
Towards Adaptive Discrete Event Control

Based on PRD, PSS and Automatic Planner

Gabriel de Almeida Souza ∗

José Jean-Paul Zanlucchi de Souza Tavares ∗∗

José Reinaldo Silva ∗∗∗

∗ Faculdade de Engenharia Mecânica, Universidade Federal de
Uberlândia, MG, (e-mail: gabrielsouzaworking@gmail.br).

∗∗ Faculdade de Engenharia Mecânica, Universidade Federal de
Uberlândia, MG, (e-mail: jean.tavares@ufu.br)

∗∗∗ Escola Politécnica, Universidade de São Paulo, SP, (e-mail:
reinaldo@usp.br)

Abstract:
Industry 4.0 technologies integrate devices and data, bring flexibility, efficiency and decision
making, derived from decentralization. In a post pandemic society it is mandatory to reduce
human presence in production and distribution of goods. This work implements some of Industry
4.0 characteristics by combining manufacturing elements such as Cyber Physical System (CPS)
with passive entities that directly affect decisions in the same automatic planning domain. The
proposal is illustrated by emulating a Block World problem, where it will be used a set of blocks
with Radio Frequency Identification (RFID) each one containing its self goals, represented by
predicates, an approach called PRD (Predicate inside RFID Database). A robot can identify
objects by helding a RFID reader integrated with a Physical State Space (PSS). Since the robot
controller has a local view of the process it is unable to compute the plan for the whole system
by itself, so the planning process must be a Cloud service. Local planning must also be taken
into consideration, solving any network issues. Thus, a generic solution has to be adapted to
fit physical execution and domain constraints. Such solution detects changes in the physical
environment and redo its plan, generating an adaptive discrete event controller.

Keywords: Adaptive Discrete Event Control, Automatic Planning, PRD, PSS, Cyber-Physical
Systems.

1. INTRODUCTION

Cyber Physical Systems (CPS) are one of Industry 4.0
cornerstones, in the sense that information management,
decision making and networking became deeply embed-
ded into automated systems (Jazdi, 2014). A paradigm
shift has been happening, since connectivity, bandwidth,
computational power and accessibility increased signifi-
cantly in recent years (Vuksanović et al., 2016). With
greater processing power and information, more flexible
systems are feasible, aiming at mass custom production
(Rojko, 2017), supported by Internet of Things (IoT) and
Cloud Computing, many industries and technical areas
are changing towards smart, informed decision making.
The recent improvements have to be further developed
and aim at increased autonomy to avoid human contact
in products, reducing health issues in the post pandemic
society.
The fields of robotics and automated planning have to
undergo adaptations to fit the post pandemic society,
by exploiting the increased power in the CPS, specially
robots. Simple state-machined solutions for robots are not
enough, as flexibility and higher level of autonomy are now
a mandatory requirement. Supported by computational
power and relevant information, CPS must become more

autonomous even under network malfunction.
Different decision making techniques, based on reinforce-
ment learning, on classical automated planning, on data
hungry methods, and others are currently being further
developed and tested. Hofer (2017) uses Markov Decision
process in the complex problems related to robot soccer,
and Guérin et al. (2018) uses deep neural networks to
process images and cluster objects for sorting. Both tech-
niques require computational power that was not avail-
able until recently, and it could be helpful in decreasing
direct human intervention in production and distribution
of goods. In Michniewicz and Reinhart (2016) robot cells
are virtualized and optimized regarding production flux
and kinematics in an offline methodology. In Xue et al.
(2009) kinematics and dynamics for grasping robots are
used to improve grabbing by modelling relevant prop-
erties in the objects, offline. Tavares and Souza (2019)
show PNRD/iPNRD (Petri Net Inside RFID Database
and inverted Petri Net Inside RFID Database) integra-
tion solving Block World domain with three blocks in
an adaptive discrete event control architecture, which is
an online solution method and fully model based without
training necessity, contrasting with most current architec-
tures. PNRD/iPNRD data is held into each passive agent
through a RFID tag and into each active agent inside

creacteve_alessandra
Texto digitado
DOI: 10.48011/asba.v2i1.1448



a RFID reader. When these components are combined,
the iPNRD initial and objective states can be determined,
as well as the physical positioning from a Physical State
Space (PSS) represented by a Petri Space. A breadth-
first search (Russell and Norvig, 2010) was implemented
to find the iPNRD transitions required to reach the final
state, generating an adaptive discrete event control. This
approach does not deal with domains where the generation
of the complete state space is prohibitive. In this case, it
is necessary to use more powerful tools, such as automatic
planners. Although PNRD/iPNRD approach is helpful in
reducing human involvement, it does not scale well and is
not very versatile, as the individual and global state-spaces
are preconfigured.
The current approach is network independent and focused
on discrete event dynamics, and does not deal with the
optimization of the continuous part of movement. Instead,
it offers an automated planning service both in Edge and
Cloud computing. Nevertheless, an automated planning
server requires high computational power to generate a
plan and return execution steps; while a CPS controller is
usually limited computationally.
IoT and Cloud Computing have made acting with con-
tinual online planning possible for CPS, as shown in
da Silva Fonseca et al. (2016), where automated plan-
ning integrated with programmable logic controllers is
discussed. Yet, an intermediary software for different func-
tions is necessary, to bridge planning and action in an user
comprehensive abstraction.
An open issue in automated planning field is that sev-
eral works underestimate the importance and difficulty
of deliberative acting (Nau et al., 2015) in real online
applications, where acting on abstract plans and deriv-
ing concrete refined actions is computationally hard. The
classical automated planning system is described in Figure
1. The system receives external information about the do-
main’s current and objective states, meaning that the main
planner must receive this data as input from a previous
process. The planner feeds a command as a instruction
string for the controller to actuate on the system. The
controller gets feedback information from the system, as
the plan outcome is disturbed by external events, so that
the plan can be redone to deal with some perturbations.
This conceptual architecture is adaptive in nature. This
figure presents clearly that, currently, the main focus
of automated planning research is in the planning itself
(Ghallab et al., 2004), as perceiving and deliberating are
not deeply explored in the planning community academia.

PDDL is a formal textual language used for describing
domains (AIPS-98 et al., 1998), and it is used as input
language to planners, as a portable system descriptor. It
is the language used in this work, to send input into the
planning service.
This paper shows how automatic planning can be mod-
elled, adapted and offered as a service, using a compre-
hensive abstraction level to solve a problem that is close
in complexity to real problems combined with RFID de-
vices. The idea on identifying each object desired state
is based on embedding predicates in RFID tags. Those
predicates can be individually accessed and can be united
into Grouped Individual State Predicates (GISP), which
is used to create problem snapshots. This technique which

Figure 1. Classical Automatic Planner Model

integrates GISP and RFID readers and tags is called PRD
or Predicate inside RFID Data structure. PDDL associ-
ated with PRD generates a powerful tool set, that can be
used to solve bigger domains than previously explored by
PNRD/iPNRD.
This work presents how GISP, implemented as PRD, inte-
grated with automatic planning service can assist adaptive
control on a PSS, through exception identification. Block
World variants are explored for demonstration.
Next section presents the proposed infrastructure and con-
trol architecture. Section 3 shows how planning and acting
can be integrated; followed by the PRD implementation
with two examples, the first one for a single actor, and the
second for two or more actors. Conclusions and further
works are presented.

2. PRD PROPOSED ARCHITECTURE

The proposed architecture aims to improve the system
flexibility, by being capable of receiving less constrained
snapshots and importing planners to act on the real
system.

2.1 PRD and PSS structures

As information, PRD and auxiliary data are represented
using markings, with :marking notation. So a current state
description can be inferred by searching for a :current
and reading the information between brackets, usually
written as predicates separated by commas. A series of
consecutive objectives can be located using a :objective-N
notation, where N references the (n)th objective. Auxiliary
information can be addressed using the same system, as an
example :temperature and :priority are markings that can
be used to supplement or confront information regarding
the objects past and future.
Figure 2 shows an example of PRD representation to repre-
sent current and objective states. In :current, three distinct
predicates are present to describe the current situation,
referencing other objects and entities in the domain, while
in :objective-0 two predicates are used to describe the
desired state, with status() referencing a completion state.



The :priority marking can be used to indicate preference,
if there is objective discordance between agents or con-
strained resources. It is the active agent job to process
and infer information with the predicates.

Figure 2. PRD data structure in passive agent

PRD is an approach used to store, read and write predi-
cates into RFID tags, effectively giving decision power to
passive agents. For instance, tagged part P in a production
line, until it reaches a divergence, as shown in Figure 3,
where active agent robot R needs to decide which path part
P will take, A or B. There is no geometrical or external
information to influence the decision, and any active agent
should decide the same.

Figure 3. Production Line Divergence

This decision is possible if the passive agent itself provide
information to the active agent, so it may act according
to the passive agent information. Using PRD, robot R can
get information on which path part P should follow, be it
directly related to the path itself, or some destiny, like go
to packaging or go to quality control. This information can
be accessed in the :objective-0 marking, as Figure 4 shows.

Figure 4. PRD :objective-0 marking inside part P

In this case, part P explicitly informed Path B as objective.
robot R will parse this marking and infer, using a database,
that it has to act on a way that takes part P towards Path
B. This method is more powerful than using other sources
of information as Petri Nets, because the predicate rep-
resentation aggregates flexibility as an uniform language
between automatic planners and object data structure. As
R moves any part X, it can update PRD data inside each
part X tag.

Individual PRD data can be grouped and used to produce
richer descriptions and more complex applications. To ob-
serve coupled effects on grouped data, imagine that part O,
in Figure 3, has a predicate that specifies it must follow the
same path as part P (Figure 5). This causes information
in P and the final decision to also affect O, aggregating
dependencies in causality, and complexity.

Figure 5. PRD :objective-0 marking inside part O

2.2 Automated Planning Integration with PRD and PSS

In order to generate a feasible automated plan model, the
system model must be a discrete domain type, and its
environment must deal with disturbance.
PSS is a structure, normally represented by a digraph, used
to represent discrete positions and adjacency relationships
in the physical domain scope, useful to discretize continu-
ous movement into simpler discrete transitions. PSS explo-
ration and searching can be done using different techniques
with different levels of complexity. Simple state machine
exploration is the easiest to execute and requires minimal
computation cost. Offline optimized methods may include
conditionals, as discussed in Souza et al. (2019).
Online path planning is the most movement efficient ap-
proach regarding search in the PSS, but at higher costs
than simpler methods. In practice, usually the PSS dimen-
sion is pre-established and the active agent has knowledge
about its place and exploration limits (kinematic and dy-
namic constraints).
While the planner is responsible for decision making con-
cerning model’s internal choices, usually with an opti-
mization criteria; the controller must have an interface
for sensing and acting, which may include actuator driver
interfaces. In order to structure the adaptive system, the
PRD approach proposes that sensors are RFID tags in
passive agents, and reader during reading activity; while
actuators are active agents (as robot arm) coupled with
RFID reader in writing activity.
The physical domain adds constraints and complexity that
are not present in pure computational domains, that must
be taken into consideration for the PRD architecture struc-
ture and models. Some physical concerns are: Snapshot
configurations, as in identifying the passive agent current
state, and inferring if its objective can be reached or not;
movement dynamics and control, as in using the adequate
level of abstraction; and partial observability, to under-
stand that the view in the domain current state could be
wrong due to unperceived disturbances. Even though the
robotic arm runs a partially observed system, due to the
fact that each block is read in different moments, excep-
tions may still be observed, when the system explicitly
interacts with a non-conformant object or relationship.
This PRD and PSS proposed architecture is presented in
Figure 6.
The PRD and PSS implementation is divided into three
modules, RFID Sensing, Planning and Execution (Figure
7). This process must initially identify all objects configu-
ration to be fed into the planner, which outputs an action



Figure 6. PRD and PSS integrated with Automatic
Planner Conceptual Adaptive Discrete Event Control
Schema

plan for the Execution module. These activities repeats
itself until all object’s objectives are successfully achieved,
self-correcting if necessary.

Figure 7. Adaptive Controller Integrated With Automatic
Planner Flowchart

The RFID Sensing module observes the environment, by
capturing the passive agents PRD data structure (Id,
current and objective state) by moving the active agent
integrated with RFID reader embedded into each discrete
position following the PSS. This step is terminated only
when the PSS is exhausted.
Next step is to infer about the grouped PRD data current
state and objectives called State Inference. Current State
inference can also be defined by information gathered from
positioning in the PSS. This data can be confronted with
:current tag predicates, to observe inconsistencies. Objec-
tive state is generated by grouping all individual :objective-
0 predicates. It must verify whether the objective state is
valid.
Exception identification is a complex issue, due to many
different situations, such as many configurations being im-
possible to physically realize, opposing objectives, missing
referenced objects and other problems. General rules for
quickly detecting exceptions can improve system reaction;

however a general solution is still a challenge. If an excep-
tion arose the identification process must be restarted, else
the observations are transferred as input (State Data) into
the Planning module. Figure 8 details the RFID Sensing
module.

Figure 8. PRD’s RFID Sensing Module

The Planning module is a two-level planner which is re-
sponsible for both the discrete state planning, and the
physical movement planning. Figure 9 shows that both
planners need a knowledge base, which is composed of a
system description coupled with constraints and heuristics.
It is better explained at section 3.
A planner requires two distinct files to work, one describ-
ing the domain and other the problem. A basic domain
description is composed of existing classes declaration and
existing actions as functions with preconditions and conse-
quences. A basic problem description includes a repository
of existing objects, current snapshot and objective condi-
tions, gathered from PRD data capture.

Figure 9. PRD’s Planning Module

The Execution module is composed by the active agent
controller (machine controller) and an interpreter knowl-
edge base, which define the next action to be performed
and inspected, similar to the RFID Sensing identification
to check if the achieved state is equal to the desired one to
update PRD data inside each tag (Figure 10). If a cycle
has correctly ended a job conclusion query is performed
to start the next execution or finish control as previously
presented at Figure 7.

2.3 Planning as a Service

The planner can be either accessed as Edge or Cloud
service, as long as the problem can be computed in effective
time, and the network is in good conditions. Regarding



Figure 10. Execution Module

costs and speed, either can be more efficient, depending on
the problem, network and target hardware. Ai et al. (2018)
points out that Cloud computing has been consolidated as
highly efficient and flexible, in a centralized architecture.
But, due to the increasing presence of IoT applications,
network time response, its constraints and derived prob-
lems cause the centralized paradigm to be inefficient. So
Edge and Hybrid solutions should be investigated.
Empirically, it was decided that the best approach for this
problem is to host the planner on the Cloud, and have a
local machine in the Edge as a backup, in case of elevated
latency or unavailability. This produces a redundant mech-
anism, to guarantee operation even under network failures.
This topic needs to be explored in a future work.

3. INTEGRATING PLANNING AND ACTION

To integrate properly planning and action there is a need
to generate a plan with sufficient level of refined abstrac-
tion that a machine may correctly interpret the steps
(Ghallab et al., 2016). This identifies that the high abstrac-
tion steps do require more details, were those details can
not always be completely embedded in its parent as con-
stants, requiring methods for their definition, sometimes
requiring sub planning.
As an example, imagine a general purpose robot. Upon
receiving a high level task, this task has to be decomposed
into refined steps, until they are simple enough for action.
Figure 11 exemplifies the abstraction levels in deliberation,
as a simple ”bring object o7 to place room2 ” command is
too complex to be directly turned into action, until its
abstraction level is sufficient for the robot to act.
To avoid working on multiple levels of abstraction, the

Figure 11. Multiple levels of abstraction in deliberative
acting Ghallab et al. (2016)

proposed PRD approach is defined with two planning

levels where the last one (movement planner) converts an
action plan into control references for the robot working
on the PSS.
PDDL is used in this work to feed the automated planner,
on planning phase. It was chosen because it is an ever
growing language widely used in the automatic planning
community scope, as it was the official language of many
occurrences of the IPC (International Planning Competi-
tion).
The chosen automated planner is Fast Downward, an open
source full planner sustained by research groups (J and G,
Seipp J and Roger G 2018). It supports many distinct
input languages, search algorithms and heuristics, and
outputs detailed information on parsing, searching and,
of course, the generated plan.

4. PRD IMPLEMENTATION EXAMPLES

This section presents two Block World domain implemen-
tations using PRD approach, the first one with one robotic
arm, and the second one with two.

4.1 Block World PDDL Domain Definition

Modelling Block World for automated planning can be
done in several forms. This example follows Vaquero (2007)
method. It is important to note that the final PDDL
domain definition is highly coupled with architectural pro-
cesses, PRD and the physical implementation, so predicate
details may vary.
The model is composed of three classes Position, Block and
the RoboticArm. Position and Block are passive entities,
having no method, while the RoboticArm is an active agent
and possesses methods for promoting movement changing.
Two main versions of the PDDL domain are needed, one
that supports only one actor, and another supporting
multiple actors. The second domain aggregates complexity
by including attributes to avoid collision between actors,
making it less efficient in problems with only one actor.
There is also the physical implementation problem for
multiple actors, were the architecture would either need
some middleware to coordinate the actors and access the
planning service or support decentralization. Those multi-
ple actors issues must be discussed in a further work.
For both domains preconditions and conditional effects
are declared. The domain specifications for one actor are
defined in Figure 12. 10 (ten) predicates are declared, 4
(four) to create adjacency relations between Position, 2
(two) for Arm/ Block possession, 3 (three) as implicit
constraints for moving and picking Block and 1 (one) to
indicate if a Block is stacked atop another Block. The last
described predicate is very useful, because it allows for
relative objectives and facilitates the implementation of
grouped individual objectives strategy. 6 (six) actions are
declared, 4 (four) for moving and 2 (two) for picking and
dropping blocks. All actions have unitary cost. The other
moving actions were hidden because the only difference is
in the adjacency precondition.
In the multi agent PDDL domain, the system has one ad-
ditional predicate used to avoid agent collision and actions
with more specifications.



Figure 12. Domain specification with one Actor

4.2 Block World Problem Definition

The next step is to define the problem, it means, an
object repository, the current snapshot and objectives into
a single problem file. The repository indicates all objects
that are involved. A snapshot is a set of objects and re-
lationships defining a specific moment. The objectives are
predicates that indicate desired attributes to be achieved
for a set of objects.
A problem specification file for one robotic arm is pre-
sented in Figure 13. Basically it is divided into a header,
where the problem receives a name and a father domain,
the repository, current conditions and objectives. The
problem is defined after obtaining information from the
PRD in the distributed objects.

4.3 PRD example with one robotic arm

As previously informed, to locate all Block objects, the
PSS is exhausted. Positions are mapped rightwards and
upwards in a Position(X,Y) notation, starting at zero. In
this example, Block A, B, C, D are found respectively in
positions (1,1), (2,1), (3,1), (3,2) as presented in Figure 14.
Inside each RFID tag, in the :current marking, predicates
describing their current state can be found, to contrast
with PSS information. In the :objective-0 marking, a set
of objectives can be collected, for each tag. In this example,
each tag holds, at most, one objective predicate about
itself, to be put in a certain position or relative to another
block.
After locating and reading PRD data inside each tag,
current predicates and objective predicates are united to

Figure 13. Problem specification for one robotic arm

generate the problem file. Information regarding adjacency
and unconstrained places was hidden to reduce space. The
corresponding domain file must also be sent to the planner.
Figure 14 represents the current snapshot described inside
the Problem file on a graphical representation. Bottom
Position objects, in pink, have attributes that make them
behave like a table (by setting false all movement predi-
cates), so Blocks can be put atop and the Robot can not
move into these positions. Block A, B, C, D are identified
in blue and the ARM in green. All adjacency relationships
are implied by Position.

Figure 14. Initial Snapshot with one actor

The objective, described in natural language, is an ”AND”
composition of individual objectives, following the GISP
paradigm: Block D atop Block B, Block A in (2,3), Block
B in (2,1) and ARM at (2,4). This objective description
includes absolute positioning, as in Block A occupying
(2,3), relative positioning, as in Block D atop Block B
and null objectives, as Block C did not state an objec-
tive. This means that many distinct configurations might
successfully satisfy the objectives, as Block C can be put
anywhere.



Afterwards, feeding in the Domain and Problem files, the
Fast Downward parser will convert PDDL into structures
suitable for searching. After generating 2.696 states, the
optimal plan is composed of 16 steps suitable to robotic
command, as shown in Figure 15. The optimal final con-
figuration can be observed in Figure 16.

Figure 15. Generated Plan for One Actor

Figure 16. Generated Final Snapshot with one actor

Non-coherent problem specifications are still an open issue
in identification, in the perception phase, prior to being fed
to the planner, and are to be discussed in a further work.
However the planner generally will accuse errors in the
problem input file, if it can not be solved or a predicate
regarding the same objects in :init or :goal is stated
multiple times. This exception identification problem must
be allocated inside the compiler that converts PRD data
into problem files, or be a process afterwards.

4.4 PRD example with multiple actors

Figure 17 represents the initial snapshot, after collecting
and inferring data from the PSS and PRD. The objective
conditions are described, as an AND composition: Block
A in (3,1), Block B in (1,1), Block C in (2,1), Block D in
(1,2), ARM0 in (3,4) and ARM1 in (0,4). As all individual
objectives are absolute in nature, the objective snapshot
can be directly represented in Figure 17.

After generating 12.608.624 states, the optimal plan is
composed of 36 steps.

4.5 Search Time Performance

The server is hosted in a computer with Intel(R) CoreTM

i5-4210U CPU @ 1.70GHz x64, 4.0 GB DDR3 RAM
using Linux with 4.15 generic kernel version. It was
used Apache2 web server, programmed in PHP, to access
through the Internet. A C language program was also built

Figure 17. Objective Snapshot with two actors

to maintain a direct serial connection. The first scenario
has planning time of 0.011 seconds while the second one
was planned in 11.2 seconds.
Regarding the planning options, for both examples the
A* search algorithm is used (Russell and Norvig, 2010)
coupled with hmax heuristic (Keyder and Geffner, 2008).
Another reason to avoid explicit axioms is that hmax does
not keep its properties under axiom use (admissible, con-
sistent and safe).
Those options were specified because the A* search as-
sures optimal plan generation, and the hmax heuristic had
the best performance for the example problems among
all available options. Optimal plan generation is relevant
because the bottleneck in time consumption for this appli-
cation is expected to be the physical movement part.
Comparing the search results in the one actor example and
multi actor example, it can be inferred that a small gain
in complexity in the domain description coupled with the
addition of an actor caused the problem to be significantly
harder to solve optimally. The number of generated states
and search time increased in magnitude by many orders,
while the depth more than doubled. Time is to be taken
as a relative comparative only, as both examples used the
same computer.

5. CONCLUSION AND FURTHER WORKS

The proposed architecture integrates generic automatic
planners into CPS using PRD and PSS. It is a bridge
between automatic planning and adaptive discrete event
control which can be applied in several other domains in
an innovative way to reach multi agent goals and objec-
tives, further increasing autonomy and reducing human
presence. It differs from other architectures especially be-
cause of the PRD presence, which causes the objectives
to already be present in the work space, not requiring an
external interface to input the objectives. It also embeds
decision power into passive entities. The generic automatic
planning core in its planner block also gives it power to deal
with many different scenarios and objectives, being more
generic than architectures specialized solely for movement
actions, the main limitation being the model itself.
The PRD is a flexible data structure for passive entity
decision making. Its limitations are due to RFID memory
size, because current tags have very constrained capacity,
RFID reading issues, and the need of having a specialized
data analyser in the RFID reader to correctly process each
marking. It must be noted that information must be pre-
recorded in the tags, so previous processes are necessary
to insure sufficient data is recorded in each object.
The architecture of the controller described to be imple-
mented in a physical version is composed by many pro-



cesses, each dealing with a specialized scope in solving the
problem, where they can be optimized. This optimization,
in turn, can be model costful or case specialized, so obtain-
ing good metrics and insights for improving the system is
challenging, being subject to further works.
An absolute generic marking processor is not possible,
not because it would require general standardization, but
because domains themselves vary greatly, so an abstraction
under a certain context may be different from another.
What is more feasible is to build processors for families of
applications, where data bases and rules can be shared.
This approach deals with partial observation due to RFID
reading characteristics. This causes uncertainty issues,
where the domain could have been disturbed by external
forces between actions. The system deals with partial ob-
servation by raising exceptions whenever something is in
disagreement or unfeasible, returning to a previous point
in control to correct. This could be improved by adding
sensors and more powerful inference mechanisms to better
track objects and detect exceptions earlier. Action behav-
ior may also be specified to act as default, whenever an
objective exception arises or the system is given instruction
that can not be further processed by its data set.
The proposed architecture is not yet generic enough to be
used in a diversity of domains, specifically those dealing
with multiple decentralized actors or with action abstrac-
tions that can not be directly refined, requiring multiple
levels of search. The planner was also built considering
pure discrete dynamics, so including hybrid systems is an
important generalisation step towards supporting domains
with continuous dynamics that can not be modelled in
discrete transitions. A supervision interface was not mod-
eled, so outputting in real-time human readable data and
allowing for human intervention are useful functions.
Vaquero (2010) points out about post-design analysis for
AI applications and the refinement cycle, it means, a direc-
tion into improving domain definitions. Post-analysis can
be useful in all described processes in this architecture.
This paper main contributions are to clearly show that
automated planners can be applied in practice and in cases
where regular solutions, usually state-machined ones, are
not suitable.This can be observed by inferring that state-
machine solutions are not capable of handling PRD under
a least constrained practice.
A Cloud/Edge planning solution using PRD data must be
implemented.

REFERENCES

Ai, Y., Peng, M., and Zhang, K. (2018). Edge
computing technologies for internet of things: a
primer. Digital Communications and Networks, 4(2),
77 – 86. doi:https://doi.org/10.1016/j.dcan.2017.07.
001. URL http://www.sciencedirect.com/science/
article/pii/S2352864817301335.

AIPS-98, Planning, Competition, and Committee (1998).
PDDL: The Planning Domain Definition Language.

da Silva Fonseca, J.P., de Sousa, A.R., Ferreira, M.V.M.,
and de Souza Tavares, J.J.P.Z. (2016). Planpas: Plc and
automated planning integration. International Journal
of Computer Integrated Manufacturing, 29(11), 1200–
1217. doi:10.1080/0951192X.2015.1067909.

Ghallab, M., Nau, D., and Traverso, P. (2016). Automated
Planning and Acting. Cambridge University Press.

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated
Planning: Theory and Practice. Morgan Kauffman.

Guérin, J., Thiery, S., Nyiri, E., and Gibaru, O. (2018).
Unsupervised robotic sorting: Towards autonomous de-
cision making robots. International Journal of Artificial
Intelligence and Applications.

Hofer, L. (2017). Decision-making algorithms for
autonomous robots. Ph.D. thesis, Université de Bor-
deaux.

J, S. and G, R. (Seipp J and Roger G 2018). Fast
downward stone soup 2018. Proc. Fourth International
Planning Competition: International Conference on Au-
tomated Planning and Scheduling.

Jazdi, N. (2014). Cyber physical systems in the context
of industry 4.0. 2014 IEEE International Conference on
Automation, Quality and Testing, Robotics, 1–4. doi:
10.1109/AQTR.2014.6857843.

Keyder, E. and Geffner, H. (2008). Heuristics for planning
with action costs revisited. ECAI 2008 - 18th European
Conference on Artificial Intelligence, Patras, Greece.

Michniewicz, J. and Reinhart, G. (2016). Cyber-physical-
robotics – modelling of modular robot cells for au-
tomated planning and execution of assembly tasks.
Mechatronics, 34, 170 – 180. System-Integrated Intel-
ligence: New Challenges for Product and Production
Engineering.

Nau, D.S., Ghallab, M., and Traverso, P. (2015).
Blended planning and acting: Preliminary approach,
research challenges. In B. Bonet and S. Koenig
(eds.), INPROCEEDINGS of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA, 4047–4051. AAAI Press.

Rojko, A. (2017). Industry 4.0 concept: Background and
overview. International Journal of Interactive Mobile
Technologies.

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A
Modern Approach. Prentice Hall Press, Upper Saddle
River, NJ, USA, 3rd edition.

Souza, G.A., Brito, H., and Tavares, J. (2019). Au-
tomatic column assignment for block world domain
with PNRD/iPNRD. In 14th Brazilian Symposium on
Intelligent Automation. SBA.

Tavares, J.J.P.Z.d.S. and Souza, G.d.A. (2019). Pnrd
and ipnrd integration assisting adaptive control in
block world domain. Inproceedings of the International
Workshop on Petri Nets and Software Engineering 2019,
73–90.

Vaquero, T.S. (2007). Itsimple: Ambiente integrado de
modelagem e análise de domı́nios de planejamento au-
tomático. master thesis, polytechnic school of the uni-
versity of são paulo.

Vaquero, T.S. (2010). Post-Design Analysis for AI
PLanning Applications. Ph.D. thesis, Polytechnic
School of the University of São Paulo.

Vuksanović, D., Ugarak, J., and Korčok, D. (2016). In-
dustry 4.0: the future concepts and new visions of fac-
tory of the future development. International Scientific
Conference on ICT and E-Business related research.

Xue, Z., Kasper, A., Zöllner, J.M., and Dillmann, R.
(2009). An automatic grasp planning system for service
robots. International Conference on Advanced Robotics
(ICAR).

http://www.sciencedirect.com/science/article/pii/S2352864817301335
http://www.sciencedirect.com/science/article/pii/S2352864817301335

	Introduction
	PRD Proposed Architecture
	PRD and PSS structures
	Automated Planning Integration with PRD and PSS
	Planning as a Service

	Integrating Planning and Action
	PRD Implementation Examples
	Block World PDDL Domain Definition
	Block World Problem Definition
	PRD example with one robotic arm
	PRD example with multiple actors
	Search Time Performance

	Conclusion and Further Works



