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Vitória, ES (e-mail: limadesouza@gmail.com).

Abstract: Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common
disorders of childhood and youth. The diagnosis of ADHD remains essentially clinical, based
on history and questionnaires for symptom assessment, therefore, a biomarker can be of great
value to reduce the inherent uncertainty of clinical diagnosis. In recent years, several studies have
been carried out to assess the usefulness of neurophysiological (electroencephalography - EEG)
and functional image data to assist in the process of diagnosing ADHD. Previous researches
have revealed evidences that microstates are selectively affected by ADHD, indicating that their
analysis may be a useful tool in methods of automatic disease identification. In this paper
is proposed a new methodology for the detection of ADHD using EEG microstate analysis
and graph theory. The proposed method allows modeling and interpreting each microstate as
a complex network, which permits to identify the effect of ADHD on some characteristics of
the built networks. In addition, it provides useful information to identify ADHD and subtypes
patients with an accuracy around 99%, indicating that the proposed method is promising.

Resumo: O Transtorno de Déficit de Atenção e Hiperatividade (TDAH) é um dos distúrbios
mais comuns da infância e adolescência. O diagnóstico de TDAH permanece essencialmente
cĺınico, com base no histórico do paciente e nos questionários para avaliação dos sintomas. Dessa
forma, encontrar um biomarcador pode ser apropriado para reduzir as incertezas inerentes ao
diagnóstico cĺınico. Nos últimos anos, diversos estudos foram realizados para avaliar a utilidade
dos dados de EEG (eletroencefalografia) e de imagem funcional no diagnóstico do TDAH. Tais
estudos revelaram evidências de que os microestados são afetados seletivamente pelo TDAH,
indicando que sua análise pode ser uma ferramenta promissora na identificação automática da
doença. Neste artigo é proposta uma nova metodologia para a detecção de TDAH utilizando
a análise de microestados do EEG e a teoria de grafos. O método proposto permite modelar e
interpretar cada microestado como uma rede complexa, permitindo identificar o efeito do TDAH
em algumas caracteŕısticas das redes constrúıdas. Além disso, fornece informações úteis para
identificar pacientes com TDAH (e subtipos) com uma acurácia em torno de 99%, indicando
que o método proposto é promissor.

Keywords: EEG-Microstates; ADHD; Signal Processing; Graph Theory; Classification.
Palavras-chaves: Microestados do EEG; TDAH; Processamento de Sinais; Teoria de Grafos;
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1. INTRODUCTION

Attention-Deficit Hyperactivity Disorder (ADHD) is a
neuropsychiatric disorder that affects approximately 3-
6% of children, making it one of the most common dis-
orders of childhood and youth (Thomas et al., 2015).
The main symptoms refer to inattention, hyperactivity
and impulsivity. ADHD is divided into subtypes according
DSM-5: predominantly innatentive (ADD), predominantly
hyperactive/impulsive (ADHD-H) and combined (ADHD-
C) (Association et al., 2013). Patients with ADHD have
significant attention problems, but only patients of the
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ADHD-C subtype are additionally affected by impulsivity
and hyperactivity (Ahmadi et al., 2014). The diagnosis of
ADHD remains essentially clinical, based on history and
questionnaires for symptom assessment. Neuropsychologi-
cal tests are also used, however due to heteregeneous cog-
nitive profiles in patients with ADHD these do not provide
a fully diagnostic, but a supportive function. Other under-
lying diseases can also lead to symptoms seen in ADHD
patients, for example, other psychiatric conditions, vision
and hearing problems, abnormalities in thyroid function,
etc. (Ahmadi et al., 2014; Ghanizadeh, 2011), complicating
the diagnosis. Therefore, a biomarker can be of great value
to reduce the inherent uncertainty of clinical diagnosis
(Dubreuil-Vall et al., 2020; Vahid et al., 2019). In recent
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years, several studies have been carried out to assess the
usefulness of neurophysiological (electroencephalography -
EEG) and functional image data to assist in the process of
diagnosing ADHD (Vahid et al., 2019; Dubreuil-Vall et al.,
2020).

The EEG activity can be described by a limited number
of topographies (maps) of the scalp that remain stable
for a certain period of time before switching rapidly to a
different topography that remains stable again (Lehmann
et al., 1987; Pascual-Marqui, 2002). These discrete inter-
vals of topographic stability are referred as microstates,
highlighting the idea that the scalp potential field reflects
the momentary state of global neural activity and that
variations in the topography of this field indicate changes
in the overall coordination of neural activity over time
(Pascual-Marqui et al., 1995; Lehmann, 2010). Previous
researches have revealed evidences that specific sets of
ERP (event-related potentials)-microstates are selectively
affected by ADHD, indicating that their analysis may be a
useful tool in methods of automatic disease identification
(Brandeis et al., 2002; Albrecht et al., 2015). However, the
study of microstates and ADHD is still a poorly explored
field and requires greater contributions (Albrecht et al.,
2015).

This paper proposes a new methodology for the analysis
of microstates and automatic patients identification with
ADHD. The proposed analysis is based on the graph
theory to modeling each topographic map as a complex
network. Thus, the global and local properties can be
evaluated in order to select characteristics that better
describe ADHD. The results show that the proposed
methodology is effective in the automatic identification of
patients with ADHD.

The remainder of this paper is organized as follows. In Sec-
tion 2 we presented the proposed methodology, involving
the description of the EEG database, the techniques used
for the analysis of microstates and the experimental setup.
In Section 3, we present the experimental results. Our
conclusions and suggestions for future work are presented
in Section 4.

2. MATERIALS AND METHODS

2.1 Database Description and Preprocessing

The public database (Vahid et al., 2019) used in this
work consists of a set of EEG signals of 144 children
classified into three groups: 44 (15 females, age: 11.3 ± 2.2
) healthy individuals; 52 individuals (10 females, age: 10.9
± 2.4) with ADD according to ICD-10 and 48 individuals
(12 females, age: 10.6 ± 1.9) with the combined subtype
ADHD-C. The patients revealed no other severe or acute
psychiatric co-morbities (Vahid et al., 2019). The EEG
records were acquired at a sampling frequency equal to
500 Hz and they were collected with pairs of symmetrical
electrodes (60 channels) located according to the interna-
tional 10-20 system. The measures were obtained using
the BrainAmp system with band-pass filter 0.5–20 Hz,
impedances < 5 kΩ. The electrodes P9, P10, P11 and P12
were removed from the data set due to their high elec-
trode impendances, remaining 56 channels. The reference
electrode was positioned at Fpz (Vahid et al., 2019). Pulse

artifacts and horizontal and vertical eye movements were
removed using independent component analysis (ICA) and
the data was stimulus-locked and segmented; finally, an
automated artifact rejection procedure was applied to ex-
clude any remaining trials containing artifacts. All indi-
viduals performed a time estimation task. During the task,
participants were required to estimate a time of 1200 ms
following visual stimulus and they were asked to press a
button whenever they thought that this time had elapsed
(Vahid et al., 2019). The duration of the EEG signals of
each patient varies according to their precision in the time
estimation task, so that the duration ranging from 1.2 to
3.3 minutes. In this work, the EEG signal of each patient
is treated as an instance, i.e., the database contains a total
of 144 instances (only an instance for each patient).

2.2 Microstates Analysis

To perform the data study, a method called microstate
analysis (Lehmann et al., 1987) was used. In this method,
the EEG multichannel register is converted in a series of
microstates, each one characterized by a single topography
of electrical potentials that remain stable for a certain
period of time (60 to 120 ms), before switching rapidly
to a different topography. As this technique simultane-
ously considers the recorded signals of all areas in the
cortex, it is possible to evaluate the function of brain
network as a whole, whose alterations are related to various
neuropsychiatric disorders (Pascual-Marqui et al., 1995;
Michel et al., 2009; Khanna et al., 2014).

The extraction of microstates from EEG signal starts cal-
culating the Global Field Power (GFP), which quantifies
the overall potential variance across the set of electrodes,
according to Equation 1.

GFP (t) =

√√√√(

N∑
i

(Vi(t) − Vmean(t))2)/N (1)

Where Vi(t) is the potential of the electrode i on the
instant of time t, N is the total number of electrodes
and Vmean(t) is the potential mean of all electrodes on
the instant of time t.

From the GFP signal, the EEG topographic maps are
obtained in the time points of maximum GFP that there
is a greatest signal noise ratio, and therefore more likely to
observe the microstates. Finally, an algorithm called mod-
ified k-means is used to cluster these maps according to
their topographic similarities metric, called GEV (Global
Explained Variance) (Pascual-Marqui et al., 1995). Figure
1 shows the process to obtain the microstates.

2.3 Graph Theory applied to Microstate Analysis

Graph theory is a widely used tool in the analysis of
Functional Connectivity Networks, that are defined as the
temporal correlation among the activity of different neural
assemblies, in terms of significant dependencies between
distinct brain regions (de Vico Fallani et al., 2014). There-
fore, brain networks can be modeled mathematically using
graph theory, in which each node is represented by an elec-
trode and the edges are defined by temporal correlations



Figure 1. Microstates segmentation process (Khanna et al.,
2015).

between such electrodes. Using this concept, in this work,
the microstates are modeled in a similar way, i.e., each
microstate is modeled as a complex network, in which each
node of the network represents an electrode and the edges
represent the correlations between them. As can be seen in
Figure 1, the EEG signals are represented by a sequence
of microstates. As the microstates time series has scale-
free property, i.e., similar topographies can be observed
at different time scale (M. Michel and Koenig, 2017), in
this work, each microstate is represented by a time series
by concatenating the time instants where the microstate
occurred. From these four time series (in this work, we
use four microstates), the correlation matrix is calculated
to represent each microstate as a complex network. Thus,
each microstate was modeled as a weighted undirected
graph of 56 nodes using Pearson’s correlation according
to the Equation 2,

rij =
cov(Vi, Vj)√
var(Vi)var(Vj)

(2)

where cov(Vi, Vj) is the covariance between the potential V
of the nodes i and j, and var(Vi) is the potential variance
of the node i. In this work, the correlation is calculated
over the time interval of each microstate. Therefore, dif-
ferent from the functional connectivity networks, the EEG
signals are sampled according to the microstates labeling.
The Correlation Matrix (CM) with dimension 56 × 56 is
CMij = rij = wij , and wij is a weighted element of CM .
Then, the adjacency matrix is obtained by thresholding
the CM matrix. The threshold used in this work for the
connection density was of TH = 60%, to omit spurious
links (Telesford et al., 2011). In this case, the nodes and
edges are constructed by fixing the connection density,
resulting in a weighted connectivity matrix.

Although in the literature, unweighted connectivity net-
works obtained from binarization are well common on the
study of brain networks, weighted network analysis can
provide more specific information about the relationship
between node pairs (Telesford et al., 2011). A threshold is
used in order to eliminate the links that representing spu-
rious connections, noises, and indirect connections in the
correlation matrices. In this work was used a fixed value of
the connection density, this method results in a different
absolute threshold for each network. A measurement of
the connection density was usually defined as the ratio
of the total number of existing edges K to the maximum
possible number of edges N(N−1)/2. Then, the differences
between the groups of topological metrics were further
calculated by fixing the sparsity of networks. In this study,

each microstate’s correlation matrix was transformed into
a set of corresponding weighted matrices with edge density
equal to 60% (number of actual edges divided by the total
possible number of edges). Finally, all of the wheighted
matrices were quantitatively analyzed using graph theory
tools (Zhang et al., 2018).

2.4 Global and Local Properties

Exploring different network properties can provide valu-
able insight into the internal function of microstates net-
works, and these data may be useful to identify patients
with ADHD. The most commonly used graph metrics
are described in two main groups: global (that describe
the characteristics of the entire network) and local (that
describe how vertices and edges integrate into the net-
work) properties. The global metrics evaluated in this work
were: clustering, path length, global efficiency, modularity,
assortativity and small-worldness. The local metrics eval-
uated were: degree, strength, local efficiency and degree
centrality. All metrics evaluated in this work were calcu-
lated using the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010) and all respective equations can be found at
supplementary matterial of Rubinov and Sporns (2010).

Global measures are primarily aimed at revealing segrega-
tion and integration of information flows within the net-
work, small-worldness (that displays an optimal balance
between network segregation and integration) and network
resilience against failure (Fallani et al., 2010).

Next, the equations used to calculate the most relevant
metrics (identified in this work) are described as follows.
For all equations described below, consider: N is the set
of all nodes in the network, and n is the number of nodes
and l is the number of links. The link (i, j) are associated
with connection weight wij .

The small-worldness is the indice that quantifies the bal-
ance between segregation and integration, and is dedicated
to graphs in which most nodes are not neighbors but
they can be reached by any other node with possibly the
shortest path length. This property was measured using
Equation 3 (Fallani et al., 2010).

SW =
CW /CWrand
LW /LWrand

(3)

where SW is the small-worldness indice of the weighted
network W , CW and CWrand are the clustering coefficients,
LW and LWrand are the characteristic path lengths of the
respective tested network in a random network.

The most relevant local property in the analysis of mi-
crostates using graph theory on machine learning classifi-
cation task of ADHD was local efficiency (between two ver-
tices), that is defined as the inverse of the shortest distance
between the vertices. Eventually, local efficiency provides
an indication of how effectively information is integrated
between the immediate neighbors of a given network node.
This measure quantifies a network’s resistance to failure on
a neighborhood scale and was calculated using Equation 4
(Fallani et al., 2010).



EW
loc =

1

n

∑
iεN

∑
j,hεN,j 6=i(wijwih[dWjh(Ni)]

−1)1/3

ki(ki − 1)
(4)

where EW
loc is the local efficiency, dWjh is the shortest path

between j and h, that contains neighbors of i and ki is the
degree of i.

2.5 Classification

After calculating the local and global metrics of mi-
crostates networks, the boxplot graph was used to as-
sess which metrics are able to separate data into two
groups: healthy control and ADHD. After this step the
kNN (k-Nearest Neighbor), MLP (Multilayer Perceptron)
and SVM (Support Vector Machine) classifiers were used.
The classification task was performed in two parts: in
the first part, the metrics indicated by the boxplot that
best characterize the data were evaluated. In the second
part of the experiments, all global and local metrics were
evaluated in the classification task. Finally, the results of
this two parts were compared. In addition to the two-class
problem, the experiments were also carried out to assess
the efficiency of three classes separation, i.e. to perform
the identification of ADHD subtypes.

The classifier parameters were optimized using bayesian
optimization. The optimized hyperparameters were: for
kNN the nearest neighbors (1 to 21), for MLP the number
of hidden neurons (1 to 50) and for SVM with gaussian
kernel the Box Constraint (0.001 to 100) and the Kernel
Scale (0.001 to 100). The experiments were carried out
using 3-fold cross validation. One fold was used to train
and one fold was used to validate hyperparameters with
Bayesian optimization. After finding the best hyperparam-
eters, the classifier was trained with the two folds and
tested with the remaining fold. This procedure is repeated
until all folds are used as a test. For more robust results,
the 3-fold cross-validation was repeated 30 times. The
data of the experiments were standardized to have zero
mean and unitary standard deviation. For evaluating the
proposed method, the metric accuracy was used, according
to Equation 5 (Baratloo et al., 2015).

Accuracy =
NC

NP
× 100% (5)

where NC is the number of patients correctly classified
and NP is the total number of patients.

3. RESULTS AND DISCUSSION

Previous works involving the study of microstates in
ADHD have been carried out with the aim of finding
relevant features in their topologies capable of distinguish
individuals with ADHD and healthy ones, as well assessing
the efficiency of medication in the treatment of symptoms
(Zillessen et al., 2001; Meier et al., 2012). In this work, four
microstates of EEG signals were evaluated using graph
theory, to identify healthy and ADHD individuals. Fig-
ure 2 shows the four microstate class prototype topogra-
phies obtained according to the optimal value of GEV for
the database. The Matlab software and EEG Microstates

Figure 2. The topographies of the four microstate classes
from the clustering algorithm. Note that only map’s
topography is important, whereas polarity is disre-
garded in the spontaneous EEG clustering algorithm.

Toolbox (Poulsen et al., 2018) were used to perform the
microstates segmentation process.

After modeling the microstates networks as graphs, global
and local metrics were extracted and evaluated as de-
scribed in Sections 2.3 and 2.4. Figure 3 shows the met-
rics that were visually the most relevant in characterizing
healthy and ADHD individuals.

Figure 3. Selected metrics that better characterize the
database, where the x-axis represents the microstates
and the y-axis is the metrics values.

As seen in Figure 3, the topological architecture of the
microstate networks of patients with ADHD tend to have
lower values of small-worldness. Small-worldness is a prop-
erty of some networks in which most nodes are not neigh-
bors of each other but can be reached from every other
node by a small number of steps. It was observed that the



microstate networks of healthy individuals are more effi-
ciently wired, showing high small-worldness, and are more
clustered and hierarchically organized. Previous works
using fMRI (Functional Magnetic Ressonance Imaging)
studies evaluated brain functional connectivity and found
similar results, this means that the topological architecture
of the studied microstates tend to show similarities with
the topology of functional connectivity networks (Wang
et al., 2009).

According to Figure 3 for local efficiency measures, only
microstates B and D showed significant differences. The
topologies of microstates B (D) of patients with ADHD
tend to present small (high) local efficiency, that can be
understood as a measure of the fault tolerance of the
network, indicating how well each subgraph exchanges
information when a node is eliminated.

These measures were used to train kNN, MLP and SVM
model, as described in Section 2.5, in order to classify
healthy controls and ADHD patients, i.e., two class prob-
lem. The means and standard deviations of the results are
shown in Table 1. As can be noted, all results were above
95% and the best classification result was obtained using
the kNN classifier that obtained mean accuracy of 95.51%
and standard deviation of 2.99.

Table 1. Classification results using selected
metrics (normal and ADHD individuals).

Cassifier Mean accuracy (%) Std.

kNN 95.51 2.99
MLP 95.12 3.20
SVM 95.46 2.66

Next, the ability of such measures to distinguish between
ADHD subtypes was assessed. Previous works have sug-
gested that the EEG of interval timing processes differ
between ADHD subtypes. The reason is that interval tim-
ing task depends on specific neurotransmitters and region
brain network mechanisms, which have been shown to
be altered in patients with ADHD (Hwang et al., 2010;
Smith et al., 2013; Bluschke et al., 2018). Thus, in or-
der to assess these selected characteristics to distinguish
between ADHD subtypes, Table 2 shows the classification
results (means and standard deviations) for the three-class
problem (healthy, ADD and ADHD-C individuals). As can
be observed, the best result was for SVM which obtained
mean accuracy of 92.82% and standard deviation of 3.42.

Table 2. Classification results using selected
metrics (healthy, ADD and ADHD-C individ-

uals).

Cassifier Mean accuracy (%) Std.

kNN 88.66 4.49
MLP 92.48 3.24
SVM 92.82 3.42

In addition to the characteristics selected visually by
analyzing boxplot graphics, the classification process was
also evaluated using all global and local metrics, presented
in Section 2.4. Using all metrics, the learning models
were more successful in the classification task. In other
words, the combination of all metrics extracted from the
microstate networks proved to be more efficient in the
classification task than using only small worldness and

local efficiency measures. The classification results for
the problems of two and three classes can be seen in
Table 3. Thus, the global and local metrics extracted
from the microstate networks proved to be promising both
in the identification of patients with ADHD, presenting
an average accuracy of 100% using SVM, as well in
the identification of ADHD subtypes, with an average
accuracy of 99.19% and standart deviation of 1.42 using
MLP.

Table 3. Classification results using all metrics.

2-class Problem 3-class Problem

Classifier Mean Acc.(%) Std. Mean Acc.(%) Std.
kNN 99.93 0.38 98.24 1.71
MLP 99.93 0.37 99.19 1.42
SVM 100 0.00 99.07 1.25

Previous studies have reported that changes in ERP-
microstates may be potential biomarkers in the diagnosis
of ADHD (Brandeis et al., 2002; Albrecht et al., 2015)
and studies related to other brain diseases evaluated the
characteristics of the microstates using statistical proper-
ties such as Frequency of Occurrence, Duration Time, and
Transition Probabilities (Khanna et al., 2015; M. Michel
and Koenig, 2017). Each property can be interpreted based
on the underlying neural activities. Then, the frequency
of occurrence represents the tendency of microstates to
be active, the average duration represents the temporal
stability of each microstate, while the transition probabili-
ties extract the asymptotic behavior of transitions between
microstates (Khanna et al., 2015). We used such features of
the microstates to perform the same experiment of Table
3, however, the classifiers were not successful in the clas-
sification, as showed in Table 4, being the mean accuracy
obtained by SVM of 68.80% (two-class problem) and mean
accuracy obtained by SVM and kNN of 33.13% (three-
class problem). The Frequency of Occurrence, Duration
Time, and Transition Probabilities from microstates were
calculated using the Microstate EEGlab Toolbox (Poulsen
et al., 2018).

Table 4. Classification results using classic mi-
crostates features.

2-class Problem 3-class Problem

Classifier Mean Acc.(%) Std. Mean Acc.(%) Std.
kNN 65.94 4.86 33.13 6.02
MLP 57.55 6.59 32.57 6.06
SVM 68.80 2.65 33.13 4.55

The most recent works involving the use of machine
learning to identify ADHD use deep learning techniques
with EEG signals (Vahid et al., 2019; Dubreuil-Vall et al.,
2020).The work of Vahid et al. (2019) was the first study
showing that deep learning methods applied to EEG data
are capable to dissociate between patients with ADHD and
healthy controls with accuracy up to 86%. In their work
was used EEGNet model as a deep learning architecture.
That model was previously examinaded in regards to
ERP (Event-Related Potentials) such as the P300, visual-
evocked and sensory motor rhythms (SMR).

Using the same database as Vahid et al. (2019), this work
proposes a different methodology of analysis using tech-
niques of graph theory to modeling and extract features
of microstates networks. The advantages of the proposed



method in relation Vahid et al. (2019) is also making a
good separation between the subtypes of ADHD and the
ability to obtain greater accuracy with less computational
effort, since the proposed technique produced good results
without the need to apply deep learning models, which
require greater time and computational capacity.

4. CONCLUSION

In this paper was proposed a method that combines EEG
microstates with graph theory in order to identify ADHD
individuals. This method allows to model and interpret
each microstate as a complex network. In addition, the
model asses the distintion of the ADHD subtypes and the
automatic classification resulted in an average accuracy
of 99% with metrics extracted from microstate networks.
This result indicates that the method is promising in the
detection of ADHD and subtypes.

In future work, other brain diseases can be analyzed
and, possibly, detected using the proposed method, e.g.,
diseases that have similar symptoms and that are often
difficult to differentiate early. Different statistical models
can also be proposed in the analysis of the relationship
between pairs of EEG electrodes in order to obtain other
models of microstate networks. Moreover, different metrics
can be evaluated to increase the reliability of the proposed
method.
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