2013)):
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LSTM cell as shows in the Figure 2 captures the temporal
relationship among time series data. The computation can
be defined as follows (Yang et al. (2019)):
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oy = Sigmoid(W°hy_1 + b°) (5)
hy = tanh(o, O my) (6)

where:

Wi W we, we are weight matrix-vector multiplication
by (h¢—1), and b’ bf b° b¢ are the bias, and o; ) my,
feOmi_1 + it O ¢ are element-wise multiplication.

Regarding the data mining, known as the knowledge
discovery task that has many applications (Ge et al.
(2017)). A practical implementation of this process runs
through several steps until by training data, it is possible to
generate a regression. In this work, statistical and machine
learning methods are applied to databases generated from
a simulated industrial process.

The technological evolution of automation systems has
been accompanied by the exponential growth of data of
processes. The work in (Yu et al. (2017)), presents a
method for detecting abnormal data segments for histori-
cal data samples, noting the correlation directions between
related process variables. However, the study is finalized
without discussing how to implement this method in an
industrial process effectively to predict an abnormal situ-
ation.

According to (Sarnovsky et al. (2018)), predictive models
can offer effective gains when applied to the optimization
of productive processes. At this point, it is important to
enlighten that masses of data generated are alarm and
event logs are a potential source of knowledge that can
be better explored.

The learning of the machine, and intelligence where there
are different computational methods related to the task
of knowledge discovery. One of the known categories of
learning supervision and supervised learning, a paradigm.

There are four sections of models in machine learning
which are used depending on what input and output data
is available. Supervised learning has a network in which the
current output is compared to the desired output, from the
input patterns, showing the direction of adjustment of the
network weights, to guarantee the smallest error between
the network output and the desired output. In unsuper-
vised learning, input patterns are presented continuously
and the regularity between these data allows for learning.
However, the data label is not known in this process. This
learning ability of ANNs networks allows us to perceive
data patterns without the need to know the equations
or models that gave rise to these data. Semi-supervised
learning occurs when only a small amount of the inputs
has a corresponding output. In the end, reinforced learning
occurs when no historical input or output is available,
the parameter learning is then based on a trial and error
reward system (Russell and Norvig (2003)).

The use of artificial intelligence is applied in the diag-
nosis of faults given the lack of an effective analytical
formulation capable of solving this problem. The detection
of failures in industrial systems is closely linked to the
temporal relations that occur in the process.

The work in (Varga et al. (2010)) presents a model based
on predictive stability analysis to detect a dangerous situa-

tion in advance. The methodology involves the anticipated
simulation of the effect of adjustments in a chemical pro-
cess performed by the operator and calculates a time where
each action must be performed to avoid a disturbance
in the plant. According to the authors, there is a last
controllable operation point at each manipulation before
the process equipment becomes unstable and is presented
with a prediction-based model to detect certain situations
in a chemical industrial process.

In (Nashalji et al. (2014)), the authors use a combination
of the detection technique of neural networks. The work
focuses on the reduction of dimensionality as a way to
improve results obtained with the neural classification
networks. The authors are using two topologies structures
in the neural networks, which are evaluated separately.
The first containing classification of the sample in binary
form and the second as a diagnostic of failure, describing
in which class the sample belongs.

The work in (Wang et al. (2016)) presented an overview
of industrial alarm systems and shows the main causes for
alarm overloading and the most common way to detect an
alarm state among related process variables.

The work in (Wang et al. (2017)) presented a method
to reduce the number of nuisance alarms among related
process variables using techniques to detect specific types
of nuisance alarms and designing delay timers. However,
the study ends without discussing machine learning imple-
mentations in an effective industrial process to predict an
abnormal situation.

In (Yin et al. (2012)), statistical measures with manually
set thresholds are used, that make the use on a large scale
difficult for an individual analysis is required for each class
of failure. The results obtained from the cited work present
space for improvements, there is considerable variation in
all of them between fault detection depending on the type
of fault analyzed.

In (Haitao et al. (2018)), the authors propose a fault
diagnosis method based on LSTM evaluated Tennessee
Eastman benchmark with a classifier approach and a batch
normalization to improve the convergence.

This work presents the results of the implementation of a
PMP method for analysis of data generated in a simulated
industrial process.

3. STUDY ENVIRONMENT AND SITUATIONS

An increase in the sophistication of process control systems
has not eliminated abnormal situations. Consequently,
faults in a complex environment, like the factory floor,
are inevitable. This fault may cause from a reduction
in the process performance to injuries in workers. Sys-
tems that have an imperative need for disponibility and
reliability apply fault tolerance techniques by the need
to maintainability, performance in situations where the
controlled system can have potentially damaging effects
on the environment.

The emergence of new situations over time, which the
mechanism has never experienced, and which are related to
risk factors with high priority, it is necessary to determine
during moments in which proactive actions prevent the



occurrence of the situation like an information overload.
This is a severe problem in control process rooms and
operators of such systems are at risk lacking situation
and systems focus on the operation panel causes confusion
between operators during a process anomaly.

The historical incidents have become serious accidents
as discussed in Section 1. Often either industrial process
operators are kept unaware of shutdown due to the failure
and operational missteps. In the case where multiple
alarms may be triggered at once, the operators need a real-
time methodology to determine the priority of each alarm
in order to address them effectively and in the proper
sequence (NASA (2008)). This scenario causes information
overload to the operator and can occur even if there is a
traditional alarm system (Silva et al. (2018)).

August 2008, the Bayer CropScience pesticide process
plant accident started as shown in Figure 3 in a chem-
ical reaction runaway. Operators scrambled to shutdown
emergency vessel. After this, a set off a violent pressure
that exploded, killing and injuring people. The alarms
were triggered in a few minutes after the first indica-
tion of the high-pressure alarm. In the hazardous process
and risk to people, public and environment, a controlled
shutdown was required in a safety instrumented system
(SIS) (ANSI/ISA-18.2:2016. (2016), CSB (2011)).
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Figure 3. Process variable behavior before the explosion.
Source: Adapted from (CSB (2011)).

The mass of data generated in the automation of process
variable data from field devices includes another kind of
data that also comes from plants in great amount: alarm
and event logs. Also closed-related to plant processes,
these records are bond to plant operation monitoring,
and commonly are brought to the attention of operators.
According to (Soares et al. (2016)), in an industrial process
monitoring, there is a correlation between variables during
an abnormal situation and that can affect other variables
simultaneously.

4. METHODOLOGY

In this section, the methodology developed and used will
be presented. The goal of this process is capturing relevant
information in order to make the predicted behavior easier
of the machine learning algorithms of faults in the process.
The Programming language is Python 3.6 with Keras using

Tensor Flow backend (library for Theano and TensorFlow
(2020)). The subsections below present a description of the
approaches used.

4.1 Data Generate

The study base uses a simulated data process (A). The
study base generated has attributes that correspond to the
various measures of the process. The process with several
responsible for the different stages of production. The
input variables have parameters as the sensor value and
this directly impacts on the mode of operation of the plant.
From the values of the different signals from this process
and that the data are generated are used in this study.
We stored the output values as a CSV format file. This
file has columns that represent the data. Rows represent
an observation of all values. Faults can be specified and
saved, to generate an annotated database which is used in
the mining step proposed in this study.

4.2 Data Preprocessing

For the development presented in this paper a set of open-
source tools in Python libraries were used, with its respec-
tive display packages, statistics, data manipulation and
learning of the machine for the execution of preprocessing
tasks, data mining and deep learning.

The second step is where we preprocessing data (B). After
importing data it is necessary to define the training set
that contains input data to use in RNN.

23 X_train
24 y_train
25

26 for i in range(100, 1000):

27 X_train.append(Data_train_set_W[i-100: i,0])
28 y_train.append(Data_train_set_W[i,0])

[]
[]

Listing 1: Specific data structure.

A normalization step is necessary to use in Sigmoid as
the activation function in the deep learning process. It is
necessary to define the feature range between zero and one
because all the new values are in this range. After this, it
is necessary to create a new data structure to apply this
normalization as a new variable that contains the train
data set normalized between zero and one.

The third step is where we give our contribution whit the
creation of a specifying data structure and specifying what
the RNN can be remembered to predict new values using
a sliding window, shown in Listing 1, defined by the right
time steps. These time steps mean that at each time ¢ the
RNN is going to look at the values before the defined time
step and based on the tendencies and correlations during
this time step it was to predict the next value in t+1.
Defining the correct number of time steps is essential to
prevent overfitting.



Following, we apply the prepared data to RNN. After the
model training, we have the reshaping of the data that
adding dimensionality of the structure data build in the
last step, called a unit, that represents the number of
predictors that we used to predict the next value. At this
time, we will be adding more indicators to help to predict
the ascendent and descendent tendencies of the variables.
To add this new dimension to the matrix, it is necessary
to use one more reshape function with 3D tensor, with the
shape as the number of observations, the time steps, and
the predictors.

4.3 Building the RNN

The RNN (C) was a regressor shown in Listing 2, to predict
the features that give us a better data representation
of the process behavior using Tensor Flow. To predict a
continuous value, we use a regression. After this, we add
to the LSTM layers some dropout regularization.

The step (C) is where we give our contribution. We apply
RNN to take the predictions and this choice gives us
the possibility to explore the regression algorithm. After
regression model training, we have the validation phase.

The optimizer Adam was used at this step (C). For Regres-
sion, the way to evaluate the model performance is with
a metric called Root Mean Squared Error (RMSE) (Kofi
et al. (2013)). It is calculated as the root of the mean of
the squared differences between the predictions and the
real values.

44 #initializing the RNN

45

46 regressor = Sequencial()
47

48 # first layer

49

50 regressor.add(LSTM(units=50, return_sequences=True,
51 input_shape= (x_Data_train.shape[1], 1)))

52 regressor.add(Dropout(@.2))

53

54 # second layer

55 regressor.add(LSTM(units=5@, return_sequences=True))
56 regressor.add(Dropout(©.2))

57

58 # third layer

59 regressor.add(LSTM(units=50, return_sequences=True))
60 regressor.add(Dropout(0.2))

61

61 # fourth layer

62 regressor.add(LSTM(units=50))

Listing 2: The RNN implemented as a regressor.

Observing the benefit in predicting up and down tenden-
cies of process variable values using LSTM layers. For
finishing this step, it is necessary to connect the network
to the train data set and executing the training over the
number that we choose on fitting method and defined the
number of epochs to converge and the batch size number

to define when updating the weights in the artificial neural
network.

4.4 Make Predictions

The train and test split (D) is a technique where part of
the data set is used for training the models and another
part is used to validate these models. Having the validation
results, we can work with the parameters (C) to achieve
the best performance. At the end of this improvement loop,
we go to deploy the phase (D). The deploy phase is out of
scope of this work.

The contributions of this work can be shown in the prac-
tical analysis and evaluation insights. The tests were per-
formed to evaluate the behavior of the process variables.
This work presented the application of machine learning
implemented in python, applied in the data analysis of an
industrial process.

5. RESULTS, DISCUSSION, AND FURTHER
INVESTIGATION

In this section, we present the results of the tests. The
performed tests aim to identify the behavior of continuous
process variables. Data used for these initial tests comes
from a database by the simulated industrial environment.

The raw input data that came from multiple sensors in
an industrial environment are complex and full of noise.
All cited works face this problem, and make an effort to
extract useful information from the input data to perform
the fault behavior detection with better results.

Our initial tests use the Tennessee Eastman Process (TEP)
to simulate an industrial environment. This simulation
generates data regarding normal operation and multiple
simulated faults and stores it in a Database (A). TEP
implementation generates the test dataset used as input
to our regression model. We configured the simulation to
cover the operation normal state and all 20 faults states,
and stored the output values as a CSV format file. This
file has columns that represent the processes features, like
internal reactor pressure, temperature or the aperture that
controls the mixing of the elements. Rows represent an
observation of all 53 Tennessee Eastman Process features.
Faults can be specified and saved, to generate an annotated
database which is used in the mining step proposed in this
study.

The study base generated has 40 attributes that corre-
spond to the various measures of the process as shown in
Figure 4. The process simulates a chemical process with
several responsible for the different stages of production.
This process has four reagents, two products, and one by-
product (Downs and Vogel (1993)). The input variables
have parameters as the flow of reagents and this directly
impacts on the mode of operation of the plant.

By understanding the situations during production can
significantly improve the operator’s ability to manage. The
core of abnormal situations are approaches that address
root causes. Several advantages can be identified from
applying the PMP. The use of machine learning algorithms
in applications related to predicting process variable in
failure behavior. We successfully apply the methodology
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Figure 4. The Tennessee Eastman Process flow sheet.
Source: Adapted from (Downs and Vogel (1993)).

to predict failure behavior on the related process. We
demonstrate that it will enable novel intelligent methods
to improve process operation in the future, for example,
by forwarding fault propagation estimating the effect of
a control logic failure propagation where multiple alarms
may be triggered.

In this section, we present the results of the tests. The
performed tests aim to identify the behavior of contin-
uous process variables. Data used for these tests comes
from a sequence of process variables. Moreover, generated
data, results from the simulated industrial process, using
MATLAB®) / Simulink®) software. At the end, performed
experiments using a database by the industrial environ-
ment.
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Figure 5. The XMEAS 24 in normal behavior.

Figure 5 shows the normal behavior of the element inlet
flow of the reactor, where it is possible to note that the
value is stable around the value of 14.9 % of total mass
entering the reactor.

A predictive analysis of process variable XMEAS 24 (Downs
and Vogel (1993)) in normal behavior is presented in
Figure 6. An industrial process accumulates data that will
support valuable conclusions regarding current production
that can be useful for predicting situations.

Figure 7 shows the failure behavior, there is an increase
the concentration of this element at the entrance of the
reactor, reaching the value of 16 %. This is an important
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Figure 6. A predictive analysis of process variable XMEAS
24 in normal behavior.
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Figure 7. The XMEAS 24 in failure behavior.

functional requirement for alarm system it must detect and
warn the operator of abnormal operating condition that
require attention. In this situation, we must rely on either
an operator quickly identify the situation and initiating an
emergency state.

The conducted experiments aimed to assess the behavior
of the continuous process variables as shown in Figure 8
where it is possible to note that the value is predicted
around the value of XMEAS 24 in failure behavior pre-
sented in Figure 7.

Our solution uses the Tennessee Eastman Process to sim-
ulate an industrial environment. This simulation gener-
ates data regarding plant operation. According Table 6
in (Downs and Vogel (1993)), the reactor has a normal
pressure operating limit of 2895 kPa. The conducted ex-
periments aimed to assess the behavior of the process
variable XMEAS 24 in failure behavior shown in Figure
8 during the increase the concentration of this element at
the entrance of the reactor make a step change so that the
reactor operating pressure changes as shown in Figure 9.

The use of Al should be applied in the diagnosis of faults
given the lack of an effective analytical formulation capable
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of solving this problem. This work proposes a study of the
literature for the detection of fault behaviour.

6. CONCLUSION

Most of the malfunctions that lead to failure and conse-
quently a stop are process driven and most of them can be
predicted and even controlled. This paper was engaged in
the prediction of process variables in an industrial process.
Corroborating with this, the methods were based on learn-
ing the supervised machine. For the training of regressor,
data were used for training and validation extracted from
the database.

The results obtained through the computational analysis
showed that the regression method proposed in this work
can efficiently identify the failure’s behavior that has
occurred in this process. This is a critical issue, especially,
because or the faults, requiring action or analysis at a
specific time. In this way, it is possible to evaluate the
behavior of events and to predict the situation of the plant,
being also possible to generate recommendations.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenagao de
Aperfeicoamento de Pessoal de Nivel Superior - Brasil
(CAPES) - Finance Code 001

REFERENCES

ANSI/ISA-101.01:2015. (2015). Human Machine Interface
for Process Automation Systems. Available at: http://
Www.isa.org.

ANSI/ISA-18.2:2016. (2016). Management of Alarm Sys-
tems for the Process Industries. The International Soci-
ety of Automation. Available at: http://www.isa.org.

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., and
Schroder, J. (2006). Diagnosis and fault-tolerant control,
volume 691. Springer.

CSB (2011). Investigation report: Pesticide chemical
runaway reaction pressure vessel explosion. report no.
2008-8-i-vw. Available at http://www.csb.gov.

Downs, J.J. and Vogel, E.F. (1993). A plant-wide indus-
trial process control problem. Computers & chemical
engineering, 17(3), 245-255.

Dubrova, E. (2013). Fault-tolerant design. Springer.

EEMUA-191:2007. (2007).  Alarm Systems: A Guide
to Design, Management and Procurement. Available
at: http://www.eemua.org/Products/Publications/
Print/EEMUA-Publication-191.aspx.

Frank, P. and Blanke, M. (2007). Fault diagnosis and
fault-tolerant control. Control Systems, Robotics and
Automation, 16.

Ge, Z., Song, Z., Ding, S.X., and Huang, B. (2017). Data
mining and analytics in the process industry: The role of
machine learning. IFEE Access, 5, 20590—20616. doi:
10.1109/ACCESS.2018.2794765.

Graves, A., Jiirgen, S., and Souza, M.B. (2005). Framewise
phoneme classification with bidirectional Istm and other
neural network architectures. Neural Networks, 18, 602—
610. doi:10.1609/aimag.v17i3.1230.

Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R.,
and Schmidhuber, J. (2016). Lstm: A search space
odyssey. Transactions on Neural Network and Learning
Systems.

Greff, K., Srivastava, S., Koutnik, J., Steunebrink, B.R.,
and Schmidhuber, L. (2015). Lstm: A search space
odyssey. Neural Computation.

Habibi, E. and Hollifield, B. (2006). Alarm systems greatly
affect offshore facilities amid high oil process. World Oil
Magazine, Houston, v., 227, 1-4.

Haitao, Z., Shaoyuan, S., and Bo, J. (2018). Sequential
fault diagnosis based on Istm neural network. I[EFEE
Access: Special Section on Sequential Data Modeling and
its Emerging Application, 6. doi:10.1109/ACCESS.2018.
2794765.

Haykin, S. (1998). Neural Networks: A Comprehensive
Foundation. Prentice Hall, 2 edition.

Himmelblau, D.M. (1980). Fault detection and diagnosis
in chemical and petrochemical processes. The Chemical
Engineering Journal,, 20, 79-85.

ISO-11064-5:2008. (2015). Ergonomic design of control
center - Part 5: Displays and Control. Available at:
http://www.iso.org.

Izadi, 1., Shah, S.L., and Shook, D.S. (2009). An intro-
duction to alarm analysis and design. Proceedings of the



7th IFAC Simposium on Fault Detection, Supervision
and Safety of Technical Processes, 16, 308-320.

Jia, F., Lei, Y., Lin, J., Zhou, X., and Lu, N. (2016). Deep
neural networks: A promising tool for fault characteristic
mining and intelligent diagnosis of rotating machinery
with massive data. Mechanical Systems and Signal
Processing, 72-73, 303-315. doi:10.1016/j.ymssp.2015.
10.025.

Kazemi, Z., Safavi, A.A., Pouresmaeeli, S., and Naseri, F.
(2019). A pratical framework for implementing multi-
variate monitoring techniques into distributed control
system. Control Engineer in Practice, 82, 118-129. doi:
10.1016/j.conengprac.2018.10.003.

Kofi, G.A., Luo, G., and Quin, K. (2013). Multi-level data
pre-processing for software defect prediction. 170 — 174.
doi:10.1109/ICII1.2013.6703111.

Kourti, T. (2002). Process analysis and abnormal situation
detection: From theory to practice. IEEE Control
Systems Magazine, 22(5), 10 — 25. doi:10.1109.

library for Theano, K.D.L. and TensorFlow (2020).

Martens, J., Chattopadhya, A., and Pitassi, T. (2013). On
the representational efficiency of restricted boltzmann
machines. Advances in Neural Information Processing
Systems 26 (NIPS 2013).

Moseler, O. and Isermann, R. (2000). Application of
model-based fault detection to a brushless dc mo-
tor. IEEE Transactions on industrial electronics, 47(5),
1015-1020.

NASA (2008). That sinking feeling. system failure case
studies. National Aeronautics and Space Administra-
tion, 2. Available at: http://<http://nsc.nasa.gov/
SFCS/SystemFailureCaseStudy/Details/11.

Nashalji, M.N., Seyedamin, A., and Mohammad, N.
(2014). Integration of principal component analysis
and neural classifier for fault detection and diagnosis
of tennessee eastman process. Engineering Technology
and Technopreneuship (ICE2T), 166-170.

Ravanbakhsh, S., Poczos, B., Schneider, J., Schuurmans,
D., and Greiner, R. (2016). Stochastic neural networks
with monotonic activation functions. 19th International
Conference on Artificial Intelligence and Statistics -
AISTATS, 1-61.

Razvan, P., Tomas, M., and Yoshua, B. (2013). On the
difficulty of training recurrent neural networks. 30th
International Conference on Machine Learning, 28.

Russell, J.S. and Norvig, P. (2003). Artificial intelligence
a modern approach. Pearson Education, Inc.

Sarnovsky, M., Bednar, P., and Smatana, M. (2018). Big
data processing and analytics platform architecture for
process industries factories. Big data and cognitive
computing. doi:10.3390/bdcc2010003.

Schneider, J.F., Pauwels, P., and Steiger, S. (2017).
Ontology-based modeling of control logic in building
automation systems. IFEFE Transactions on Industrial
Informatics, 13, 3350-3360.

Sepp, H. and Jiirgen, S. (1997). Long short-term memory.
Neural Computation, 8, 1735-1780.

Silva, M.J., Pereira, C.E., and Gotz, M. (2018). Context-
aware recommendation for industrial alarm system. 16th
IFAC Symposium on Information Control Problems in
Manufacturing (INCOM 2018), 51, 229-234. doi:10.
1016/j.ifacol.2018.08.266.

Silva, M.J., Pereira, C.E., and Gotz, M. (2019). On the
use of inductive biases for semantic characterization of
industrial alarm systems. IEEE PES Innovative Smart
Grid Technologies Conference - Latin America (ISGT
Latin America), 229-234. doi:10.1109/ISGT-LA.2019.
8894963.

Soares, V.B., Pinto, J.C., and Souza, M.B. (2016). Alarm
management practices in natural gas processing plant.
Control Engineer in Practice, 55, 185-196. doi:10.1016/
j-conengprac.2016.07.004.

Su, Q., Liau, X., and Carin, L. (2017). A prob-
abilistic framework for mnonlinearities in stochastic
neural networks. 31st Conference on Neural In-
formation Processing System - NIPS 2017, 1-10.
Https://arXiv:1709.06123.

Tian, Y., Zhang, K., Lin, X., and Yang, B. (2018). Lstm-
based traffic flow prediction with missing data. Neu-
rocomputing, 318, 297-305. doi:10.1016/j.conengprac.
2018.08.067.

Varga, T., Szeifert, F., and Abonyi, J. (2010). Detection
of safe operating regions: A novel dynamic process sim-
ulator based predictive alarm management approach.
American Chemical Society, 49, 658-668. doi:10.1021/
i€9005222.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N.,
and Yin, K. (2003). A review of process fault detection
and diagnosis: Part iii: Process history based methods.
Computers € chemical engineering, 27(3), 327-346.

Wang, J., Iang, Z., Chen, K., and Zhou, D. (2017). Prac-
tices of detecting and removing nuisance alarms for
alarm overloading in thermal power plants. Control En-
gineering Practice, 67, 21-30. do0i:10.1016/j.conengprac.
2017.07.003.

Wang, J., Yang, F., Chen, T., and Shah, s. (2016). An
overview of industrial alarm systems: Main causes for
alarm overloading, research status, and open problems.
Transactions on Automation Science and Engineering.,
13, 1045-1061. doi:doi:10.1109/TASE.2015.2464234.

Yang, B., Sun, S., Li, J., Lin, X., and Tian, Y. (2019). Traf-
fic flow prediction using lstm with feature enhancement.
Neurocomputing, 332, 320-327. doi:10.1016/j.neucom.
2018.12.016.

Yin, S., Ding, S., Haghani, A., Adel, H., Haiyang, H., and
Ping, Z. (2012). A comparison study of basic data-
driven fault diagnosis and process monitoring methods
on the benchmark tennessee eastman process. Control
Engineering Practice, 22, 1567-1581.

Yu, Y., Zhu, D., Wang, J., and Zhao, Y. (2017). Abnormal
data detection for multivariate alarm system detection
based on correlation directions. Journal of Loss Preven-
tion in the Process Industries, 45, 43-55. doi:10.1016/j.
jlp.2016.11.011.

Zaytonn, J. and Lafortune, S. (2013). Overview for fault
diagnosis methods for discrete event systems. Anual
Reviews in Control, 37, 308-320. doi:10.1109/ACCESS.
2017.2756872.





