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Abstract: Multi-input multi-output (MIMO) systems have been a major concern for decades.
However, due to the intrinsic complexity raised by the process interactions and optimization
issues, MIMO approaches have not been developed as extensively as the single-input single-
output ones. Recently, nevertheless, several algorithms have been proposed to address this
problem, most of them based on recursive algorithms and many dependent on the assumption
that the transfer function denominator polynomials are the same for all subsystems. In this
article, an iterative least-squares-based algorithm, a pseudolinear regression and a Gauss-
Newton optimization-based algorithm are proposed to provide a continuous-time output-error
multi-input single-output model by means of iterative strategies. The numerical simulations
indicate the iterative least-squares-based and the pseudo-linear regression algorithms have
similar performances and generate more accurate and precise estimates than the Gauss-Newton
one, which presented averages and standard deviations of the parameters ranging from twice as
large to one order of magnitude higher than those of the other two algorithms.
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1. INTRODUCTION

Multivariable systems are not uncommon in industrial
processes, however, complexity rises significantly in identi-
fication procedures, both in terms of analysis and compu-
tational efficiency, as the number of subsystems increases
in comparison to the single-input single-output (SISO)
context, which occurs due to process interactions and
optimization issues. Therefore, despite the SISO approach
has been treated more extensively due to its simplicity,
multi-input multi-output identification formulations have
always been a major concern and some effort has been done
on the past towards a multivariable identification approach
(El-Sherief and Sinha, 1979) (Ljung, 1987).

In Rajapandiyan and Chidambaram (2012a) and Ra-
japandiyan and Chidambaram (2012b), the time-delay in
the estimation and nonlinear optimization is presented as a
rather faster option to obtain first- and second-order mod-
els with time delay in closed-loop than genetic algorithm-
based methods. More recently, a set of algorithms have
been developed to address the possibility of using di-
verse model structures, not including the time-delay as
an estimated variable: FIR (Chan et al., 2019), ARX (Jin
et al., 2014), ARMAX (Ding, 2014), ARARMAX (Liu
et al., 2018), OE (He et al., 2019), OE with moving av-
erage (Zhang et al., 2011) and autoregressive error (Ding,
2018), BJ (Wang and Ding, 2016a) etc.. These algorithms
originate from different methods, for instance, gradient-
based algorithms (Ding, 2018), generalised instrumental
variables (Söderström, 2012) or linear squares (Liu and
Ding, 2013), and allow the addition of features which

improve their performance, such as hierarchical iterative
principle (Ma et al., 2019), coupled-least squares (Ding,
2013), data filtering (Wang and Ding, 2016b) and bias
compensator (Chan et al., 2019). Part of them assumes
a common denominator polynomial associated to every
subsystem.

Most of the proposed algorithms are recursive ones, al-
though some iterative options are available, for exam-
ple, Ding (2014) and Ding (2018). This latter category
is characterized by providing a progressive approach to
the true parameters, however, differently to the recursive
algorithms, they use the whole batch of data to obtain
each new estimate.

Decomposition of a multi-input single-output (MISO)
model into their SISO submodels is a strategy used in
Yan et al. (2016) and He et al. (2019). In this article, an
idea similar to that used in He et al. (2019) is followed, in
which an output error MISO model is decomposed into a
set of SISO models and their responses are accumulated
to produce the overall output estimation that composes
the prediction error. Nevertheless, instead of following the
recursive approach, three iterative algorithms are proposed
to estimate the parameter vector: an iterative fixed un-
correlated variables linear squares, which is proposed in
this work, along with a pseudo-linear regression, and a
Gauss-Newton-based optimization, all of them providing
continuous-time models for open-loop plants. The three
algorithms performances are compared by means of a
numerical simulation example.
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2. PROBLEM STATEMENT

Let G(s) be the transfer matrix that describes the dynam-
ics of a MISO continuous-time linear time-invariant (LTI)
system with m inputs:

G(s) =
[
G1(s) G2(s) . . . Gm(s)

]
=

[
B1(s)
F1(s)

B2(s)
F2(s)

. . .
Bm(s)
Fm(s)

]
(1)

Bi(s) = bi,1sn−1 + bi,2sn−2 + . . .+ bi,n (2)

Fi(s) = sn + fi,1sn−1 + fi,2sn−2 + . . .+ fi,n, (3)

in which i = 1,2, ...,m, and n is the model order.

If one decides to identify this system with an ARX model
structure, one should make some decisions relative to the
model order. For example, if the subsystems are of first
order and it is made the choice of using n-th-order models
to describe each input-output dynamics, since this is the
structure which best models their relation, the overall
model will lack degrees of freedom because there will be
only n poles available to describe the dynamics of all
subsystems. In order words, the model will be under-
parametrized.

Instead, one may choose to provide more degrees of free-
dom to the model by using a higher-order model. For
instance, if the system has three inputs and each submodel
is of first order, a third-order model can be used in the
identification so that one will have one pole available in the
model for each pole in the true system. In this case, the
overall model will be over-parametrized, since there will
be two extra zeros and poles in the model for each input-
output combination, providing the model with exceeding
degrees of freedom. Ideally, this should not be an issue
due to the fact that the extra zeros in each sub-model are
expected to cancel with the poles that approximate the
other sub-models dynamics. Whenever disturbances are
present, however, such cancellations are not guaranteed.

Another possibility would be to apply a model reduction
technique, for example, balanced truncation, on the high-
order models so one may reduce each submodel to n-th-
order ones.

In summary, there exists an issue regarding matching
the model order with the true system one. One option
to solve this problem would be the selection of a corre-
sponding model structure to identify the true model, with
each input-output combination modelled with independent
poles, as shown in equation (1). The immediate obstacle to
applying this structure is the fact that, in order to obtain
the correct parameters for each sub-model, it would require
the knowledge of the contributions from each input to the
output, which are unknown. The goal in this article is,
therefore, to solve this problem by proposing the identifi-
cation of the multivariable system with a model structure
which accounts for independent poles for each subsystem.

3. PROPOSED METHOD

Converting the transfer matrix of equation (1) into the
continuous-time domain by means of equivalent transfer
operators, the measured output y(t) is given by:

y(t) =
m

∑
i=1

Gi(ρ)ui(t)+ n(t) (4)

where the signals {y1(t),...,ym(t)} are the system responses
to the inputs u1(t),...,um(t), respectively, which compound
the output y(t), n(t) is white noise and ρ is the derivative
operator.

The following output error model structure will be used:

y(t) =
m

∑
i=1

Bi(ρ)

Fi(ρ)
ui(t)+ e(t) (5)

Bi(ρ) = bi,1ρ
n−1 + . . .+ bi,n (6)

Fi(ρ) = ρ
n + fi,1ρ

n−1 + . . .+ fi,n. (7)

where ρ is the derivative operator. It is important to
highlight that not only Bi(ρ) must be different for each
subsystem but also Fi(ρ) must be assigned as an indepen-
dent polynomial for each input.

3.1 Initial Model

A MISO ARX model is estimated in order to provide an
initial model for the system. It may be of any order but
there exists a trade-off to make, which is discussed in the
next section.

It is proved in Ljung and Wahlberg (1992) that, if both
the number of samples and model order tend to infinity,
and the former increases much faster than the latter, the
identified rational model tends to the true system. Thus, it
is suggested to start assuming this condition is approached,
choosing an initial high-order model. Assuming the subsys-
tems to be of order n, the initial model is suggested to be
of order n×m.

The initial ARX model structure is thus given by:

A(ρ;η)y(t) =
m

∑
i=1

Γ(ρ;η)ui(t)+ e(t) (8)

A(ρ;η) = ρ
n×m + a1ρ

n×m−1 + . . .+ an×m (9)

Γi(ρ;η) = γi,1ρ
n×m−1 + . . .+ γi,n×m, (10)

where e(t) is the estimation error.

Applying the state-variable filter method (see section 4)
and understanding that an operator ρ with a negative op-
erator j is equivalent to an integration of the corresponding
function, executed j times over the integration interval, the
data vector is defined therefore as:

φ(t) = [−ρ
−1y(t) . . . −ρ

−n×my(t)

ρ
−1u1(t) . . . ρ

−n×mu1(t) . . .

ρ
−1um(t) . . . ρ

−n×mum(t)]T
(11)

and the parameter vector:

η = [a1 . . . an×m γ1,1 . . . γ1,n×m . . . γm,1 . . . γm,n×m]T , (12)

the initial model predictor is given by:

ŷIM(t,η) = [1−ρ
−n×mA(ρ,η)]y(t)+

m

∑
i=1

[ρ−n×m
Γi(ρ,η)ui(t)]

(13)
and the error to be minimized:

e(t,η) = y(t)− ŷIM(t;η)

= y(t)−φ(t)T
η .

(14)



The previous formulas are applied at each sample instant
t = tr, where r = 1,2, . . . ,N are the data samples, and the
parameter estimate is obtained by means of least squares
as follows:

η̂ =
[ N

∑
r=1

φ(tr)φ(tr)T
]−1[ N

∑
r=1

φ(tr)y(tr)
]

(15)

Now that one has a model, one may proceed to the
computation of a lower-order model, whose subsystems are
of order n.

3.2 Iterative fixed uncorrelated variables linear squares

The first method consists in finding a parameter vector θ̂

that makes a vector ζ (t) — compounded by past values of

y(t), ui(t) and θ̂ — to be uncorrelated with the error vector,

i.e. if ZN is the experimental data, θ̂ is the solution for the
equation:

fN(θ ;ZN) =
1
N

N

∑
r=1

ζ (tr;θ)ε(tr;θ) = 0 (16)

ε(t;θ) = y(t)−ϕ
T (t;θ)θ . (17)

The ϕ(t,θ) vector will comprise the inputs and their
individual responses. Since the latter are not available,
the simulated noise-free responses generated by the initial
model which was assumed to tend to the true model will
be used instead. The model structure now changes to the
output error one described by equations (5) to (7) so that
one may estimate m sets of transfer functions of order n,
each one corresponding to an input and with its own and
independent set of poles and zeros.

The simulated noise-free response is defined as:

w(t) =
m

∑
i=1

wi(t) (18)

wi(t) =
m

∑
i=1

Bi(ρ)

Fi(ρ)
ui(t), (19)

in which wi(t)(i = 1,2, ...,m) are the contributions from
each input to the output response. The output predictor
for the output error model based on its past values is given
as follows:

ŷIV (t;θ) =
m

∑
i=1

ŷIV
i (t;θ) (20)

ŷIV
i (t;θ) =− fi,1ρ

−1wi(t)− . . .− fi,nρ
−nwi(t)

+ bi,1ρ
−1ui(t)+ . . .+ bi,nρ

−nui(t).
(21)

The output predictor is now defined in function of a data
and a parameter vectors:

ŷIV (t;θ
IV ) = ϕ

IV (t)θ
IV (22)

ϕ
IV (t) = [ϕ IV

1 (t)T
ϕ

IV
2 (t)T ... ϕ

IV
m (t)T ]T (23)

ϕ
IV
i (t) = [−ρ

−1wi(t) −ρ
−2wi(t) ... −ρ

−nwi(t)

+ ρ
−1ui(t) + ρ

−2ui(t) ... + ρ
−nui(t)]T .

(24)

θ
IV = [(θ

IV
1 )T (θ

IV
2 )T ... (θ

IV
m )T ]T (25)

θ
IV
i = [ fi,1 fi,2 ... fi,n ui,1 ui,2 ... ui,n]T (26)

One should account for the fact that the contributions
from each input are not available and, therefore, their

values are computed based on a previous model by means
of filtering with (19). Assuming the last estimated model
to be the best approximation for the true response, and
defining k as the iteration index, it will be used in the
composition of ϕ IV (t;θ). then, the equations (20) to (24)
will be rewritten as follows:

ŷIV (t; θ̂
IV,k,θ IV ) =

m

∑
i=1

ŷIV
i (t;θ

IV,k,θ IV ) (27)

ŷIV
i (t; θ̂

IV,k,θ IV ) =− fi,1ρ
−1wi(t; θ̂

IV,k)− . . .

− fi,nρ
−nwi(t; θ̂

IV,k)

+ bi,1ρ
−1ui(t)+ . . .+ bi,nρ

−nui(t).
(28)

ŷIV
i (t; θ̂

IV,k,θ IV ) = ϕ
IV
i (t; θ̂

(IV,k))θ
IV
i (29)

ϕ
IV (t;θ̂ IV,k) =

[ϕ IV
1 (t; θ̂

IV,k)T
ϕ

IV
2 (t; θ̂

IV,k)T ... ϕ
IV
m (t; θ̂

IV,k)T ]T
(30)

ϕ
IV
i (t; θ̂

IV,k) = [−ρ
−1wi(t; θ̂

IV,k) ... −ρ
−nwi(t; θ̂

IV,k)

ρ
−1ui(t) ... ρ

−nui(t)]T .
(31)

Thus, the prediction error is defined as:

ε
k(t; θ̂

IV,k,θ IV ) = y(t)− ŷIV (t; θ̂
IV,k,θ IV )

= y(t)−
m

∑
i=1

ŷIV
i (t; θ̂

IV,k,θ IV )

= y(t)−
m

∑
i=1

ϕ
IV
i (t; θ̂

IV,k)T
θ

IV
i

(32)

It is worth explaining that the first iteration should be
performed based on the initial model, so that:

ε
1(t;η ,θ IV ) = y(t)−ϕ

IV (t;η)T
θ

IV (33)

ϕ
IV (t;η) = [ϕ IV

1 (t;η)T
ϕ

IV
2 (t;η)T ... ϕ

IV
m (t;η

T ]T (34)

ϕ
IV
i (t;η) = [−ρ

−1zi(t;η) ... −ρ
−nzi(t;η)

+ ρ
−1ui(t) ... + ρ

−nui(t)]T
(35)

z(t; η̂) = ŷIM(t; η̂) =
m

∑
i=1

Γi(ρ; η̂)

A(ρ; η̂)
ui(t). (36)

Similarly to what happens in a instrumental variables
algorithm, the vector ζ (t;θ) is chosen in such a way it
is uncorrelated with the noise, which is equivalent to
determine that it does not depend on the output. The
instruments will be chosen to be the input and the model
output response but, this time, the initial model will be
always used to obtain the responses from each input.
Hence:

ζ
IV (t; η̂) = [ζ IV

1 (t; η̂)T
ζ

IV
2 (t; η̂)T ... ζ

IV
m (t; η̂)T ]T (37)

ζ
IV
i (t; η̂) = [−ρ

−1z(t; η̂) ... −ρ
−nz(t; η̂)

+ ρ
−1ui(t) ... + ρ

−nui(t)]T .
(38)

The parameter vector θ̂ IV is finally estimated with a
bootstrap method to solve the perform the regression
also analogously to that found in instrumental variables
method, so that one has:



θ̂
IV,k+1 =

[ N

∑
r=1

ζ
IV (tr; η̂)ϕ

IV (tr; θ̂
IV,k)T

]−1

×
[ N

∑
r=1

ζ
IV (tr; η̂)y(tr)

] (39)

3.3 Pseudo-linear regression

Another application of a bootstrap method would be for
estimating the parameter vector by means of solving a
pseudo-linear regression. In this case, most of the theory
presented in the previous section remains the same, but the
definitions of the vectors ϕ(t;θ) and ζ (t;θ) will change.

For this case, ζ (t;θ) = ϕ(t;θ) and ϕ(t;θ) will be no
longer given as a function of the initial model, but will
be recomputed at each iteration as function of the last
estimated model. Thus, the definitions are adapted as
follows:

• Output predictor:

ŷPLR(t;θ
PLR,θ̂ PLR,k) =

m

∑
i=1

ŷPLR
i (t;θ

PLR,θ̂ PLR,k) (40)

ŷPLR
i (t;θ

PLR,θ̂ PLR,k) = ϕ
k
i (t; θ̂

PLR,k)θ
PLR
i (41)

• Data vector:

ϕ
PLR(t; θ̂

PLR,k) = [ϕPLR
1 (t; θ̂

PLR,k)T

... ϕ
PLR
m (t; θ̂

PLR,k)T ]T
(42)

ϕ
PLR
i (t; θ̂

PLR,k) = [−ρ
−1wPLR,k

i (t; θ̂
PLR,k)

... −ρ
−nwPLR,k

i (t; θ̂
PLR,k)

+ ρ
−1ui(t) ... + ρ

−nui(t)]T
(43)

• Simulated noise-free output responses:

wPLR,k
i (t;θ

(PLR,k)) =
Bi(ρ; ˆθ PLR,k)

Fi(ρ; ˆθ PLR,k)
ui(t) (44)

• Parameter vector:

θ
PLR = [(θ

PLR
1 )T (θ

PLR
2 )T ... (θ

PLR
m )T ]T (45)

θ
PLR
i = [ fi,1 fi,2 ... fi,n ui,1 ui,2 ... ui,n]T (46)

• Prediction error:

ε(t;θ
PLR,θ̂ k) = y(t)− ŷPLR(t;θ

PLR,θ̂ PLR,k)

= y(t)−
m

∑
i=1

ŷPLR
i (t;θ

PLR,θ̂ PLR,k)

= y(t)−ϕ
PLR(t; θ̂

PLR,k)T
θ

PLR

(47)

• Parameter estimation:

θ̂
PLR,k+1 =

[ N

∑
r=1

ϕ
PLR(tr; θ̂

PLR,k)T
ϕ

PLR(tr; θ̂
PLR,k)

]−1

×
[ N

∑
r=1

ϕ
PLR(tr; θ̂

PLR,k)y(tr)
]

(48)

3.4 Prediction-Error Method and Non-linear Optimization

Finally, a last method consists on solving a non-linear
optimization problem by means of the application of the
Gauss-Newton method.

Following the developments in Ljung (1987) and Zhu
(2001), let the experiment data be referred to as the
variable ZN and the cost function be defined by:

VN(θ ;ZN) =
1
N

N

∑
r=1

1
2

ε(tr,θ)2 =
1
N

N

∑
r=1

1
2

[y(tr)− ŷ(tr,θ)]2.

(49)
Its gradient at a given point θ k is obtained from the
equation:

V ′N(θ
k;ZN) =− 1

N

N

∑
r=1

ψ(tr;θ
k)ε(tr,θ k), (50)

ψ(t;θ k) in which the gradient of the predicted output
ŷ(t,θ k). Here, the latter will be defined directly as the
filtered input:

ŷ(t;θ) =
m

∑
i=1

Bi(ρ)

Fi(ρ)
ui(t). (51)

The derivatives of ŷ(t;θ) relative to the parameters are:

∂

∂ fi, j
ŷ(t;θ) =− Bi(ρ;θ)

Fi(ρ;θ)2 ρ
n− jui(t) (52)

∂

∂bi, j
ŷ(t;θ) =

1
Fi(ρ;θ)2 ρ

n− jui(t), (53)

which leads to the gradient of ŷ(t;θ), at a point θ k.
Applying the filter ρ−n to this gradient, it is given by:

ρ
−n

ψ(t;θ
k) = ρ

−n ∂

∂θ T ŷ(t;θ
k)
∣∣∣
θ=θ k

= ρ
−n ∂

∂θ T

m

∑
i=1

Bi(ρ;θ k)

Fi(ρ;θ k)
ui(t)

∣∣∣
θ=θ k

=



[
− B1(ρ;θ k)

F1(ρ;θ k)2 ρ
−1u1(t) . . . − B1(ρ;θ k)

F1(ρ;θ k)2 ρ
−nu1(t)

]T

...[
− Bm(ρ;θ k)

Fm(ρ;θ k)2 ρ
−1um(t) . . . − Bm(ρ;θ k)

Fm(ρ;θ k)2 ρ
−num(t)

]T

[ 1
F1(ρ;θ k)

ρ
−1(t) . . .

1
F1(ρ;θ k)

ρ
−nu1(t)

]T

...[ 1
Fm(ρ;θ k)

ρ
−1um(t) . . .

1
Fm(ρ;θ k)

ρ
−num(t)

]T


(54)

In the Gauss-Newton method, the value HN(θ
GN,k
N ) is used

as an approximation of the Hessian of the predicted error
ε(t,θ) and is given by:

HN(θ
GN,k
N ) =

1
N

N

∑
r=1

ψ(tr;θ
GN,k)ψ

T (tr;θ
GN,k). (55)

The Gauss-Newton method is finally applied by means of
the following equation:



θ̂
GN,k+1
N = θ̂

GN,k
N − [HN(θ

GN,k
N )]−1V ′N(θ

GN,k;ZN)

= θ̂
GN,k
N −

[ 1
N

N

∑
r=1

ψ(tr;θ
GN,k)ψ

T (tr;θ
GN,k)

]−1

×
[
− 1

N

N

∑
r=1

ψ(tr;θ
GN,k)ε(tr,θ GN,k)

]
=θ̂

GN,k
N +

[ 1
N

N

∑
r=1

ρ
−n

ψ(tr;θ
GN,k)ρ

−n
ψ

T (tr;θ
GN,k)

]−1

×
[ 1

N

N

∑
r=1

ρ
−n

ψ(tr;θ
GN,k)ρ

−n
ε(tr,θ GN,k)

]
.

(56)

An important issue in this case is related to the initial-
ization of the method. Since the initial model is not of
the same model structure, equation (54) does not apply
to it. A solution for this problem would be provided by
finding a model of the same order as the one used in the
Gauss-Newton method, which could be accomplished for
instance, through a model reduction technique, applying
one of the bootstrap methods presented in the previous
subsections in the first iteration or even an ARX estimate
of equivalent order.

4. IMPLEMENTATION ISSUES

Now some considerations are made about the computa-
tional issues for the implementation of this algorithm.
First, as regards the suggestion of using an ARX model
with an order equal to the number of inputs to obtain
the initial model. Since the ARX model structure has only
one common denominator polynomial to describe all the
input-output dynamics, the purpose of identifying with a
higher order model,i.e. a larger number of parameters, is
to have enough degrees of freedom to take into account
of the different poles from each input-output subsystem
and, therefore, individualize as much as possible each in-
put contribution to the output, so one can start up the
iterations with an already rather accurate representation
of the responses. However, this choice implicates an over-
parameterization. The exceeding zeros and poles should
tend to cancel or at least diminish the effect of each other,
but, as the number of inputs grows, this strategy may be
subject to numerical issues because of ill-conditioning of
the least squares covariance matrix, besides the fact that
the model becomes more subject to variance errors due to
noise influence. If the higher-order model is not adequate,
regularization techniques could be applied or even lower-
order initial models could be tried instead.

Remarkably, not necessarily the initial model will be a nice
representation for the system: even if the corresponding
approximation presents a small error, the model system
for a stable system may present unstable poles, for in-
stance. However, this will not be an issue if the responses
approximations actually are close to the true ones. The
purpose at this point is solely to have an initial separation
of the responses generated by each input, having this pur-
pose achieved, the iterations performed in the second step
will refine the parameter estimations so that a reasonable
model can be raised.

Finally, it is important to highlight the fact that, follow-
ing the continuous-time approach presented therein, the
derivative operations over the collected data are actually
not realizable, which requires the use of some strategy
to perform the model estimation. One possible solution,
which was used in the methods, is the use of the state-
variable filter (SVF) method (Wang and Garnier, 2008).
The filters to be used are:

L(ρ) = ρ
−n×m, (57)

for the initial model, and:

L(ρ) = ρ
−n, (58)

for the n-th-order models ultimately obtained.

SVF was used in the development of the methods by
changing the linear regression equation. For example, to
obtain the data vector defined in (11), the inputs and
outputs in equation (8) are substituted by their filtered
versions, so that one has:

L(ρ)A(ρ;η)y(t) =
m

∑
i=1

L(ρ)Γ(ρ;η)ui(t)+ e(t), (59)

from which the further definitions in the section may be
derived.

Example 1. Let a system be modelled by the following
transfer matrix:

G(s) =

[
5

s + 2
2

s + 10

]
(60)

In order to illustrate the algorithms evolution along the
iterations, a numerical simulation is performed with this
model such that a step signal is applied to each input
at different instants. The output is noise-free. The input-
output data from this simulation can be observed in Figure
1.

Figure 1. Input-output data of numerical simulation de-
scribed in Example 1.

The IFUV-LS is applied to estimate a model from the
simulation data. In Table 1, some of the models obtained
along the identification procedure are listed, namely, the
second-order ARX initial model (iteration 0), the first
model — already made of 1st-order subsystems — ob-
tained by means of the bootstrap algorithm (iteration 1),
the fifth one (iteration 5) and the final one (iteration F),
which is the one delivered for the user. The algorithm
stopping criteria consists in reaching a relative reduction
in the approximation error, evaluated by means of the



Table 1. True model and evolution of some of
the models computed throughout the IFUV-LS

algorithm for Example 1.

Model Transfer Matrix MSE

True Model

[
5

s + 2
2

s + 10

]
0

Initial

[
2.085s + 34.87

s2 + 8.643s + 14.11
1.501s + 2.701

s2 + 8.643s + 14.11

]
0.0081

1st Iteration

[
4

s + 1.522
1.903

s + 9.514

]
0.0112

5th Iteration

[
4.108

s + 1.567
2.236

s + 11.15

]
0.0083

Final Model

[
4.109

s + 1.566
2.095

s + 9.938

]
0.0045

mean square value (MSE), less than 10−5 or a maximum
of 50 iterations. The algorithm converged, in this case,
with 31 iterations. It is possible to notice that the response
generated by the models resulting from the first iterations
are rather less accurate than the one generated by the
initial higher-order model, nevertheless the error reduces
gradually until it provides a better approximation than the
one obtained with the initial model.

Figure 2. Iterative fixed uncorrelated variables least
squares models responses through the algorithm it-
erations.

5. NUMERICAL SIMULATIONS

Numerical simulations to evaluate the algorithms per-
formance are presented in the following. The simulated
system is the Wood-Berry distillation column (Wood and
Berry, 1973). Transport delay assumed known and, with-
out loss of generality, set to zero in this paper. PRBS
input signals were applied to inputs 1 and 2 with switching
periods of 3.6 min and 3.0 min, respectively. White noise
with σ2 = 4 is added to output 1, which is used in the
identification process; Ts = 0.1 min and Tsim = 200 min;

Table 2 shows the values of the true parameters used in
the simulated models.

For each case, 100 simulations are executed, with the same
input but with different realizations of the output noise.
The parameters are then computed with each algorithm
and their averages and standard deviations are showed
in Table 3. This table presents also the average approx-
imation errors, evaluated by means of the MSE (mean
square error), obtained with each algorithm. For the three
iterative algorithms, the stopping criteria is defined by a
relative reduction in the MSE less than 10−5 or a max-
imum of 50 iterations. Figure 3 shows one input-output

Table 2. True parameters relative to the first
input of the Wood-Berry distillation column

(delays set to zero).

Parameters Values

True Parameters

b1 0.7665

f1 0.05988

b2 -0.9

f2 0.04762

realization and Figures 4 to 6 illustrate the responses from
the 100-model set obtained with each algorithm along with
the true response.

Table 3. Numeric simuations results with the
three evaluated algorithms: pseudo-linear re-
gression (PLR), iterative fixed uncorrelated
variables least squares (IFUV-LS) and Gauss-

Newton optimization (GN).

Algo-

rithm

Parame-

ters

Average of

Estimated

Parameters

Relative

Error to

the True

Parame-

ters (%)

Estimated

Parameters

Standard

Deviation

PLR

b̂1 0.76842 0.25039 0.01946

f̂1 0.06073 1.42751 0.00291

b̂2 -0.90129 0.14333 0.01742

f̂2 0.04796 0.72014 0.00200

MSE 0.01261 0.00678

IFUV-LS

b̂1 0.77050 0.52175 0.02014

f̂1 0.06033 0.75282 0.00319

b̂2 -0.89599 0.44505 0.01669

f̂2 0.04740 0.46635 0.00215

MSE 0.01399 0.00859

GN

b̂1 0.74366 2.97933 0.13636

f̂1 0.05926 1.03072 0.00638

b̂2 -0.88936 1.18226 0.11882

f̂2 0.04812 1.05590 0.00437

MSE 0.38144 3.17610

Figure 3. Wood-Berry distillation column (delays set to
zero) simulation: inputs, true and and one out of the
100 realizations of the noisy output.

From the MSE values, it is possible to observe that the
pseudo-linear regression and the IFUV-LS perform rather



Figure 4. Response of models obtained from IFUV-LS
method (thin black line) and true response (thick blue
line).

Figure 5. Response of models obtained from Pseudo-linear
Regression method (thin black line) and true response
(thick blue line).

Figure 6. Response of models obtained from Gauss-Newton
Method (thin black line) and true response (thick blue
line).

similarly, with a slight difference in accuracy and precision.
The Gauss-Newton method, on the other hand, had a poor
performance as compared to the other two algorithms,
with essentially all averages and standard deviations rang-
ing from twice as large to one order of magnitude higher
than those of the other two algorithms. These numbers
are well elucidated by the Figures 4 to 6, where one can
visualize that the 100 models generated by the first two
algorithms almost overlap the true response, evidencing
a reasonable accuracy and precision for the PRBS input
signal, while the Gauss-Newton models present a number
of responses clearly different to the one generated by the
true model.

6. CONCLUSION

In this work three iterative algorithms to render a
continuous-time output-error MISO model have been pre-
sented and compared. One of them is proposed herein
and is inspired in the instrumental variables method, with
the difference of using a fixed matrix with the initial
model responses as the uncorrelated variable in the es-
timation, while the data vector is updated throughout
the iterations. The other ones consist in an adaptation
of the pseudo-linear regression approach and the Gauss-
Newton method to address the model output-error model
structure as treated herein, by means of a decomposition
into SISO models whose responses are accumulated to
form the prediction error. The results demonstrate that
the Gauss-Newton method was outperformed by the other
two methods, which presented similar performance, both
in accuracy and precision.

Further research is to be performed in order to: investigate
the impact in performance due to the use of lower-order
models as the initial model, as well as due to the choice of
different model reduction strategies in the Gauss-Newton
method; verify the proposed algorithms robustness in the
identification of higher-order models; develop on consis-
tency analysis; and extend the methods to allow the inclu-
sion of time-delays.
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